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Abstract

This paper examines how individual identity influences group behavior through social

interactions. I study a discrete choice model in which people are affected differently

by different members of their network, conforming to the actions of some peers while

deviating from the actions of others. Under this generalized framework, I explore what

aggregate outcomes arise from noncooperative decisionmaking. I analyze uniqueness and

stability of equilibria, and I characterize how negative spillovers impact social welfare. I

then show how to take the model to data, introducing a novel identification strategy that

leverages within-network variation in individual characteristics to account for unobserved

network effects. I also show how to construct internal instruments to overcome the issue

of measurement error, which is a primary source of endogeneity in models with incomplete

information. Lastly, I apply my method to data from the large-scale education experiment

Project STAR, where I find strong evidence that classroom peer effects differ by gender.

Key Words: social interactions, identity, polarization, strategic complementarity, non-negative

matrix, contextual effects, measurement error, nonparametric identification, Project STAR.

I. Introduction

The role of social interactions in individual decisionmaking has received widespread
attention in economics. This work has largely focused on settings with uniform strategic
complementarities, where all agents seek to conform to the average action in the rest of
their network. Meanwhile, less attention has been given to cases with nonuniform interac-
tions, where agents conform to some people, while deviating from others. These types of
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interactions are more challenging to study, particularly when agents make discrete choices,
since the nonlinear dependence between outcomes and potential for multiple equilibria can
complicate the theoretical analysis of economic outcomes and also pose challenges to iden-
tification and estimation. Nevertheless, nonuniform interactions appear in many real-world
contexts. Consider, for example, the impact of gender on peer effects in schools. Male and
female students often face pressure to conform to members of their own gender, while there
may be less pressure to conform across genders. In some cases, students might even wish
to distinguish themselves from the opposite gender—a preference that can be modeled by a
negative interaction effect. As Hoxby (2000) and others discuss, these social influences may
contribute to gender differences in behavior and academic achievement. More generally,
as Akerlof & Kranton (2000) argue, social identities—such as gender, race, class, and politi-
cal affiliation—are relevant for most everyday decisions that people make and are therefore
likely to inform a wide range of economic outcomes. Given these considerations, it is worth
understanding how nonuniform, and even negative, interactions shape economic behavior.

In this paper, I develop a framework for studying generalized social interactions, where
agents are affected differently by different people in their network. I focus on a model with
binary choices where agents experience positive and negative spillover effects. I characterize
what aggregate outcomes can occur in equilibrium, and I show how the model is empirically
tractable. This work may be especially useful for understanding the impact of identity on
social and economic behavior, as well as the emergence of polarized or segregated networks.

I begin my analysis by modeling a network of agents who make binary choices subject to
social influences and private, idiosyncratic preferences. Following Brock & Durlauf (2001),
I assume that agents act with incomplete information, such that they are influenced by the
expected average outcomes in the network, rather than by every person’s realized outcome.
However, unlike previous work, I assume that the social interaction effects differ, and might
even be negative, across agents. To achieve this objective, I categorize the agents into dif-
ferent social groups (or “identities”). These classifications play a role in determining private
payoffs, and they also form the basis for nonuniform social interactions. In particular, the
interaction effects can be expressed in terms of a matrix J, where each entry Jkℓ indicates
how an agent in group k is influenced by the expected average action of people in group ℓ.

I examine equilibrium properties of the model under noncooperative decisionmaking.
These properties are well-studied in settings with uniform complementarities, where the
spillover effects are all positive; e.g., consider Glaeser, Sacerdote & Scheinkman (1996, 2003),
Brock & Durlauf (2001), Calvo-Armengol, Patacchini & Zenou (2009), and Cabrales, Calvo-
Armengol & Zenou (2011), among others. In these settings, the interactions produce social
multipliers, which can lead to large differences in aggregate outcomes across similar popula-
tions. Also, models with uniformly positive interactions may exhibit multiple, locally stable
equilibria, which are generally well-ordered, in the sense that they form a complete lattice.1

1The microeconomic foundations for models of complementarity are largely developed by Donald Topkis (see
Topkis (1998) for a summary), Vives (1990), and Milgrom & Roberts (1990). This work leverages key results
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Overall, there is less known about the equilibrium properties of models with both posi-
tive and negative interaction effects. One issue is that the tools economists use to analyze set-
tings with complementarities do not readily transfer to settings with strategic substitutabili-
ties, i.e., negative spillovers. For example, models involving negative interaction effects may
fail to possess a pure strategy Nash equilibrium. Moreover, even when equilibria do exist, it
may be that none of them are dynamically stable, which means that they are unlikely to be
observed by researchers.2 In much of the networks literature, e.g., Ballester et al. (2006), Ga-
leotti et al. (2010), Bramoullé et al. (2014), contraction mapping arguments are used to prove
that there exists a unique, stable equilibrium if the spillover effects are sufficiently weak. I
derive a similar, albeit slightly more general, result for my model by using an index theorem.
However, the bulk of my theoretical analysis focuses on cases with strong interaction effects
where unstable equilibria arise and where aggregate outcomes become harder to interpret.

I identify two conditions—one strictly weaker than the other—that each guarantees the
existence of a locally stable equilibrium in contexts with strong interaction effects. Both
conditions have meaningful economic interpretations. In either a strict or weak sense, they
require that agents are not repelled by their own social group. Using these two conditions, I
show how key results in the complementarities literature extend to a broader class of models
that involve substitutabilities. I start by establishing necessary and sufficient conditions for
the existence of multiple equilibria. I show that multiplicity depends on a single parameter:
the spectral radius of the Jacobian matrix of the equilibrium system. This number measures
the intensity of the cycles in a network, thereby quantifying the cumulative strength of the
interaction effects. I find that a unique, stable equilibrium exists if the spectral radius is
below a certain threshold, while multiple, locally stable equilibria exist if the spectral radius
is above this threshold. Next, I consider the social welfare of agents at different equilibria. I
find that negative interaction effects can introduce welfare trade-offs, such that it impossible
to jointly maximize the expected utility of agents in different social groups. Specifically, if
two agents who otherwise prefer the same action are negatively influenced by one another,
then the equilibrium that maximizes welfare for one may not maximize welfare for the other.
This result is instructive for policy analysis as it carries implications about social inefficiency.

In the second half of the paper, I turn to the question of identification. That is, given
data on individual choices across multiple networks, what can be said about the role of
social interactions? The identification of network-based discrete choice models with incom-
plete information is carefully studied by Brock & Durlauf (2001, 2007), and more recently by
Bhattacharya et al. (2023). Paula (2017) and Kline & Tamer (2020) also give recent reviews of

from lattice theory, e.g., Tarski’s fixed point theorem, to study equilibrium behavior in settings with uniform
complementarities. Cooper & John (1988) also provide an early discussion about the role of complementarity
in economics. Additional contributions have been made by Milgrom & Shannon (1994) and Athey (2001, 2002).

2Jackson & Zenou (2015) describe several unresolved questions regarding how and why network-based models
with substitutabilities behave differently from models with uniform complementarities. Of course, strategic
substitutabilities appear frequently throughout economics, albeit outside of the social interactions literature; e.g.,
see Bramoullé & Kranton (2007), Bramoullé et al. (2014), and Elliott & Golub (2019) for recent contributions.
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the literature.3 My analysis builds on this work by tackling two key identification problems.

First, I address the issue of unobservable network effects. These contextual factors may
prevent researchers from uncovering the role of social interactions. For example, when com-
paring student achievement across different classrooms, it is hard to distinguish the impact
of peer effects from unobserved teacher quality or unknown class characteristics. Much of
the applied literature tends to rule out these unknown network factors.4 Alternatively, some
papers have used a panel to difference-out the fixed effects between time periods; e.g., see
Hoxby (2000) and Brock & Durlauf (2007). However, this approach relies on having access
to panel data, as well as the assumption that the model parameters do not change over time.

To handle the issue of unobservable network effects, I introduce a novel approach that
allows for the partial identification of social interactions. Importantly, this method places
no restrictions on the network-level determinants of people’s actions. Rather, it leverages a
panel structure that is inherent in the model, whereby members of different social groups in-
teract in the same network. Since these agents face the same contextual factors, I can control
for network effects by comparing the outcomes of different social groups in a given network.
Using this approach, I recover the differences between any two social interaction effects,
which I can then use to measure the amount of polarization in a network.5 This technique
of exploiting within-network variation in individual-level characteristics is new to the social
interactions literature. However, similar approaches have been proposed in other areas of
economics. For example, Berry & Haile (2022) show how to use data about heterogeneity
within markets to reduce the number of instruments needed to estimate systems of demand.

Next, I address an issue that is common to most network-based models with incomplete
information, which is that the expected average outcomes in a network are never directly
observed. Instead, a researcher only sees the average actions among finitely-many agents.
Since these observed averages converge to the true expectations as the networks grow large,
previous research has treated this issue as an estimation problem rather than as a barrier to
identification; e.g., see Bhattacharya et al. (2023). These estimation strategies rely on double
asymptotic arguments, such that the number of networks and the size of each network must
both tend to infinity. I argue that these approaches are not advisable given that replacing
expectations with observed averages always leads to measurement error. Indeed, I show
that, in any setting with finite networks, the observed average outcomes are endogenous in
the model. Moreover, by failing to account for the endogeneity, most common estimation
methods would produce biased estimates—even as the number of networks tends to infinity.

I approach the issue as a classical measurement error problem (Wooldridge, 2013, sec.

3Blume et al. (2011) also review issues related to identification of linear and nonlinear network-based models.
4For example, Brock & Durlauf (2001, 2007) assume that the network effect is a constant linear function of

observed variables, whereas Bhattacharya et al. (2023) assume that it exhibits a specific linear factor structure.
5My definition of polarization contributes to a burgeoning literature documenting how people’s choices are

divided along cultural or political lines; e.g., see Boxell et al. (2022) and Bertrand & Kamenica (2023). In this
literature, there is still no clear consensus on how to measure polarization as it is a relatively abstract concept.
One benefit of my approach is that I measure polarization in a way that is motivated by an economic model.

4



15.4). Specifically, I note that the observed average outcomes are noisy approximations of
the true expectations and are therefore endogenous. To correct for this endogeneity, I use
internal instruments. This procedure involves randomly partitioning the network into two
parts and then computing the sample average action within each part. Using these sample
averages, I treat one as the endogenous variable and the other as an instrument. Since each
network is partitioned randomly, this IV strategy ensures that the model parameters are
identified even for small networks. I then define an IV estimator and prove it is consistent. I
also demonstrate the efficacy of the estimation strategy by running Monte Carlo simulations.

Finally, I provide an empirical application of the model and identification strategy using
data from the class size reduction experiment Project STAR. Prior research has used this data
to measure peer effects in classrooms, e.g., see Boozer & Cacciola (2001) and Graham (2008).
However, I leverage the generalized interactions framework to study a new question: How
do peer effects differ by gender? For this application, I find evidence of significant gender
differences in peer effects, where male and female students are both more likely to conform
to members of their own gender than to members of the opposite gender. This finding is
notable as it contributes to a longstanding literature about the impacts of gender and so-
cial pressure on academic achievement, e.g., see Hoxby (2000), Lavy & Schlosser (2011), and
Bostwick & Weinberg (2022). While previous work has primarily focused on the effects of
gender composition, I explore how students are directly affected by the expected achieve-
ment of their male and female peers. Moreover, I perform this analysis while accounting for
unobserved classroom-level determinants of student outcomes. Overall, my empirical find-
ings illustrate the advantages of using a generalized interactions framework to learn about
systematic heterogeneity in social interactions. They also contribute to a growing literature
about identity in economics; see Charness & Chen (2020) and Shayo (2020) for discussions.

This paper proceeds as follows. Section II describes the binary choice model. Section III
explores the equilibrium properties of the model, such as existence, uniqueness, dynamic
stability, and social welfare. Section IV considers alternative specifications and also explores
how the equilibrium properties generalize to a broader class of models. Section V explains
the identification strategy, along with the estimation procedure and the simulation results.
Section VI presents the empirical application and key findings. Lastly, Section VII concludes.

II. A Model with Generalized Social Interaction Effects

I study a binary choice model with interaction effects that vary on the basis of group
identity. This model extends Brock & Durlauf’s (2001) binary choice framework by assuming
that individuals are influenced differently—perhaps even negatively—by different people.
For example, a person might seek to conform to the average behavior in certain groups,
while distinguishing herself from others. Unlike previous work, I allow the distribution
of idiosyncratic preferences to be nonparametric. This feature ensures that the equilibrium
properties of the model will be robust under relatively loose functional form assumptions.

5



II.A. Individual Preferences

Consider a network of I agents, where each agent i belongs to one of K social groups.
Every agent chooses a binary action ωi ∈ {0, 1} at a common time. Let ω̄k be the average
action in group k, and let ω̄k

−i be the average action among members of group k excluding i.

When forming decisions, people are influenced by the expected behavior of everyone
else in their network. For any person i in group k, the utility from choosing an action ωi is:

Ui(ωi|k) = vk(ωi) + Jkkωi Ei(ω̄
k
−i) +

∑
ℓ ̸=k

Jkℓωi Ei(ω̄
ℓ) + ϵi(ωi). (1)

Here, Ei(ω̄
k
−i) and Ei(ω̄

ℓ) represent i’s subjective expectations about ω̄k
−i and ω̄ℓ, respectively.

The term vk(ωi) is the private utility associated with a choice. This utility may vary by group
membership. Finally, ϵi(ωi) is an idiosyncratic preference that is independent across agents.

Under this framework, utility exhibits proportional spillovers, so there is a multiplicative
interaction between an agent’s choice and the expected average choice in every group.6 Each
term Jkℓ captures how much members of group k seek to conform to the mean behavior in ℓ.

Since the action is binary, I can write vk(·) as an affine function: vk(ωi) = hkωi+ηk. Also, I
can write ϵi(ωi) = εiωi+ ξi without loss of generality, where εi and ξi are random coefficients
in the model. Note that hk parameterizes the deterministic private utility bias toward ωi = 1

for an agent in group k, while εi captures the agent’s idiosyncratic payoff from this action.

I assume that the idiosyncratic payoffs εi may be distributed differently in every group:

P(εi ≤ z|k) = Fε|k(z), for k = 1, . . . , K, (2)

where Fε|k(·) is continuously differentiable, symmetric about zero, and has positive density
everywhere. I make no further parametric assumptions about these distributions. So, this
framework applies for a variety of empirical specifications, e.g., logistic or Gaussian errors.

Three quantities are especially important for characterizing the model. First, there is
a vector h = (h1, . . . , hK)

′ of private utility terms, which specifies each group’s intrinsic
preference over the two actions. Second, there is a vector of distribution functions {Fε|k}Kk=1,
which determine how likely it is that any idiosyncratic payoff is realized in each group.
Third, there is a matrix J ∈ RK×K containing all the social interaction effects:

J =


J11 J12 · · · J1K
J21 J22 · · · J2K

...
... . . . ...

JK1 JK2 · · · JKK

 . (3)

6The spillover term Jkℓωi Ei(ω̄
ℓ) may also be generated from a quadratic conformity effect − 1

2Jkℓ[ωi−Ei(ω̄
ℓ)]2

as studied by Bernheim (1994). See Brock & Durlauf (2001) and Blume et al. (2015) for additional discussion.

6



Throughout this paper, I will refer to J as the interaction matrix. It may also be interpreted
as the adjacency matrix of a directed graph (K,J), where the nodes K = {1, . . . , K} represent
different groups of individuals.7 The entries of J specify the nature and intensity of the
relationships between groups. Note that the interaction effects may not be symmetric, so Jkℓ
need not equal Jℓk for k, ℓ ∈ K. In addition, any of the interaction effects could be negative.

II.B. Equilibrium under Noncooperative Decisionmaking

When analyzing this model, I focus on (pure strategy) Bayesian Nash equilibria where
agents act noncooperatively. In other words, agents do not coordinate with one another
when making decisions. Each agent i in group k chooses the action ωi = 1 with probability:

P(ωi = 1|k) = Fε|k

(
hk + Jkk Ei(ω̄

k
−i) +

∑
ℓ ̸=k

Jkℓ Ei(ω̄
ℓ)
)
. (4)

Since ωi takes values in the set {0, 1}, the expected action E(ωi|k) also equals P(ωi = 1|k).

I assume that everyone has rational expectations about other people’s choices. So, while
agents cannot directly observe the actions of others, they do correctly infer these actions in
expectation, i.e., Ei(ωj|k) = E(ωj|k) for all agents i and j, and all groups k. By symmetry of
the conditional expected choice equations, it follows that E(ωi|k) = E(ωj|k) for all i, j, and k.

An equilibrium is defined by the expected average choices {E(ω̄k)}Kk=1 that are consistent
with individually optimal decisions. Letting mk∗ denote E(ω̄k), I can write this condition as:

mk∗ = Fε|k

(
hk +

K∑
ℓ=1

Jkℓm
ℓ∗
)
, for k = 1, . . . , K. (5)

Any fixed point solution m∗ = (m1∗, . . . ,mK∗) to this system of equations is an equilibrium.

III. Equilibrium Properties of the Model

I now examine various properties of an equilibrium, such as existence, dynamic stability,
and uniqueness. I also explore the implications of equilibrium outcomes for social welfare.

III.A. Existence

Since the distributions {Fε|k}Kk=1 are continuous and the support of m∗ is [0, 1]K , Brouwer’s
fixed point theorem guarantees that there is at least one solution to the equilibrium system.

Property 1. There exists at least one equilibrium m∗ in the binary choice model.

III.B. Dynamic Stability

Another key equilibrium property is dynamic stability. This property asserts that any
iteration on best response dynamics would converge to an equilibrium. Formally, consider a

7For linear-in-means models, this matrix is sometimes called a “sociomatrix” (e.g., see Blume et al., 2015).
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dynamic analogue of the equilibrium system: mk
t = Fε|k

(
hk+

∑K
ℓ=1 Jkℓm

ℓ
t−1

)
for k = 1, . . . , K.

An equilibrium m∗ is defined to be locally stable if it is a limiting solution to this dynamical
system, where the initial iterate m0 lies within some sufficiently small neighborhood of m∗.
Alternatively, an equilibrium is unstable if there is a neighborhood of m∗ such that, for any m0

arbitrarily close to m∗, there is some eventual iterate mt that lies outside of the neighborhood.

The question of local stability is fundamental to comparative statics. If a locally stable
equilibrium is slightly perturbed, then the average outcomes in a network would return to
that equilibrium. Meanwhile, if an equilibrium is unstable, then nearby outcomes would
diverge from it. In practice, locally stable equilibria are the ones that a researcher observes,
while unstable equilibria represent tipping points between different equilibrium outcomes.

To assess when an equilibrium is locally stable, I need to introduce some terminology.
First, I define the Jacobian matrix of the right-hand-side of the equilibrium system (5) to be:

D(m∗) = β(m∗)J. (6)

Here, β(m∗) = diag
[
fε|1
(
h1+

∑K
ℓ=1 J1ℓm

ℓ∗), . . . , fε|K(hK+
∑K

ℓ=1 JKℓm
ℓ∗)] is a diagonal matrix

of densities fε|k
(
hk +

∑K
ℓ=1 Jkℓm

ℓ∗), each representing the relative likelihood that an agent in
group k is close to indifferent between the two actions at an equilibrium m∗. So, D(m∗)

equals the interaction matrix J where each row k is weighted by the expected fraction of
group k that is near indifferent at m∗. Since all the density functions fε|k are strictly positive,
the entries Dkℓ(m

∗) of the Jacobian matrix have the same signs as the interaction effects Jkℓ.

Next, I define the spectral radius of the Jacobian matrix ρ(D(m∗)) as the largest eigenvalue
of this matrix in absolute value. Formally, for any square matrix A, this quantity is equal to:

ρ(A) = max
{
|λ| : λ is an eigenvalue of A

}
. (7)

A matrix A is convergent, in the sense that limt→∞At = 0, if and only if ρ(A) < 1. So, a larger
spectral radius corresponds to a more expansive matrix. In this model, ρ(D(m∗)) allows me
to measure the collective strength of the social interaction effects within and across groups.
As seen through the next property, this quantity also governs the local stability of equilibria.

Property 2. If ρ(D(m∗)) < 1, then m∗ is locally stable. If ρ(D(m∗)) > 1, then m∗ is unstable.

This property almost gives a necessary and sufficient condition for local stability. It falls
short only when ρ(D(m∗)) equals one. However, this case is not especially relevant in this
model, since it is not economically meaningful and it occurs with probability measure zero.8

III.C. Uniqueness

This model has the potential to exhibit multiple equilibria. In other words, for some
fixed parameter values, there may be multiple solutions to the equilibrium equations. In

8When ρ(D(m∗)) = 1, the stability of m∗ is governed by the Hessian matrices of the equilibrium equations.
However, for almost all {Fε|k}Kk=1, the Jacobian D(m∗) evaluated at any equilibrium m∗ has no unit eigenvalues.
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this subsection, I examine what social environments lead to uniqueness versus multiplicity.

III.C.1. Social Environments with a Unique Equilibrium

When is there only one equilibrium? This situation arises whenever the social interaction
effects are not strong enough to generate any unstable equilibria. To see why, consider the
next property, which follows from Sard’s Theorem and the Poincaré-Hopf Index Theorem.

Property 3. For almost all distributions {Fε|k}Kk=1, the number of equilibria is finite and odd. Also,
if there are ds locally stable equilibria, then there are at least ds − 1 unstable equilibria.

Using Property 3, I recover a sufficient condition for uniqueness. Namely, if all equilibria
are locally stable, then there can only be one. This reasoning leads to the following corollary.

Corollary. If ρ(D(m∗)) < 1 at all equilibria m∗, then there is a unique, locally stable equilibrium.

Recall that ρ(D(m∗)) measures the intensity of social interactions, weighted by the like-
lihood that agents are indifferent between the two choices. So, a unique equilibrium exists if
the social interactions are relatively weak and/or if agents have strong private preferences.9

III.C.2. Social Environments with Multiple Equilibria

When is there more than one equilibrium? By Property 3, multiplicity can only occur in
settings with strong interaction effects where unstable equilibria exist. However, strong in-
teractions do not always imply multiplicity. In some cases, there is a unique equilibrium that
is unstable.10 To interpret equilibrium behavior when there are strong interaction effects, I
must first examine the role of strategic complementarity and substitutability in networks.

Negative Spillovers and Global Instability of Equilibria

If all the entries of the interaction matrix J are non-negative, then the model exhibits
strategic complementarity between all agents. In this case, each person’s utility is a super-
modular function of individual choices, which means that the marginal payoff from one’s
action (weakly) increases when anyone else chooses that same action. This type of model
has important properties. Most notably, it almost always has a locally stable equilibrium.11

If the interaction matrix has negative entries, then these same equilibrium properties
do not generally apply. In particular, some interaction effects are incompatible with locally
stable equilibria. This instability has an economic interpretation. It arises when agents are

9By using the Poincaré-Hopf Index Theorem, I obtain a sufficient condition for uniqueness that is weaker than
the conditions that are adopted in much of the literature, i.e., those that are implied by the Banach contraction
mapping theorem. Note that Property 3 is consistent with a longstanding literature about the oddness of Nash
equilibria in finite games; for example, see Wilson (1971) Harsanyi (1973), and Kohlberg & Mertens (1986).

10One example of this phenomenon occurs when the interaction matrix J is symmetric and only has eigenvalues
with non-positive real parts. For such interactions, the model always has a unique equilibrium m∗, which is
locally stable when ρ(D(m∗)) < 1 and becomes unstable when ρ(D(m∗)) > 1. See the Appendix for justification.

11See Milgrom & Roberts (1990, 1994) and Milgrom & Shannon (1994) for properties of supermodular games.
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strongly repelled by the choices in their own group. In these cases, the group can never settle
on one average action because its members will always be discontented with the outcome.

To better understand this point, assume there is one group in the network, i.e. K = 1,
and suppose, for simplicity, that there is no private utility bias, i.e. h = 0. In this case, an
equilibrium m∗ is defined as the fixed point solution to m∗ = Fε(Jm

∗) (group subscripts
are removed for notational convenience). When J < 0, agents are repelled by the expected
average action in the population. Therefore, if E(ω̄) is high, then people tend to prefer the
low action. Conversely, if E(ω̄) is low, then most people prefer the high action. When J < 0 is
sufficiently large in magnitude, the equilibrium behavior in the model becomes unstable.12

When there are multiple groups, the role of negative interactions is more complicated.
To illustrate why, suppose that there are now two groups, i.e. K = 2. The interactions in this
case are depicted in Figure 1, where arrows indicate the direction of each effect. By the same
reasoning as before, a stable equilibrium cannot exist if the within-group effects J11 and J22
are very negative. Additionally, consider what happens when J12 > 0 and J21 < 0. Members
of group 1 seek to conform to the mean behavior in group 2, while members of group 2 want
to distinguish themselves from group 1. These social influences, if they are strong enough,
lead to self-contradictory behavior: if E(ω̄2) is high, then E(ω̄1) is also high, which means
that E(ω̄2) is low, and so forth. In this setting, equilibrium outcomes again become unstable.

Figure 1: Social Interactions with Two Groups

Social Interactions that Maintain Stable Equilibria

Going forward, it will be useful to classify what types of social interactions are conducive
to stable behavioral outcomes. The discussion above suggests that global instability arises
when preferences are self-contradictory in the sense that a population responds negatively
to its own average choice. So, it makes sense to rule out these cases. The following condition
captures the idea that all groups are overall positively affected by their own average choices.

Assumption A. There is an invertible matrix B such that BJB−1 has all non-negative entries.

This assumption states that the interaction matrix J is similar to a non-negative matrix.
When two matrices are similar, they represent the same linear operator under different bases.
In this way, Assumption A ensures that the model behaves similarly to one where all the in-
teractions are non-negative, i.e. where there is strategic complementarity between all agents.

12Specifically, global dynamic instability will occur when J < −f−1
ε (0). For an explanation, see the Appendix.
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On its face, Assumption A is hard to interpret. Nevertheless, it covers a range of contexts
where agents do not wish to deviate from their own group. I highlight two special cases.

Example 1. The way that agents are affected by their own group depends on the cycles in
a network. These cycles dictate how an agent’s choice is reflected back onto itself via social
interactions. Suppose that the product of interaction effects along any cycle is non-negative.

Assumption A.1. For any k and positive integer M , Jkj1Jj1j2 · · · JjMk ≥ 0 for all j1, . . . , jM ∈ K.

Under this condition, agents would never be repelled by their own group. For example,
with two groups, A.1 implies: J11 ≥ 0, J22 ≥ 0, and J12J21 ≥ 0. This restriction does not rule
out negative interactions, but it requires that J12 and J21 have the same sign. In other words,
between-group relations are mutual: agents either “agree to agree” or “agree to disagree”.

More broadly, Assumption A.1 holds if the indirect spillover effect JkmJmℓ has the same
sign as the direct spillover effect Jkℓ, i.e. if sgn(Jkℓ) = sgn(JkmJmℓ) for all k, ℓ,m ∈ K.13 In this
way, A.1 invokes the phrases “the friend of my friend is my friend” and “the enemy of my
friend is my enemy”. This condition is rooted in balance theory (Cartwright & Harary, 1956).

To see how Assumptions A and A.1 are related, consider the following lemma. It reveals
that A.1 is a special case of Assumption A where the change-of-basis matrix B is diagonal.

Lemma 1. Assumption A.1 holds if and only if BJB−1 is non-negative for a diagonal matrix B.

Example 2. Suppose that the interaction matrix is symmetric, positive semi-definite. In
this case, it satisfies Assumption A since it can be diagonalized so that J = B−1ΛB, where B

is orthogonal and Λ is a diagonal matrix of the eigenvalues of J, which are all non-negative.

One example in this class of matrices is the diagonally dominant matrix, which satisfies:

Jkk ≥
∑
ℓ̸=k

|Jkℓ|, for k = 1, . . . , K. (8)

This condition may be interpreted as saying that the level of cohesion in a group is strong
relative to the between-group influences. Hence, agents tend to conform to their own group.

Deriving a Sufficient Condition for Multiple Equilibria

In settings with strong interaction effects, Assumption A is instrumental in characteriz-
ing equilibrium behavior. This assumption ensures that there is almost always one locally
stable equilibrium. Also, the locally stable equilibria outnumber the unstable equilibria.

13To motivate this restriction, consider a random effects version of the model where the interaction effects are
unweighted. In particular, let Jij ∈ {−1, 1}, where Jij varies across all agents i and j. Interpret J as a matrix
of average interactions Jkℓ = E(Jij |i ∈ k, j ∈ ℓ). In this case, the restriction must only hold in an average sense,
such that P(Ji0i1Ji1i2 = Ji0i2 |i0 ∈ k, i1 ∈ m, i2 ∈ ℓ) ≥ 0.5 for all k, ℓ,m ∈ K. See the Appendix for justification.
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Property 4. Suppose that Assumption A is satisfied. Then, for almost all distributions {Fε|k}Kk=1,
there is exactly one more locally stable equilibrium than there are unstable equilibria.

To justify Property 4, I first give a proof in the case where J is non-negative. This proof
relies on the Perron-Frobenius theorem, as well as other mathematical results related to non-
negative matrices. I then show how the proof extends to settings where Assumption A holds
(where J is similar to a non-negative matrix). These arguments are laid out in the Appendix.

Under Assumption A, I obtain a sufficient condition for multiplicity. Specifically, mul-
tiple equilibria arise when agents have a strong desire to conform to the average action in
their own group. In these social environments, aggregate behaviors become self-reinforcing,
which leads to multiple locally stable equilibrium outcomes from the same fundamentals.

Corollary. Suppose that Assumption A is satisfied. If ρ(D(m∗)) > 1 at some equilibrium m∗, then
the model has multiple equilibria, and at least two of these equilibria are locally stable.

III.D. Comparisons of Aggregate Welfare across Social Groups

In this model, there is no strict Pareto ranking across equilibria since extreme realizations
of the random payoff εi can dominate an agent’s utility. So, to learn about social welfare, I
consider the expected utility of agents in a group. In doing so, I can assess which equilibrium
makes agents better off on average. In group k, the expected utility at an equilibrium m∗ is:

E
(
max
ωi

Ui(ωi|k)|m∗) = E

(
max
ωi

{
hkωi + ηk +

K∑
ℓ=1

Jkℓωim
ℓ∗ + εiωi + ξi

})
. (9)

To evaluate this expected utility, it helps to rescale the choices so that ωi ∈ {−1, 1}. This
modification has no impact on equilibrium behavior; however, it makes the welfare calcula-
tions easier to interpret. For example, it implies that—in absence of private preferences, i.e.,
when hk = εi = 0 for all i, k—an agent’s realized payoff when everyone selects the high ac-
tion is the same as it would be when everyone selects the low action. In this way, there is no
negative externality inherent to an equilibrium in settings where all agents are ambivalent
between their choices. In general, welfare analysis in models of social interactions is highly
sensitive to the way that utility is specified, even when different specifications yield the same
expected choice functions. The reason is that welfare depends on the exact mechanisms that
give rise to spillover effects (e.g., social learning, pressure to conform, or free-riding), not
just the spillover effects themselves; see Bhattacharya et al. (2023) for a detailed explanation.

When the action takes values in the set {−1, 1}, the expected utility in group k equals:

E
(
max
ωi

Ui(ωi|k)|m∗) = E

(∣∣∣hk +
K∑
ℓ=1

Jkℓm
ℓ∗ + εi

∣∣∣)+ ηk + E(ξi|k). (10)

As seen through the next result, the equilibrium that generates the highest expected utility
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is the one where most group members choose the same action, i.e., where E(ω̄k) is largest in
magnitude. In addition, if agents are privately biased toward the high (low) action, then they
tend to maximize their expected utility at the equilibrium where E(ω̄k) is highest (lowest).

Property 5. Let M∗ be the set of equilibria. For any group k, argmaxm∗∈M∗ E(maxωi
Ui(ωi|k)|m∗)

equals argmaxm∗∈M∗ |E(ω̄k)|. Also, there always exists some threshold Tk for which:

(i) If hk > Tk, then argmaxm∗∈M∗ E(maxωi
Ui(ωi|k)|m∗) = argmaxm∗∈M∗ E(ω̄k).14

(ii) If hk < Tk, then argmaxm∗∈M∗ E(maxωi
Ui(ωi|k)|m∗) = argminm∗∈M∗ E(ω̄k).

When do different social groups favor the same equilibrium? To answer this question,
it will be useful to characterize when two groups are positively or negatively influenced
by one another. These notions are generally hard to define because social influences reflect
the sum of direct spillover effects (e.g., Jkℓ) and indirect spillover effects (e.g., JkmJmℓ), which
arise through interactions with other groups. Fortunately, using Assumption A.1, I can more
easily interpret the nature of relations between groups. Consider the following definitions.

Definition 1. Group k is connected to group ℓ if Jkj1Jj1j2 . . . JjM ℓ is nonzero for some j1, j2, . . . , jM ∈ K.

Definition 2. Group k is positively (negatively) influenced by group ℓ if, for any positive integer M ,
Jkj1Jj1j2 . . . JjM ℓ ≥ 0 (≤ 0) for every j1, j2, . . . , jM ∈ K, with at least one inequality strict.

Whenever group k is positively (negatively) influenced by group ℓ, its members seek to
conform to (deviate from) the average behavior in ℓ. If all groups are connected, i.e., if J is an
irreducible matrix, then Assumption A.1 ensures: (1) every group is positively influenced by
itself and (2) any two groups are either positively or negatively influenced by one another.

When Assumption A.1 holds, the equilibria in the model are ordered in a distinctive way.
This ordering determines how the relative welfare of equilibria varies across social groups.

Property 6. Suppose that Assumption A.1 is satisfied, and consider any two social groups k and ℓ.

(i) Suppose that k and ℓ are positively influenced by one another. Then the equilibrium
where E(ω̄k) is highest (lowest) is the same equilibrium where E(ω̄ℓ) is highest (lowest).

(ii) Suppose that k and ℓ are negatively influenced by one another. Then the equilibrium
where E(ω̄k) is highest is the same equilibrium where E(ω̄ℓ) is lowest, and vice versa.

To understand the implications of Property 6, consider any social environment where
A.1 applies and there are multiple equilibria. In this setting, there are two extremal equilibria
(call them m∗ and m∗), where E(ω̄k) is either maximized or minimized for all groups k. As
I prove in the Appendix, both m∗ and m∗ are always locally stable. So, under appropriate
initial conditions, any fixed-point iteration on (5) will converge to an extremal equilibrium.

14Why would Tk ̸= 0? In any group k, the payoff from choosing ωi depends on hk, as well as on hℓ for each
group ℓ that influences k. So, even if hk > 0, most agents in group k may still prefer the low action if (1) hℓ < 0
for some ℓ that attracts k or if (2) hℓ > 0 for some ℓ that repels k. Only if hk is strong enough to overcome these
external influences, i.e., if hk lies above some Tk, is E(maxωi

Ui(ωi|k)|m∗) maximized where E(ω̄k) is highest.
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Taken together, Properties 5 and 6 reveal that social interactions can introduce welfare
trade-offs, such that it is impossible to maximize aggregate welfare jointly in every group.
In particular, if two groups are biased toward the same action, i.e., if hk > Tk and hℓ > Tℓ,
and if they are negatively influenced by one another, then they will maximize their expected
utility at different equilibria. A similar trade-off arises when two groups are biased toward
different actions, i.e., if hk > Tk and hℓ < Tℓ, and are positively influenced by one another.

IV. Extensions and Alternative Network-Based Models

IV.A. Games on Networks

The properties in Section 3 are not exclusive to the binary choice framework. They also
have implications for a much broader class of models where agents interact in a network. To
see how, consider a game with K players. Each player k chooses ak from a compact action
space Ak ∈ R. Given a profile of actions a ∈ A1 × A2 × · · · × AK , the player’s best response
is a∗k = qk

(∑K
ℓ=1 Jkℓaℓ

)
, where qk(·) is some non-decreasing function that maps from R to Ak.

This game encompasses an abundance of economic models. For example, an action ak
could represent a person’s investment into a public good, with everyone benefiting from
how much their neighbors contribute.15 Alternatively, ak could be the output of a firm that
competes in an oligopoly, where each firm’s action influences the market price. These types
of models are well-studied, and they both involve strategic substitutabilities between agents.

Another interpretation of this game is that each player represents a community of indi-
viduals. In the binary choice model, the players are social groups, where the members of
each group make one of two choices subject to social influences and idiosyncratic biases.
Agents act noncooperatively, and ak refers to the average choice within group k. This frame-
work would also apply to a different type of model, in which the residents of a country or
local institution make a collective decision. For example, consider modeling spillover effects
in US state policy, where voters support more liberal or conservative agendas based on the
laws enacted in other states. Here, ak would represent the collective action taken in state k.

I focus on pure strategy Nash equilibria, which are defined by the action profiles a∗

where no player k wishes to deviate from a∗k. It is well known that an equilibrium exists
if there are continuous best responses and compact, convex action spaces. However, even
without these restrictions, an equilibrium would still exist if the interaction matrix J satisfies
Assumption A.1. To prove this result, I use Tarski’s fixed point theorem, which ensures exis-
tence if the best responses are increasing, i.e., if J is a non-negative matrix. I then show that
this property extends to settings where A.1 holds.16 Crucially, this approach does not rely

15Bramoullé et al. (2014) study a type of public goods game that is nested by my framework. In their paper,
players choose from an interval [0, 1] and the best responses are a∗k = max{0, 1− δ

∑
ℓ ̸=k gkℓaℓ}, where δ ∈ [0, 1]

and gkℓ ∈ {0, 1} indicates whether two players k and ℓ are linked. Notice that their paper focuses exclusively on
contexts with pure strategic substitutes, whereas my analysis allows for both positive and negative spillovers.

16Specifically, under A.1, the best response functions map to an alternate system of equations with a non-
negative interaction matrix. Any equilibrium in the original model corresponds to an equilibrium in a different
model that has supermodular payoffs. Given this mapping, I use Tarski’s theorem to prove that equilibria exist.
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on continuous best responses. So, in the binary choice model, Assumption A.1 is enough to
ensure existence even when the random utility component εi is not continuously distributed.

If the best responses are differentiable at each equilibrium a∗, then the spectral radius of
the Jacobian matrix is all that is needed to determine uniqueness. In particular, let ã∗ be the
equilibrium at which ρ(D(a∗)) is greatest. If ρ(D(ã∗)) < 1, then ã∗ is the unique equilibrium.
Additionally, whenever Assumption A holds, there are multiple equilibria if ρ(D(ã∗)) > 1.

The equilibria of this game are generally not well-ordered. For example, they often do
not form a lattice structure, which is useful for drawing conclusions about social welfare.
As seen through Property 6, ensuring well-ordered equilibria can be achieved by imposing
Assumption A.1. This condition guarantees that there always exist extremal equilibria. It
also implies that there are trade-offs between different players in the network: if k and ℓ are
negative influenced by one another, then a∗k is highest wherever a∗ℓ is lowest, and vice versa.

One convenient feature of this game is that each player’s best response either (weakly)
increases or decreases monotonically in another player’s action. So, if the best responses are
continuously differentiable, then the entries of the Jacobian matrix D retain the same sign for
every value of a. However, this monotonicity assumption may be weakened. For example,
suppose that a player’s current action determines whether they conform to or deviate from
someone else. In this case, characterizing equilibrium properties would require evaluating
whether Assumptions A and A.1 are satisfied locally in certain regions of the support of a.

IV.B. Stable Network Structures

Given the implications of Assumptions A and A.1 for equilibrium behavior, it is worth
understanding what network structures would satisfy these conditions. Namely, what types
of exclusion restrictions (entries of 0 in the interaction matrix) are associated with stable equi-
librium outcomes? I explore this question by examining four canonical types of networks.

Figure 2: Graphs with Seven Nodes

(a) Tree (b) Circle (c) Bipartite Graph (d) Complete Graph

Example 1 (Tree). If the links between agents are sparse, then Assumptions A and A.1
are likely to hold even in very large networks. To see why, consider a tree with K nodes.
This network is used to study peer effects in social hierarchies or firm interactions in vertical
production networks. Trees also encompass two common types of network structures: lines
and stars. Since a tree has no cycles, any walk to and from the same node requires retracing
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the same edges. So, if the interactions are symmetric or even weakly mutual, in the sense that
either Jkℓ, Jℓk ≥ 0 or Jkℓ, Jℓ,k ≤ 0 for all k, ℓ ∈ K, then Assumption A.1 is always satisfied.17

Example 2 (Circle). Consider a circle with K nodes. This network is used to study domino
effects that arise when agents only interact with close contacts, rather than with the entire
population; e.g., see Ellison (1993). Suppose that the interactions are weakly mutual, and let
dedge be the number of edges involving negative interactions. If dedge is even, then A.1 always
holds. If dedge is odd, then each agent is negatively influenced by herself. In this case, As-
sumptions A and A.1 both fail. Therefore, the stability of equilibria for this type of network
will depend on the number of agents, which determines the parity of negative interactions.

Example 3 (Bipartite Graphs). Consider an environment with pure strategic substitutes,
i.e., let Jkℓ ≤ 0 for any k, ℓ ∈ K. In this setting, A.1 holds if and only if the corresponding
graph is bipartite. More generally, A.1 applies if and only if the agents can be partitioned into
two teams, such that negative interactions only exist between members of different teams.
Note that, even if A.1 fails, Assumption A may still be used to ensure equilibrium stability.18

Example 4 (Complete Graphs). Consider a network where all agents are linked. As there
are no exclusion restrictions, Assumption A.1 is unlikely to hold if there are many agents
in the network. For example, if the interactions are weakly mutual, then the fraction of
complete graphs for which A.1 holds is 1/2γK , where γK = (K−1)(K−2)/2 for K ≥ 2. With
three agents, this fraction is 1/2. With seven agents (depicted in Figure 2d), it is 1/32, 768. So,
Assumption A.1 is more likely to apply in settings with very few agents and/or where the
interaction effects are fairly uniform. In the binary choice model, I take the latter approach
by partitioning the network into a few subgroups, in which the spillover effects are constant.

IV.C. Preferences over Network Composition

Until now, I have assumed that agents are influenced by the expected average action in
each group, regardless of which group comprises a larger share of the total population. I
now consider an alternative setup, where utility depends on the expected composition of
people who choose an action. Namely, suppose agents care about E(k|ωi) instead of E(ωi|k).

This reformulation may be used to study how social influences affect network selection.
For example, suppose that agents are choosing whether to enter a new environment, such as
a school, and they care about what types of people they are likely to encounter there. This
scenario invariably leads to negative interaction effects, since a preference that one group

17If the interactions are not weakly mutual, then JkℓJℓk < 0 for some k, ℓ ∈ K, which means that A.1 fails.
This scenario is strategically similar to a matching pennies game, which has no pure strategy Nash equilibrium.

18Assumption A typically holds if the within-group spillovers Jkk are positive and large relative to the between-
group spillovers Jkℓ, ℓ ̸= k. For example, let the interaction matrix J and the change-of-basis matrix B equal:

J =

[
δ 1
−1 1

]
and B =

[
1 1
1 −1

]
If δ ≥ 3, thenBJB−1 is a non-negative matrix, which means that the model will have a locally stable equilibrium.
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is in the majority is equivalent to a preference that other groups are in the minority. These
behaviors can be analyzed using the same techniques that I outlined in the previous sections.

Consider a model with two social groups: a and b.19 Let λa be the share of people in
group a, and let sa(ωi) be the probability of being in group a given that someone chooses ωi.
The utility from a choice ωi depends on the composition of agents who make that choice. Let:

Ui(ωi|k) = vk(ωi) + Jksa(ωi) + ϵi(ωi), for k ∈ {a, b}. (11)

Under this framework, the parameter Jk indicates how much the people in group k benefit
from associating with members of group a. Both vk(·) and ϵi(·) are specified exactly as before.

In equilibrium, the expected composition of agents making a choice must be consistent
with individually optimal decisionmaking. By Bayes’ rule, any equilibrium should satisfy:

sa(ωi) =
λa P(ωi|a)

λa P(ωi|a) + (1− λa) P(ωi|b)
, for ωi ∈ {0, 1}, (12)

where P(ωi = 1|k) = Fε|k
(
hk + Jk(sa(1)− sa(0))

)
. By Brouwer’s FPT, an equilibrium exists.

Uniqueness and dynamic stability of equilibria depend on the Jacobian matrix D ∈ R2×2

of the system (12). Letting βk = fε|k
(
hk + Jk(sa(1)− sa(0))

)
, I can define this matrix so that:

D =

[
D11 −D11

−D22 D22

]
, where:

D11 = sa(0)[1− sa(0)]
(

Jaβa

P(0|a) −
Jbβb

P(0|b)

)
D22 = sa(1)[1− sa(1)]

(
Jaβa

P(1|a) −
Jbβb

P(1|b)

) (13)

Suppose that agents prefer to associate with their own group, i.e., let Ja ≥ 0 and Jb ≤ 0.
In this case, the matrix D satisfies Assumption A.1. Hence, there is almost always a locally
stable equilibrium—even if the interaction effects are strong enough to generate multiplicity.

If agents prefer not to associate with their own group, i.e., if Ja < 0 or Jb > 0, then the
model may not have any locally stable equilibria. This global instability occurs when agents’
behavior is self-undermining, such that a group always seeks to deviate from its own action.
As an example, consider Allende (2019), who studies how peer effects drive student sorting
in Peru. In her model, all parents prefer to send their children to schools that are made up of
wealthy, high-achieving peers. If the peer effects are sufficiently weak, then a unique, locally
stable equilibrium would exist. However, if low-performing students overwhelmingly seek
to associate with their high-achieving peers, then a locally stable equilibrium may not exist.

In this model, the amount of diversity in a network is tied to stability of an equilibrium.
To see why, note that the rows of the Jacobian matrix D are scaled by sa(ωi)[1− sa(ωi)]. This
term grows larger as sa(ωi) approaches 1/2, and it tends to zero as sa(ωi) approaches 0 or 1.
So, if the agents who choose an action are more diverse, then the Jacobian is more expansive,
and the realized equilibrium is more likely to be unstable. Conversely, if one group makes

19I study the two-group case for simplicity, but this framework may be generalized to cases with many groups.
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up the majority of people choosing an action, then the equilibrium is more likely to be locally
stable. Of course, this relationship only holds for a static model, where group membership is
fixed. In the school choice example, some characteristics like student achievement are likely
to change over time, while other traits, such as racial identity, may be constant. One area for
future work is to explore how the dynamics of identity affect the formation of networks.

V. Identification and Estimation of Endogenous Interaction Effects

I now discuss how the model can be brought to data. Specifically, I show how to use data
on individual choices to learn about the social interaction effects {Jkℓ}k,ℓ. These effects are
of primary interest to applied researchers as they have major implications for public policy.

V.A. Empirical Setting

Suppose that a researcher has data pertaining to many networks. In practice, a network
could represent a household, a school, a neighborhood, or a workplace. Agents only interact
with other people in their network, and these interactions may differ on the basis of social
identity, e.g., by gender or occupation. In the data, the researcher either observes the entire
network or a random sample that is drawn from each network. In addition, the researcher
knows which network n an agent belongs to, as well as an agent’s social identity k. Let In,k
denote the total number of agents in the sample belonging to network n and social group k.

To ensure a broad scope for application of the model, I assume that an agent’s private
utility is heterogeneous across networks. So, for any agent i with social identity k who
resides in a network n, the private payoff from an action ωi depends on: (1) individual-level
factors εi, (2) identity-specific factors hk, and (3) contextual network effects αn. Importantly,
each of these features is unobserved by the researcher. Hence, an agent i’s action ωi equals:

ωi = 1

{
hk + αn + Jkk Ei(ω̄

k
n,−i) +

∑
ℓ̸=k

Jkℓ Ei(ω̄
ℓ
n) + εi ≥ 0

}
, (14)

where hk, αn, εi, and {Jkℓ}k,ℓ are unknown coefficients. The model can also be adapted to
incorporate observed individual-level covariates. However, since including covariates does
not meaningfully change my analysis, I omit them for now and give details in the Appendix.

Throughout this section, I make two assumptions about the error structure in the model.
First, I assume that the idiosyncratic payoffs εi and εj are independent for any two agents i

and j within and across networks. Hence, there is no covariation between the error terms.
Second, I assume that εi, conditional on group membership k, is independent of the network
effect αn. This condition implies that there is no self-selection into networks based on agents’
unobserved idiosyncratic payoffs.20 Both of these assumptions are standard in the literature
on social interactions, and they could also be relaxed to allow for selection on observables.21

20This restriction is stronger than needed to prove identification. As shown by Manski (1988) and elaborated
on by Horowitz (2009), full conditional independence could be replaced by a quantile independence restriction.

21Suppose that P(εi ≤ z|Wn, αn, k) = Fε|Wn,k(z) for some observed network-level variableWn. Even if Fε|Wn,k
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Assumption B.1. (i) the errors {εi}i are pairwise independent; (ii) P(εi ≤ z|k, αn) = Fε|k(z).

As before, agents act with incomplete information and consistent beliefs. While they do
not see everyone’s idiosyncratic payoff εi, they know about the generic parameters hk, αn,
and {Jkℓ}k,ℓ, as well as the distribution functions {Fε|k}Kk=1. Therefore, they would accurately
infer the expected average choices {E(ω̄k

n)}Kk=1. In equilibrium, the expected outcomes equal:

mk∗
n = Fε|k

(
hk + αn +

K∑
ℓ=1

Jkℓm
ℓ∗
n

)
, for k = 1, . . . , K and n = 1, . . . , N. (15)

As shown in Section 3, multiple equilibria can arise if the social interaction effects {Jkℓ}k,ℓ
are sufficiently large in magnitude. When multiple equilibria exist, I assume that agents
know which one is realized, so there is no coordination involved in selecting an equilibrium.

V.B. Overview of the Identification Strategy

The model is point identified if there is only one set of parameter values {hk}k, {αn}n,
{Jkℓ}k,ℓ, and {Fε|k}k that is consistent with the data under the equilibrium equations. Even if
there is no self-selection into networks based on εi, two obstacles to identification remain. In
the rest of this section, I describe both of these obstacles and explain how to overcome them.

Network-Level Unobservables

The first barrier to identification is the presence of unobservable network effects αn,
which impede my ability to learn about social interaction effects. To account for this is-
sue, I propose a new technique that allows for the partial identification of social interactions
while imposing no added assumptions on the network-level determinants of agent’s choices.
Specifically, I am able to difference-out the network fixed effects for members of two social
groups residing in the same network. I outline this procedure in detail in the next subsection.

Using my approach, I show that I can recover the differences between two interaction
effects, i.e., {Jk1ℓ − Jk2ℓ}Kℓ=1 for any groups k1 and k2. These parameters are economically
meaningful since they specify how the members of any two groups k1 and k2 differ in their
desire to conform to another group ℓ. Furthermore, I can use these parameters to construct
an economic measure of polarization. Specifically, for any groups k1 and k2, I can compute
δk1k2 = Jk1k1 + Jk2k2 − Jk1k2 − Jk2k1 . This term quantifies how much agents want to resemble
their own group plus how much they want to distinguish themselves from the other group.

Unobserved Expected Average Choices

The second barrier to identification is that the expected average choices {mk∗
n }k,n are not

actually observed. Instead, a researcher only sees the average choices among a finite number
of agents in a network. This consideration is an inherent feature of network-based models
with incomplete information. However, in the literature, identification proofs often assume

does not equal Fε|k, identification still follows by comparing networks with the same observable characteristics.
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that {mk∗
n }k,n are already known; e.g., see Brock & Durlauf (2001) and Blume et al. (2015). The

basis for this assumption is that the expectation mk∗
n may be consistently estimated by the

observed average choice ω̄k
n as the size of each network tends to infinity. So, the researcher’s

inability to see mk∗
n is treated as an estimation problem that is separate from identification.

I claim that it is not desirable to treat the expected average actions as known quantities.
In many applications, the network sizes are small, which makes the observed averages be
poor approximations for the true expectations. Even in large networks, ω̄k

n is a noisy measure
of mk∗

n . So, by replacing mk∗
n with ω̄k

n when estimating the model, the estimates are biased
due to measurement error. This bias exists even as the number of networks tends to infinity.

I explain how to correct for the bias with internal instruments. In particular, I randomly
split each network into two subsamples, and I use the average choice in one subsample as
an instrument for the (endogenous) average choice in the other subsample. By construction,
these averages are both noisy measures of mk∗

n , and the measurement errors do not depend
on one another. Hence, this IV procedure is valid. I demonstrate that this approach leads to
consistent estimates of the social interaction effects, even as the network sizes remain small.

Remarks on Reflection and Multiple Equilibria

In linear simultaneous equation models, a primary threat to identification is the reflection
problem (Manski, 1993). This issue arises whenever the expectation mk∗

n is linearly dependent
on αn such that—even if αn were a deterministic function of observed variables—it would be
impossible to disentangle the role of social interactions from contextual network effects. To
overcome the reflection problem, researchers typically rely on exclusion restrictions, which
are variables that only affect some agents in a network, while leaving others unaffected.

In my setting, the reflection problem does not arise. Indeed, Brock & Durlauf (2001, 2007)
show that this issue is not a threat to identification in the binary choice framework because
the data always uncovers a nonlinear relationship between mk∗

n and αn. This nonlinearity is
inherent to the model and it acts like an exclusion restriction, which allows me to distinguish
between the social and contextual effects. So, after accounting for the other two issues raised
above, I find that the parameters in the model are identified without additional restrictions.

Finally, the possibility of multiple equilibria would not interfere with identification. The
model is identified as long as there is a many-to-one mapping from the data to the preference
parameters. Moreover, when estimating the model, I do not need to solve the equilibrium
equations (15) directly. So, my analysis is robust to any issues that stem from nonuniqueness;
see Bhattacharya et al. (2023), sec. 5.5, for more discussion.22 In most cases, it makes sense to
assume that the realized equilibrium is locally stable; otherwise, it is unlikely to be observed
by a researcher. However, no part of my identification strategy will rely on dynamic stability.

22In discrete choice models with full information, nonuniqueness can affect identification (see Tamer, 2003).
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V.C. Identification with Known Expected Average Choices

As a first step, suppose that the expected average choices {mk∗
n }k,n are observed. In this

case, the main obstacle to identification is the unobserved network effect αn. To handle this
issue, I propose to difference-out the fixed effects by contrasting the outcomes of two social
groups in the same network. The intuition for this strategy is contained in the lemma below.
I include the proof along with the result so that my approach can be more clearly interpreted.

Lemma 2. (Sufficiency Property.) For any network n ∈ {1, . . . , N} and for any social group k ∈ K:

E(ωi|k, αn, {mℓ∗
n }Kℓ=1) = E(ωi|k, {mℓ∗

n }Kℓ=1). (16)

Proof. Choose some social group k̃ such that k̃ ̸= k. The expected average choice mk̃∗
n is

defined according to equation (15). Also, since Fε|k̃ is strictly increasing, it is invertible. So:

αn = F−1

ε|k̃

(
mk̃∗

n

)
− hk̃ −

K∑
ℓ=1

Jk̃ℓm
ℓ∗
n . (17)

By plugging this expression for αn into the definition of E(ωi|k, αn, {mℓ∗
n }Kℓ=1), I conclude that:

E(ωi|k, αn, {mℓ∗
n }Kℓ=1) = Fε|k

(
hk − hk̃ +

K∑
ℓ=1

(Jkℓ − Jk̃ℓ)m
ℓ∗
n + F−1

ε|k̃

(
mk̃∗

n

))
. (18)

The network effect cancels out, and E(ωi|k, αn, {mℓ∗
n }Kℓ=1) is now a constant function of {mℓ∗

n }Kℓ=1.

This lemma shows how the observed differences between individuals in a network can
be used to control for unknown contextual effects. Consider any two agents i and j with
different social identities (k and k̃, respectively) who both reside in the same network n.
Since these agents share the same context, all the network-level determinants of i’s choice
are captured by j’s decision. Any difference between ωi and ωj is driven by idiosyncratic
preferences (i.e., εi versus εj), as well as factors that relate to social identity (i.e., k versus k̃).
This framework offers a natural panel structure, which allows me to control for contextual
effects by comparing the expected outcomes of different types of agents in the same network.

I give two versions of my identification result. First, I provide conditions for semipara-
metric identification, where the error distributions {Fε|k}Kk=1 are known by the researcher.
Then, I give conditions for nonparametric identification, where {Fε|k}Kk=1 are unknown. While
the nonparametric version allows for greater flexibility, it also requires that there is a lot of
variation in the data. In both versions, identification is achieved without αn being observed.

Conditions for Semiparametric Identification

Before stating the identification result, I first write down the following assumption:
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Assumption B.2. The network effect αn is a continuously distributed random variable on R.

This assumption corresponds to condition A.4 in Brock & Durlauf (2007), which is based on
Manski (1988). It requires that αn varies across networks and takes infinitely-many values.
By implication, the equilibrium outcomes {mk∗

n }Kk=1 must be heterogeneous across networks.
This heterogeneity is crucial for uncovering the nonlinear relationship between the expected
average choices. It ensures there is ample variation to isolate the role of social interactions.

Theorem 1. Suppose that Assumptions B.1 & B.2 hold, and assume that mk∗
n is observed for all net-

works n and all social groups k. If the distribution functions {Fε|k}Kk=1 are known, then:

(i) Without further assumptions, {hk1 − hk2}k1,k2 and {Jk1ℓ − Jk2ℓ}k1,k2,ℓ are identified.

(ii) If αn = W ′
nd for some observed vector Wn, then d, {hk}k, and {Jkℓ}k,ℓ are identified.

This theorem has two parts. Part (i) leverages Lemma 2 by showing that the model is
partially identified even if researchers have no prior knowledge about the network effects.
In particular, I can recover the differences in identity fixed effects hk1 − hk2 , as well as the
differences between the interaction effects {Jk1ℓ − Jk2ℓ}Kℓ=1 for any social groups k1, k2 ∈ K.
This finding is new to the literature, and it is the main contribution of the theorem. Part (ii)
considers a special case—studied by Brock & Durlauf (2001, 2007), among others—where αn

is a constant linear function of observed variables. In this case, the model is fully identified.

Remark 1. By subtracting Jk1k2−Jk2k2 from Jk1k1−Jk2k1 , I obtain a measure of polarization:

δk1k2 = Jk1k1 + Jk2k2 − Jk1k2 − Jk2k1 . (19)

This term specifies how much agents in social groups k1 and k2 prefer conforming to their
own group over the other group. In the current literature, polarization is often viewed as an
abstract concept, and there is still no clear consensus on how define it. One benefit of my ap-
proach is that I can measure polarization in a way that is motivated by an economic model.23

Remark 2. If the error distributions are known (e.g., if {Fε|k}Kk=1 are standard Gaussian
or logistic), then—under appropriate normalizations—all the interaction effects {Jkℓ}k,ℓ are
identified up to scale. To see how, assume Jℓℓ = 1 for some group ℓ. Since {Jkℓ − Jℓℓ}Kk=1 are
point identified, every coefficient Jkℓ is known relative to Jℓℓ. Hence, by setting the diagonal
entries of the interaction matrix J to one, each element Jkℓ may be recovered from the data.24

Conditions for Nonparametric Identification

For nonparametric identification, I need an extra assumption. Specifically, there must be
an exogenous, individual-level covariate that varies continuously over an unbounded sup-
port. Using this variation, I can recover each of the error distributions {Fε|k}Kk=1, which I then

23Under my framework, polarization is defined with respect to a particular choice ωi. So, if social identity is
more salient for some choices than others, then {δk1k2

}k1,k2
will depend on the decision that agents are making.

24In many practical contexts, {Fε|k}Kk=1 are only known up to a scale parameter, e.g., the variance. In these
cases, {Jk1ℓ−Jk2ℓ}k1,k2,ℓ is already identified up to scale, and additional normalizations would not be advisable.
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use to identify the rest of the model. This strategy closely follows Brock & Durlauf (2007).

To set ideas, I first modify the choice equation to allow for exogenous covariates Xi ∈ Rr.
I define ωi = 1{X ′

ic+ hk + αn +
∑K

ℓ=1 Jkℓm
ℓ∗
n + εi ≥ 0}, such that P(εi ≤ z|Xi, k, αn) = Fε|k(z)

and P(Xi ≤ x|k, αn) = P(Xi ≤ x|k). Following Manski (1988), I impose the next assumption:

Assumption B.3. For any k ∈ K, supp(X|k) is not contained in a proper linear subspace of Rr;
also, there is some component xj of X—with a nonzero coefficient cj—such that, for almost
all values of x−j|k, the distribution of xj|k given x−j|k has positive density everywhere on R.

Assumption B.3 ensures that there is enough variation in the data to recover the model
parameters even if the distributions {Fε|k}Kk=1 are unknown. Consider the following result.

Theorem 2. Suppose that Assumptions B.1, B.2, & B.3 hold, and assume that mk∗
n is observed for

all networks n and social groups k. Then
(
{Fε|k}Kk=1, c

)
is identified up to scale. Also:

(i) Without more assumptions,
(
{hk1−hk2}k1,k2 , {Jk1ℓ−Jk2ℓ}k1,k2,ℓ

)
is identified up to scale.

(ii) If αn = W ′
nd for an observed vector Wn, then

(
d, {hk}k, {Jkℓ}k,ℓ

)
is identified up to scale.

V.D. Identification with Unknown Expected Average Choices

In practice, researchers do not see the expected average choice mk∗
n . Instead, they would

only see the average outcome ω̄k
n among finitely-many individuals. This quantity may be

interpreted as a noisy measure of the true expectation, such that ω̄k
n = mk∗

n +uk
n where uk

n has
mean zero and

√
In,k×uk

n converges in distribution to N
(
0,mk∗

n (1−mk∗
n )
)

as In,k tends to ∞.

If a researcher simply replaces mk∗
n with ω̄k

n without accounting for measurement error,
then the previous identification arguments break down. To understand this point, it helps to
re-write an agent’s choice equation in terms of the quantities that are observed in the data.

ωi = 1

{
hk + αn +

K∑
ℓ=1

Jkℓω̄
ℓ
n + ε̃i ≥ 0

}
, where ε̃i = εi −

K∑
ℓ=1

Jkℓu
ℓ
n. (20)

In this equation, the sample averages {ω̄ℓ
n}Kℓ=1 are correlated with the idiosyncratic term ε̃i.

Indeed, even if agent i’s choice ωi were excluded from the sample mean ω̄k
n, it is still the case

that Cov(ω̄ℓ
n, ε̃i) = −Jkℓ × Var(uℓ

n) for every ℓ ∈ {1, . . . , K}. Hence, {ω̄ℓ
n}Kℓ=1 is endogenous in

the model, which further implies that conditions (i) and (ii) of Assumption B.1 are violated.

To correct for this endogeneity, I propose an IV strategy that uses internal instruments.
This procedure involves carrying out two steps. First, in each network n and social group k,
I randomly split the sample into two subsets: a and b. In practice, there are many ways to
form these subsets (e.g., drawing Bernoulli random variables), and their relative sizes do not
matter for identification. Second, I compute the average actions ω̄k

n,a and ω̄k
n,b in each subset.

By construction, the two sample averages ω̄k
n,a and ω̄k

n,b are both noisy measures of mk∗
n ,

where the measurement errors (uk
n,a and uk

n,b, respectively) are independent of one another.
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This independence is a consequence of the incomplete information setting, in which agents
only respond to expectations rather than to the realized choices of others. Given this prop-
erty, I can account for endogeneity in the model through IV estimation, where ω̄k

n,b is used as
an instrument for ω̄k

n,a. Before formalizing my result, I will first motivate it with an example.

Example (Brock & Durlauf, 2001). In their paper, Brock & Durlauf (2001) study the model:

m∗
n = tanh

(
h+W ′

nd+ Jm∗
n

)
, for n = 1, . . . , N, (21)

where Wn is a vector of observed contextual factors and (h, d′, J) are unknown parameters.25

In the case where m∗
n is known, the authors prove that the model is identified as long as there

is sufficient variation in Wn for uncovering the nonlinear dependence between m∗
n and Wn.

However, the expectation m∗
n is generally unknown. So, any researcher who wishes to

apply the model to data would instead be relying on the observed average choice ω̄n. Unless
one accounts for measurement error, many common estimation strategies, such as maximum
likelihood estimation or OLS regression, would lead to biased estimates. To illustrate this
point, suppose one wants to estimate the model via OLS using the observed means {ω̄n}n.
By defining un = ω̄n −m∗

n and vn = tanh−1(ω̄n)− tanh−1(m∗
n), I can re-write equation (21) as:

tanh−1(ω̄n) = h+W ′
nd+ Jω̄n + ξ̃n, where: ξ̃n = −Jun + vn (22)

To ease notation, I define m̃∗
n, ˜̄ωn, and Ỹ to be the residuals from a least squares regression of

m∗
n, ω̄n, and tanh−1(ω̄n), respectively, on the vector (1,W ′

n). The OLS estimand for J equals:

JOLS =
Cov(˜̄ωn, Ỹ )

Var(˜̄ωn)
= J × Var(m̃∗

n)

Var(m̃∗
n) + Var(un)

+
Cov(˜̄ωn, vn)

Var(m̃∗
n) + Var(un)

. (23)

Observe that this estimand is “doubly-biased” because both the explanatory variable and
the outcome variable are measured with error. In particular, Var(un) ̸= 0 and Cov(˜̄ω,vn) ̸= 0

in any setting with finite network sizes. So, the OLS estimand typically does not recover J .

In practice, the bias can be substantial even with large network sizes. Figure 3 illustrates
this point in the case where J = 1. In this setting, OLS overstates the interaction effect by
a factor of five in smaller networks (fewer than 100 agents) and by a factor of two in larger
networks (around 500 agents). The bias only becomes small for extremely large networks,
on the order of 5,000 agents—sizes that are rarely attainable in most empirical applications.

To overcome this issue, I propose using two-stage least squares. I begin by partitioning
each network into two parts (a and b) and computing the average choices ω̄n,a and ω̄n,b in each
part. I then treat ω̄n,a as the endogenous regressor and ω̄n,b as the excluded instrument. By
construction, the instrument is independent of the measurement error in ω̄n,a, i.e, ω̄n,b ⊥ un,a.
Moreover, it satisfies instrument relevance because Cov(ω̄n,a, ω̄n,b) = Var(m∗

n) ̸= 0. The only
complication is that ω̄n,b may still be correlated with the measurement error in the outcomes,

25Brock & Durlauf (2001) allow for individual-level covariates Xi in their model, which I omit to ease notation.
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vn,a = tanh−1(ω̄n,a)−tanh−1(m∗
n), due to the nonlinearity of the tanh−1 transformation. How-

ever, this covariance has a particular structure that can be exploited. By redefining the out-
comes in a way that accounts for the dependence of Cov(ω̄n,b, vn,a) on the size of the “a”
subgroups, I derive a linear IV estimand that exactly recovers the parameters (h, d′, J). This
strategy involves: (1) regressing ω̄n,a on (1,W ′

n, ω̄n,b) in the first stage to estimate all the fit-
ted values L(ω̄n,a|1,W ′

n, ω̄n,b), and then (2) regressing a linear combination of tanh−1(ω̄n,a) on
(1,W ′

n,L(ω̄n,a|1, ω̄n,b)) in the second stage. By standard IV arguments, I show this method
yields consistent estimates of the parameters h, d′, and J even in cases with small networks.

Figure 3: Bias of OLS Estimand at Different Network Sizes
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Notes. This figure plots the OLS estimand (23) across different network sizes.
I parameterize Brock & Durlauf’s (2001) model with h = 1, d = 1, and J = 1.

An IV Estimator to Recover Endogenous Interaction Effects

To formalize the identification strategy, I begin by defining ω̄k
n,a and ω̄k

n,b to be the average
outcomes in each randomly-generated subset of a network n and social group k. Notice that,
as long as there are at least three agents for any given n and k, it is possible to construct arbi-
trarily many partitioning rules, each inducing a different distribution of subgroup sizes. In
particular, for any P ≥ 1, one can define a sequence of average outcomes {(ω̄k

n,a(p))n,k}Pp=1 for
subgroup a under distinct partitioning rules p ∈ {1, . . . , P}, with corresponding subgroup
sizes {(Ikn,a(p))n,k}Pp=1. Define the matrix Ek ∈ RP×P whose ith row and jth column entry is
given by E[(Ikn,a(j))

1−i], and define the vector wk = [wk
1 , . . . , w

k
P ]

′ to be the first column of E−1
k .

Theorem 3. Suppose that Assumptions B.1 & B.2 hold, and define Y k
n = limP→∞

∑P
p=1w

k
pF

−1
ε|k (ω̄

k
n,a(p)).

(i) Let αn = W ′
nd for some observed vector Wn. Then, for each social group k, the vector
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βk = [hk, d
′, Jk1, . . . , JkK ]

′ is identified and it corresponds to the following IV estimand:

βIV
k = E(ZnX

′
n)

−1 E(ZnY
k
n ), where:

{
Xn = (1,W ′

n, ω̄
1
n,a, . . . , ω̄

K
n,a)

′

Zn = (1,W ′
n, ω̄

1
n,b, . . . , ω̄

K
n,b)

′
(24)

(ii) For any social groups k1 and k2, the vector βk1,k2 =
[
hk1−hk2 , Jk11−Jk21, . . . , Jk1K−Jk2K

]′
is identified. Furthermore, this vector corresponds to the following IV estimand:

βIV
k1,k2

= E(ZnX
′
n)

−1 E(Zn[Y
k1
n − Y k2

n ]), where:

{
Xn = (1, ω̄1

n,a, . . . , ω̄
K
n,a)

′

Zn = (1, ω̄1
n,b, . . . , ω̄

K
n,b)

′
(25)

Theorem 3 shows that the social interaction effects are identified and can be recovered
using linear IV estimation, where ω̄k

n,b serves as an instrument for ω̄k
n,a, and the dependent

variable is a linear combination of F−1
ε|k (ω̄

k
n,a(p)) across distinct partitioning rules p. Although

identification formally requires the number of partitioning rules P to tend to infinity, I find
in practice that using just one or two combinations yields estimates with little-to-no bias.

By the sample analogue principle, I can construct estimators for βIV
k1,k2

and βIV
k that will

converge in probability to the desired parameters as the number of networks grows large.26

By standard arguments, these estimators are capable of inference, and they may be used
for hypothesis testing. Importantly, this estimation strategy yields consistent estimates even
when the size of each network remains small. Therefore, I do no rely on double asymptotics.

To evaluate the efficacy of the estimation method, I conduct Monte Carlo simulations. In
Table 1, I compare the performance of the IV estimates as I vary the size of each network, as
well as the number of networks, in the simulated data. I perform this analysis with both IV
estimators: (i) computing {β̂IV

k1,k2
}k1,k2 when αn is unknown, and then (ii) computing {β̂IV

k }k
when αn = W ′

nd for some known vector Wn. Throughout all these simulations, I fix K = 2.

The simulation results in Table 1 illustrate two key properties of the IV estimators. First,
the estimators perform better in settings with larger networks. Indeed, as the network sizes
grow, the sample average choices {ω̄k

n,a}k,n will better approximate the expectations {mk∗
n }k,n,

reducing the amount of noise in the model. Second, the estimators become more precise as
the number of networks N increases. This pattern is implied by Theorem 3, which shows
that, for any fixed network sizes, I can consistently estimate the social interaction effects.

VI. Application: Differences in Classroom Peer Effects by Gender

In this section, I present an empirical application of my model and identification strategy.
This application uses data from Project STAR, a large-scale education experiment that ran-
domly assigned students to classrooms of different sizes and subsequently measured their

26Specifically, the estimator ( 1
N

∑N
n=1 ZnX

′
n)

−1( 1
N

∑N
n=1 ZnYn) converges to E(ZnX

′
n)

−1 E(ZnYn) asN → ∞.
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Table 1: Performance of IV Estimators for Different Network Sizes

Mean Squared Error
Number of Agents per IV Estimator (i) IV Estimator (ii)

Networks Network Ĵ11 Ĵ12 Ĵ21 Ĵ22 ̂J11 − J12 ̂J22 − J21
N = 100 50 2.740 4.264 1.858 2.226 3.012 2.323

100 0.153 0.610 0.154 0.377 0.929 0.610
500 0.070 0.254 0.067 0.155 0.065 0.048

N = 500 50 0.188 0.989 0.155 0.859 1.161 0.809
100 0.017 0.076 0.016 0.060 0.137 0.094
500 0.007 0.028 0.007 0.020 0.022 0.020

N = 2000 50 0.023 0.152 0.014 0.064 0.301 0.110
100 0.003 0.022 0.002 0.025 0.058 0.037
500 0.001 0.006 0.001 0.006 0.001 0.001

Notes. MSE’s are computed across M = 5000 simulation draws. For each specification, I
assume equal network sizes, and I construct Xn using 2/3 of the network sample,
while using the remaining 1/3 to define the instrument Zn. I assume that agents
have logistic preferences, i.e., εi|k

i.i.d.∼ Logistic(0, 1) for k ∈ {1, 2}. I also set P = 2.
For more details about the data generating process, I refer to the Online Appendix.

test scores. Within this context, I study the role of peer effects on academic performance, and
I use the generalized interactions framework to assess how these spillovers differ by gender.

VI.A. Description of the Data and Specification Choices

The Project STAR experiment took place among students in 79 Tennessee public schools
who entered kindergarten in 1985. Within each school, students and teachers were randomly
assigned to three types of classrooms: small (13 to 17 students), large (22 to 25 students),
and large with a teacher’s aide. At the end of the school year, students took the Stanford
Achievement Tests in Math and Reading, and the scores from these exams were recorded as part
of the study. In total, the experiment encompassed 6,325 students across 325 classrooms.27

For more details about the design and implementation of the program, see Word et al. (1990).

The data reports each student’s raw test score, which I transform into a binary outcome
to make the setting suitable for my model. Since there was no pass/fail threshold for these
tests, I study a variety of outcomes, which include: scoring in the top 25%, 50%, and 75%
among Tennessee kindergarten students on both the math and reading exams. I estimate the
model separately for each of these outcomes to assess the impact of peer effects on each one.

Under the protocols of the experiment, students within a given school are unable to
self-select into classrooms. So, Assumption B.1 holds conditional on a school. I account for
this conditional independence by including school fixed effects when estimating the model.

27The public-use data does not contain classroom identifiers. However, following Boozer & Cacciola (2001) and
Graham (2008), I can uniquely assign students to classrooms by matching on observed classroom characteristics.
I recover a sample of 6,248 students—among which 5,801 have non-missing test scores—across 321 classrooms.
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Following Graham (2008), I also give a version of the estimates where I restrict the sample to
schools that have three classrooms (one of each type). This exercise addresses the unlikely
possibility that there was nonrandom assignment of students to classrooms of the same type.

To evaluate how peer effects differ by gender, I focus on a version of the model with two
social identities: male (m) and female (f ). The Project STAR data is well-suited for studying
these gender differences because male and female students are both well-represented within
and across classrooms. Among participating students, there were 3,250 boys and 3,075 girls.

Student outcomes are specified according to equation (14). This framework allows for
unknown gender effects hf and hm, which may reflect prior socialization or developmental
differences between girls and boys. It also incorporates peer effects (Jff , Jfm, Jmf , Jmm) that
vary based on gender identity. Furthermore, the model allows for unobserved classroom
characteristics αn, which could include anything from teacher quality to the furnishings and
layout of the room. Throughout my analysis, I make no assumptions about αn—only that
it is a continuously-distributed random variable. Therefore, my approach allows for a wide
range of classroom-level determinants that are typically not accounted for in applied work.

When estimating the model, I assume that the idiosyncratic payoff terms follow logistic
distributions, i.e., εi|k

i.i.d.∼ Logistic(0, 1) for k ∈ {f,m}. This assumption relieves the burden
of recovering these distributions nonparametrically, a task that can be quite challenging in
practice. In my setting, the data is simply not rich enough for nonparametric estimation.28

VI.B. Empirical Results

Table 2 reports the IV estimates for Jff −Jmf and Jmm−Jfm using the Project STAR data.
To interpret these results, I first consider the descriptive evidence for gender differences in
test scores. Averaging across all Project STAR classrooms, girls performed 1.01% better than
boys on their combined math and reading scores. However, this difference does not reflect
student outcomes at the classroom-level, where the gender gap favored boys nearly as many
times as it favored girls. On average, the gender gap within a classroom was 2.83%—nearly
three times higher than it was across classrooms. This disparity may suggest that certain fac-
tors at the classroom-level were contributing to gender differences in student achievement.
By examining these patterns under the generalized interactions framework, I can isolate the
role of differential classroom peer effects from other classroom factors that affect test scores.

The estimates in Table 2 indicate the presence of strong classroom peer effects that differ
by gender. Both Jff −Jmf and Jmm−Jfm are estimated to be positive, which implies that the
pressure to conform is higher among peers of the same gender than it is for peers of opposite
genders. In particular, a 1% increase in the expected fraction of girls scoring in the top 50%
in math is estimated to raise the log-odds of achieving this outcome by 0.047 more for a

28Recall from Theorem 2 that recovering {Fε|k}k requires significant variation of individual-level covariates in
each network. For small to moderate sample sizes, these functions may be poorly approximated, which causes
the rest of the estimates to be imprecise. If {Fε|k}k are known a priori, then this step is entirely avoided. Hence,
there is always a trade-off between making fewer parametric assumptions and achieving more precise estimates.
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female student than for a male student, on average. These estimates are roughly consistent
across all six outcome variables. Moreover, there is no evidence to reject the hypothesis that
Jff−Jmf equals Jmm−Jfm, which suggests that the peer effect differences may be symmetric.

Table 2: IV Estimates for Math and Reading Test Scores

Outcome Variable:
Math Reading

Top 25% Top 50% Top 75% Top 25% Top 50% Top 75%

Jff − Jmf 4.219 4.710∗∗∗ 5.116 4.659∗∗∗ 4.886∗∗∗ 4.444∗∗∗

(3.109) (0.866) (3.530) (0.230) (0.920) (0.151)

Jmm − Jfm 4.310 4.845∗∗∗ 5.509 4.556∗∗∗ 4.924∗∗∗ 4.674∗∗∗

(2.747) (0.879) (4.958) (0.302) (0.957) (0.175)

Intercept 0.002 0.220 0.024 −0.008 0.059 0.166
(0.605) (0.313) (0.280) (0.085) (0.301) (0.108)

Number of Classrooms 321 321 321 321 321 321
School Fixed Effects Yes Yes Yes Yes Yes Yes
F(df1,df2) 1st-Stage (ω̄m

n ) 8.17(2,60) 9.09(2,83) 4.71(2,55) 7.27(2,50) 6.43(2,86) 5.73(2,44)
F(df1,df2) 1st-Stage (ω̄f

n) 5.41(2,60) 11.25(2,83) 9.53(2,55) 14.12(2,50) 9.22(2,86) 5.06(2,44)

Notes. Estimates are obtained by computing β̂IV
f,m, which corresponds to the estimand in equation (24). For

implementation, I randomly split each classroom so that half the sample is used to form endogenous
variables Xn, and the remaining half is used to form instruments Zn.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

To defend the validity of my approach, I perform two types of robustness checks. First,
I test whether any of the gender-specific parameters (hf , hm, Jff , Jfm, Jmf , Jmm) depend on
observed classroom characteristics, such as the share of minority students, the poverty rate,
the location of a school (urban versus rural), as well as a teacher’s education and experience.
Such dependence would suggest that the model is misspecified, which could interfere with
identification. Although I cannot test for variation along unobserved dimensions, I find no
evidence to indicate that gender-specific effects differ by observed classroom characteristics.

Second, I investigate how sensitive the IV estimates are to the way that the classrooms
are partitioned. Specifically, I produce histograms that show how each of the estimates differ
across a variety of random classroom partitions. I show that, under alternative partitions,
the parameter estimates would not deviate too much from the results reported in Table 2.
So, the estimates reliably demonstrate strong evidence of differential peer effects by gender.

VII. Conclusion

The goal of this paper is to extend the theory of discrete choice and social interactions
to more general settings, where agents are affected differently by different people. I analyze
how aggregate outcomes depend on the features of a network, and I consider externalities
that arise under both positive and negative spillovers. Finally, I show how data may be used
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to recover the social interaction effects in the model, and I propose a new estimation strategy
that can be applied in any context with finite networks and unobserved contextual effects.

One contribution of this work is to classify when models with negative interactions have
the same types of equilibrium properties as models with uniformly positive interactions. I
present two conditions (Assumptions A and A.1), which both imply that agents are not
repelled by their own actions. These conditions ensure that there is almost always a locally
stable equilibrium, and they allow me to derive a sufficient condition for multiple equilibria.
Under these conditions, I also draw conclusions about welfare that extend over a broad class
of network-based models. To my knowledge, both these conditions are new to the literature.

In the second part of the paper, I explain how to tackle two key obstacles to identification.
First, I show that the generalized interactions framework offers a panel structure, which may
be leveraged to isolate the role of social interactions from unobserved network effects. Then,
I demonstrate how to use internal instruments to correct for measurement error that enters
the model when the expected average choices are not observed. This method assures that the
model will be empirically tractable even in settings with small to moderate network sizes.

I implement my framework using data from Project STAR, and I find evidence that peer
effects differ systematically on the basis of gender. These differences would not be captured
by a model that assumes uniform interaction effects. Hence, this application highlights the
advantages of the generalized interactions framework. Note that my analysis only scratches
the surface on the economic implications of heterogeneous interactions. One could take the
model further by allowing for full heterogeneity in spillover effects between all individuals.
Therefore, while this paper contributes to the discussion about heterogeneous interactions
in discrete choice environments, there is still much room for future research on this topic.
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Appendix: Proofs

This appendix contains proofs of the main results in the paper. Additional discussion and findings
(e.g., justification for remarks that are made in the footnotes and robustness analyses for the empirical
application) are provided in a supplementary appendix, which is intended only for online publication.

Proof of Property 1

Proof. Define Q : [0, 1]K → [0, 1]K so that Qk(m) = Fε|k
(
hk+

∑K
ℓ=1 Jkℓm

ℓ
)

for k = 1, . . . , K.
Since Q is a continuous, self-mapping function on a non-empty, compact, convex set in RK ,
Brouwer’s fixed point theorem ensures that there exists a vector m∗ that solves m∗ = Q(m∗).

Proof of Property 2

Proof. Suppose ρ(D(m∗)) < 1. For any ϵ > 0, there exists a matrix norm || · || for which
||D(m∗)|| ≤ ρ(D(m∗))+ϵ. By defining ϵ so that ϵ < 1−ρ(D(m∗)), it follows that ||D(m∗)|| < 1
for some matrix norm. The system (5) is a contraction at m∗ under this norm, which implies:

||mt −m∗|| = ||Q(mt−1)−Q(m∗)|| ≤ κ||mt−1 −m∗||,

where κ = [0, 1) for any vector mt−1 that lies in some sufficiently small neighborhood of m∗.
Iterating on the inequality above ensures that ||mt−m∗|| ≤ κt||m0−m∗||, where limt→∞ κt = 0.

Next, suppose that ρ(D(m∗)) > 1. Since ||D(m∗)|| ≥ ρ(D(m∗)) for any matrix norm || · ||,
it must be that ||D(m∗)|| > 1. By Henry (1981), Theorem 5.1.5., there exists some u > 0 such
that, for any δ > 0, there is an initial iterate m0 where ||m0 −m∗|| < δ for which some future
iterate mt, where t ≥ 1, satisfies ||mt−m∗|| ≥ u. It follows that m∗ is an unstable equilibrium.

Proof of Property 3

Proof. Define the mapping H : [0, 1]K → RK so that Hk(m) = mk−Qk(m) for k = 1, . . . , K.
By definition, m∗ is an equilibrium if and only if H(m∗) = 0K . Since no equilibrium lies on
the boundary of [0, 1]K , I restrict attention to the interior (0, 1)K .29 Let DH denote the Jacobian
matrix of H, and define a set C = {m ∈ (0, 1)K : det(DH(m)) = 0}. By Sard’s Theorem, H(C)
has Lebesgue measure zero. Therefore, for almost all H(m) evaluated on the domain (0, 1)K ,
the matrix DH(m) is invertible. Moreover, for any fixed y = H(m), almost all distributions
{Fε|k}Kk=1 would satisfy y /∈ H(C). So, when applied to the case where H(m) = 0K , Sard’s
Theorem ensures that DH(m

∗) is almost always invertible over the full set of equilibria m∗.
By the inverse function theorem, it is further guaranteed that each equilibrium is locally
unique. Finally, since the set of equilibria is compact, it must have a finitely-many elements.

To prove that there is an odd number of equilibria, I rely on a version of the Poincaré-
Hopf Index Theorem that is proven in Milnor (1965), Ch. 6. This theorem is presented below.

Poincaré-Hopf Theorem. Let v be a smooth vector field on the disk DK that points outward
on the boundary and has a finitely many isolated zeros {x∗

(j)}Mj=1 satisfying det(Dv(x
∗
(j))) ̸= 0.

Then
∑M

j=1 indexx∗
(j)
(v) = 1 where indexx∗

(j)
(v) equals 1 if det(Dv(x

∗
(j))) > 0 and −1 otherwise.

29Since each Fε|k has positive density everywhere, Hk(m) < 0 when mk = 0 and Hk(m) > 0 when mk = 1.
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This theorem applies within this context because the set of equilibria is defined on (0, 1)K ,
which is diffeomorphic to an open disk. In addition, H is a smooth vector field pointing out-
ward at all boundary points, since limmk→0H(m) < 0 and limmk→1H(m) > 0 for all k. Finally,
for almost all {Fε|k}Kk=1, it is the case that H has finitely-many isolated zeros and that, at
each of these zeros, the Jacobian has a nonzero determinant. Therefore, the index theorem
ensures that

∑M
j=1 indexm∗

(j)
(H) = 1, which implies that there is an odd number of equilibria.

Finally, suppose there are ds locally stable equilibria. At each one of these equilibria m∗,
the eigenvalues of D(m∗) all lie below unity in absolute value with probability one. Hence:

det
(
DH(m

∗)
)
= det

(
I −D(m∗)

)
=

K∏
k=1

(
1− λk(m

∗)
)
> 0,

where {λk(m
∗)}Kk=1 denote the eigenvalues of D(m∗). By the index theorem, there must also

be at least ds − 1 equilibria m∗ at which det(DH(m
∗)) < 0. Each of these equilibria have at

least one eigenvalue that exceeds unity. Therefore, there are at least ds−1 unstable equilibria.

Proof of Lemma 1

Proof. “⇒” Suppose that J is similar to a non-negative matrix A by way of a diagonal
change-of-basis matrix B. That is, there exists some diagonal B for which A = BJB−1 ≥ 0.
Since B is diagonal, the elements of A can be expressed as Akℓ = BkkJkℓ/Bℓℓ, for all k, ℓ.
Thus, for any selection of indices k and ℓ1, . . . , ℓM in the set K = {1, . . . , K}, it must be that:

0 ≤ Akℓ1Aℓ1ℓ2 · · ·AℓMk

=
( Bkk

Bℓ1ℓ1

Jkℓ1

)(Bℓ1ℓ1

Bℓ2ℓ2

Jℓ1ℓ2

)
· · ·
(BℓM ℓM

Bkk
JℓMk

)
= Jkℓ1Jℓ1ℓ2 · · · JℓMk

“⇐” Suppose that A.1 holds. I first restrict attention to the case where J is irreducible.
For any k, I define {γk

ℓ }Kℓ=1 so that γk
ℓ = 1 if k is positively influenced (see Definition 2) by ℓ,

and γk
ℓ = −1 otherwise. Next, fixing some index k0 ∈ K, I construct the matrix B such that:

B = diag

γ
k0
1
...

γk0K


Notice that B is involutory, i.e. B−1 = B. Thus, for all (g, ℓ), Assumption A.1 ensures that:

[BJB−1]k,ℓ = [BJB]k,ℓ = γk0k γk0ℓ Jkℓ = γkk0γ
k0
ℓ Jkℓ = γkℓ Jkℓ = |Jkℓ|

It follows that BJB−1 equals the absolute value of J. Therefore, BJB−1 is non-negative.
Finally, if J is not irreducible, then this same reasoning applies to all irreducible blocks of J.
So, it must always be true that BJB−1 is non-negative for some diagonal matrix B ∈ RK×K .

Proof of Property 4

Proof. First, suppose that J—and therefore D(m) for every m ∈ [0, 1]K—is a non-negative
matrix. In addition, assume there exists an equilibrium m∗ ∈ (0, 1)K satisfying ρ(D(m∗)) > 1.
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If D(m∗) is an irreducible matrix, then the Perron-Frobenius theorem guarantees that:

D(m∗)x = ρ(D(m∗))x > x,

for some strictly positive vector x ∈ RK
++. It follows that D(m∗)δx > δx for any scalar δ > 0.

By taking the first-order Taylor approximation of Q(m∗+δx) about m∗, I obtain the following:

Q(m∗ + δx) = Q(x∗)︸ ︷︷ ︸
=x∗

+D(x∗)δx︸ ︷︷ ︸
>δx

+h1(m
∗ + δx)δx, where lim

δ→0
h1(m

∗ + δx) = 0

For sufficiently small δ, the vector a = m∗+δx, where a ∈ (0, 1)K , will satisfy Q(a) > a > m∗.
By an analogous argument, there also exists some b = m∗−δx, which satisfies Q(b) < b < m∗.
Since no equilibrium lies on the boundary of [0, 1]K , the following inequalities are satisfied:

0K < Q(0K) < Q(b) < b < m∗ < a < Q(a) < Q(1K) < 1K

Brouwer’s fixed point theorem ensures that Q has two more fixed points m∗ and m∗, such
that 0K < m∗ < m∗ and m∗ < m∗ < 1K . Moreover, if either of these equilibria is unstable, i.e.,
if either ρ(D(m∗)) > 1 or ρ(D(m∗)) > 1, then these same arguments can be used to show that
there exist two more equilibria: one that lies between the two unstable equilibria and another
that lies between the unstable equilibrium and the boundary. Since there is a finite number
of equilibria with probability one, I may conclude that there are almost always more stable
equilibria than unstable equilibria. Taken together with Property 3, this result implies that
there is almost always exactly one more stable equilibrium than there are unstable equilibria.

Next, consider the case where D(m∗) is a reducible matrix. If ρ(D(m∗)) > 1, then the
same must hold for some irreducible block of D(m∗). Let B denote the set of indices within
this block. Applying the Perron-Frobenius theorem to that block, there exists some vector x,
satisfying xℓ > 0 for ℓ ∈ B and xℓ = 0 otherwise, so that Q(m∗ + δx) > m∗ + δx for δ > 0
sufficiently small. Setting a = m∗ + δx, it follows that m∗ < a < Q(a) < Q(1K) < 1K .
By Brouwer’s theorem, there must exist a fixed point of Q between m∗ and 1K , and (by
analogous arguments) a fixed point of Q between 0K and m∗. So, just as in the previous
case, there is always exactly one more stable equilibrium than there are unstable equilibria.

Finally, I explain how this fixed point property, which is specific to monotone mappings,
i.e., where J is non-negative, can be extended to a certain class of non-monotone mappings.
Suppose that Assumption A is satisfied, i.e., let there be an invertible matrix B such that
BJB−1 is non-negative. For I = [0, 1]K , define the mapping Q̂ : BI → BI in such a way
that Q̂(m) = BQ(B−1m). This mapping has a Jacobian matrix of DQ̂(m) = BD(B−1m)B−1.
Note that ϕ : RK → RK , where ϕ(m) = Bm, is a bijective linear map. Therefore, ϕ(·) is a
homeomorphism, and it preserves interior points.30 It follows that BD(m)B−1 is non-negative
on int(I) if and only if DQ̂(m) = BD(B−1m)B−1 is non-negative on Bint(I), which equals
int(BI). So, under Assumption A, the matrix DQ̂(m) is non-negative for every m ∈ int(BI).

To summarize, Assumption A implies that Q̂(x) = BQ(B−1x) is monotonic on int(BI).
Note also that m∗ is a fixed point of Q if and only if Bm∗ is a fixed point of Q̂. To see why,
write Q̂(Bm∗) = BQ(m∗) = Bm∗. In addition, note that D(m) and DQ̂(Bm) are similar

30A homeomorphism is a continuous bijection between two topological spaces that has a continuous inverse.
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matrices, since DQ̂(Bm) = BD(m)B−1, which implies that they share the same eigenvalues.
In particular, their spectral radii are equivalent: ρ(DQ(m)) = ρ(DQ̂(Bm)) for all m ∈ int(I).

By this relationship, I can assess the existence, uniqueness, and local stability of fixed
points of the mapping Q by focusing on the (non-decreasing) mapping Q̂. While the fixed
points of Q and Q̂ may be ordered differently on their respective domains, their number and
local stability are the same. So, this property extends to models where Assumption A holds.

Proof of Property 5

Proof. Since the random payoffs εi are distributed symmetrically about zero, the expected
utility E

(
maxωi

Ui(ωi|k)|m∗) defined in equation (10) strictly increases in |hk +
∑K

ℓ=1 Jkℓm
ℓ∗|.

In addition, since |E(ω̄k)| is a strictly increasing function of |hk+
∑K

ℓ=1 Jkℓm
ℓ∗| in equilibrium,

it must be that E
(
maxωi

Ui(ωi|k)|m∗) is highest at the equilibrium where |E(ω̄k)| is highest.
Parts (i) & (ii) follow directly from the fact that limhk→∞ E(ω̄k) = 1 and limhk→−∞ E(ω̄k) = −1.

Proof of Property 6

Proof. Suppose J satisfies A.1. By Lemma 1, there exists some diagonal matrix B for
which BJB−1 is non-negative. Without loss of generality, choose B to be the matrix that is
constructed in the “⇐” part of the proof of Lemma 1. That is, fix some group k, and define
B = diag[γk

1 , . . . , γ
k
K ], where γk

ℓ = 1 if k is positively influenced by ℓ, and γk
ℓ = −1 otherwise.

As shown in the proof of Property 4, the mapping Q̂(m) = BQ(B−1m) is non-decreasing
on int(BI). Also, because (BI,≤) is a complete lattice, Tarski’s fixed point theorem ensures
that the set of fixed points of Q̂ forms a complete lattice. In particular, Q̂ has greatest and
least fixed points. Let Bm∗ denote the greatest fixed point of Q̂. Then E(ω̄ℓ) is maximal at the
equilibrium m∗ if k is positively influenced by ℓ, and E(ω̄ℓ) is minimal at m∗ otherwise. Let
Bm∗ be the lowest fixed point of Q̂. Then E(ω̄ℓ) is minimal at m∗ whenever k is positively
influenced by ℓ, and E(ω̄ℓ) is maximal at m∗ otherwise. This argument holds for any k, ℓ ∈ K.

Proof of Theorem 1

Proof. Pick any two social groups k1 and k2, and define the function νk1,k2 : RK → R such
that νk1,k2(m) = (hk1 −hk2)+

∑K
ℓ=1(Jk1ℓ− Jk2ℓ)m

ℓ+F−1
ε|k2(m

k2). By equation (18), the expected
average action mk1∗

n equals Fε|k1(νk1,k2(m
∗
n)). Additionally, since the cumulative distribution

function Fε|k1 : R → [0, 1] is strictly increasing over R, the following equality will be satisfied:

mk1∗
n = Fε|k1

(
hk1 − hk2 +

K∑
ℓ=1

(Jk1ℓ − Jk2ℓ)m
ℓ∗
n + F−1

ε|k2(m
k2∗
n )

)
= Fε|k1

( ̂hk1 − hk2 +

K∑
ℓ=1

( ̂Jk1ℓ − Jk2ℓ)m
ℓ∗
n + F−1

ε|k2(m
k2∗
n )

)
if and only if (hk1 − hk2)− ( ̂hk1 − hk2) =

∑K
ℓ=1

[
( ̂Jk1ℓ − Jk2ℓ)− (Jk1ℓ − Jk2ℓ)

]
mℓ∗

n . This property
holds for all networks n. Also, since each of the functions {Fε|k}Kk=1 is nonlinear, {mk∗

n }Kk=1 are
nonlinear functions of one another. Sufficient variation in {mk∗

n }Kk=1 across networks ensures:

hk1 − hk2 = ̂hk1 − hk2 and Jk1ℓ − Jk2ℓ = ̂Jk1ℓ − Jk2ℓ,
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for every ℓ ∈ K. Also, since k1 and k2 are chosen arbitrarily, this result holds for all k1, k2 ∈ K.
The proof in the case where αn = W ′

nd relies on an analogous argument, and it also closely
follows the proof given by Brock & Durlauf (2007), Proposition 1. I exclude it for this reason.

Proof of Theorem 2

Proof. To demonstrate that c, {hk1 − hk2}k1,k2 , and {Jk1ℓ − Jk2ℓ}k1,k2,ℓ are identified, I apply
Corollary 5 of Proposition 2 in Manski (1988). This result not only allows me to recover
the parameters of interest, but it also guarantees that the error distributions {Fε|k}Kk=1 are
identified up to scale. Ordinarily, recovering the error distributions would be unnecessary.
However, in this setting, the presence of endogenous interaction effects means that {mℓ∗

n }Kℓ=1

is functionally dependent on {Fε|k}Kk=1. To handle this issue, I take a two-step approach to
identification: first I recover c and {Fε|k}Kk=1, then I use these quantities to recover the rest.

To start, I show that c and {Fε|k}Kk=1 are identified up to scale. Consider any group k ∈ K.
By Assumption B.3, there is some element xj of X that varies continuously across R. Without
loss of generality, let xj = x1, and normalize the coefficient c1 to one. In addition, fix some
network n, and define the quantity ζkn = hk + αn +

∑K
ℓ=1 Jkℓm

ℓ∗
n . For any agent in group k

who resides in network n and has individual-level observables Xi, the expected choice ωi is:

E(ωi|Xi, k, αn, {mℓ∗
n }Kℓ=1) = Fε|k(ζ

k
n +X ′

ic)

To recover {c, Fε|k}, I must show Fε|k(ζ
k
n +X ′

ic) = F̂ε|k(ζ̂
k
n +X ′

i ĉ) implies c = ĉ and Fε|k = F̂ε|k
for any Xi ∈ supp(X|k). This property holds by Manski’s (1988) corollary. Moreover, since
this argument holds for all k ∈ K, I conclude that c and {Fε|k}Kk=1 are identified up to scale.

Having shown that c and {Fε|k}Kk=1 can be recovered, the rest of the proof follows by the
same arguments used to prove Theorem 1. So, the rest of the parameters are also identified.

Proof of Theorem 3

Proof. I prove part (i) only, as the proof of part (ii) is analogous. To start, I derive an ex-
pression for β IV

k = E(ZnX
′
n)

−1 E(ZnF
−1
ϵ|k (ω̄

k
n,a)) in terms of βk. Let X∗

n = (1,W ′
n,m

1
n, . . . ,m

K
n )

′.
Noting that E(ω̄k

n,a) = E(ω̄k
n,b) = E(mk

n) and E(ω̄k
n,aω̄

ℓ
n,b) = E

(
mk

nm
ℓ
n) for all k and ℓ, I write:31

E(ZnX
′
n) = E


1 W ′

n ω̄1
n,a · · · ω̄K

n,a

Wn WnW
′
n ω̄1

n,aWn · · · ω̄K
n,aWn

ω̄1
n,b ω̄1

n,bW
′
n ω̄1

n,aω̄
1
n,b · · · ω̄K

n,aω̄
1
n,b

...
...

...
. . .

...
ω̄K
n,b ω̄K

n,bW
′
n ω̄1

n,aω̄
K
n,b · · · ω̄K

n,aω̄
K
n,b

 = E


1 W ′

n m1
n · · · mK

n

Wn WnW
′
n m1

nWn · · · mK
n Wn

m1
n m1

nW
′
n (m1

n)
2 · · · m1

nm
K
n

...
...

...
. . .

...
mK

n mK
n W ′

n m1
nm

K
n · · · (mK

n )2

 = E
(
X∗

n(X
∗
n)

′).
Since E

(
ωℓ
n,bF

−1
ϵ|k (ω̄

k
n,a)
)
= E

(
mℓ

nF
−1
ϵ|k (ω̄

k
n,a)
)

for all k and ℓ, it follows that E(ZnY
k
n ) = E(X∗

nY
k
n ).

Given these relationships, it is possible to write the IV estimand as βk+θk for some vector θk.

31To see why, recall that the error terms have mean zero and are uncorrelated across subsets within a network:
that is, E(uk

n,j | n) = 0 for j ∈ {a, b}, and Cov(uk
n,a, u

ℓ
n,b | n) = 0. It follows by the Law of Iterated Expectations

that E(ω̄k
n,j) = E

(
E(mk

n + uk
n,j | n)

)
= E(mk

n) for each j ∈ {a, b}. In addition, the cross-product ω̄k
n,aω̄

ℓ
n,b has

an unconditional expectation E(ω̄k
n,aω̄

ℓ
n,b) = E

(
E((mk

n + uk
n,a)(m

ℓ
n + uℓ

n,b) | n)
)
, which simplifies to E(mk

nm
ℓ
n).
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βIV
k = E

(
X∗

n(X
∗
n)

′)−1
E
(
X∗

nY
k
n

)
= E

(
X∗

n(X
∗
n)

′)−1 E
(
X∗

n(F
−1
ε|k (m

k
n) + vkn,a)

)
= E

(
X∗

n(X
∗
n)

′)−1
E
(
X∗

nF
−1
ε|k (m

k
n)
)︸ ︷︷ ︸

βk

+E
(
X∗

n(X
∗
n)

′)−1
E
(
X∗

nv
k
n,a

)︸ ︷︷ ︸
θk

.

Next, I derive a new expression for θk and show it is identified. As a notational shorthand,
define qk = F−1

ε|k . Noting that the function qk is real analytic on the open interval (0, 1), I
expand qk(ω̄

k
n,a) in a Taylor series about mk

n, yielding the following expression for E(vkn,a|n):32

E(vkn,a|n) = E
(
qk(ω̄

k
n,a)− qk(m

k
n)
∣∣n)

= E

(
∞∑
r=0

q
(r)
k (mk

n)

r!
(ω̄k

n,a −mk
n)

r − qk(m
k
n)

∣∣∣∣∣n
)

= qk(m
k
n) E

(
ω̄k
n,a −mk

n

∣∣n)+ q′′k(m
k
n)

2!
E
(
(ω̄k

n,a −mk
n)

2
∣∣n)+ q′′′k (m

k
n)

3!
E
(
(ω̄k

n,a −mk
n)

3
∣∣n)+ . . .

=
q′′k(m

k
n)

2!
× 1

|Ik
n,a|

Var (ωi|k, n) +
q′′′k (m

k
n)

3!
× 1

|Ik
n,a|2

E
(
(ωi −mk

n)
3|k, n

)
+ . . .

=
∞∑
r=2

q
(r)
k (mk

n)

r!
Br

(
0,

κ2(ω|k, n)
|Ik

n,a|
,
κ3(ω|k, n)
|Ik

n,a|2
, . . . ,

κr(ω|k, n)
|Ik

n,a|r−1

)
,

where Br is the rth complete Bell polynomial, and {κi(ω|k, n)}i are cumulants of conditional
distribution of ωi given k and n. Each term Br

(
0, κ2(ω|k,n)

|Ik
n,a|

, κ3(ω|k,n)
|Ik

n,a|2
, . . . , κr(ω|k,n)

|Ik
n,a|r−1

)
is therefore

a polynomial in 1/|Ik
n,a| with no constant term and with coefficients determined entirely by

the conditional cumulants of ωi. It follows that the entire expansion can be written as a poly-
nomial in 1/|Ik

n,a| whose coefficients depend on the distribution of ωi given k and n, and not

the subgroup size |Ik
n,a|. Writing this expansion as E(vkn,a|n) =

∑∞
s=1

akn,s

|Ik
n,a|s

, I can write θk as:

θk = E
(
X∗

n(X
∗
n)

′)−1
E
(
X∗

nv
k
n,a

)
= E

(
X∗

n(X
∗
n)

′)−1
E
(
X∗

n E(v
k
n,a|n)

)
= E

(
X∗

n(X
∗
n)

′)−1
E

(
X∗

n
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s=1

akn,s
|Ik

n,a|s

)
=
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s=1

Ck,s E

(
1

|Ik
n,a|s

)
,

where Ck,s = E (X∗
n(X

∗
n)

′)−1 E
(
X∗

na
k
n,s

)
are constants that do not depend on subgroup sizes.

Hence, I have shown that the IV estimand can be represented in terms of {E
(
|Ik

n,a|−s
)
}s,

specifically: β IV
k = βk +

∑∞
s=1Ck,s E

(
|Ik

n,a|−s
)
. As the distribution of subgroup sizes |Ik

n,a| is
assumed to be nondegenerate, a continuum of such distributions can be generated by vary-
ing the network partitioning rule. Each distinct distribution induces a different value of the
IV estimand, and since the mapping from {E(|Ik

n,a|−s)}s to each component of β IV
k is smooth,

I have continuous variation in each component of β IV
k over a nondegenerate interval in R.

Thus, observing how β IV
k varies continuously with the sequence {E(|Ik

n,a|−s)}s over different

32This property follows from the uniqueness of analytic continuation; e.g., see Rudin (1953), Theorem 8.5.
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subgroup structures enables identification of all the coefficients {Ck,s}s. Moreover, given
that {Ck,s}s and {E

(
|Ik

n,a|−s
)
}s are both identified, I conclude that θk and βk are identified.

To construct an IV estimand for βk, first note that β IV
k = βk+limS→∞

∑S
s=1Ck,s E

(
|Ik

n,a|−s
)
.

For each of P = S+1 network partitioning rules {Ik
n,a(p)}n,k, indexed by p = 1, . . . , P , define

the IV estimand β
IV(p)
k = E(ZnX

′
n)

−1 E(ZnY
k(p)
n ), where outcomes Y k(p)

n = Yn({E(|Ik
n,a(p)|−s)}s)

depend on the partition rule. Stacking the estimands into a vector bk = [β
IV(1)
k , . . . , β

IV(J)
k ], and

defining the matrix Ek ∈ RP×P whose ith row and jth column entry equals E(|Ik
n,a(j)|1−i), I

obtain the condition: bk = β̃kEk where β̃k := [βk, Ck,1, . . . , Ck,S]. Thus, it is possible to write:

β̃k = bk(E
−1
k ) =

[
E(ZnX

′
n)
]−1

E

Zn


Y

k(1)
n
...

Y
k(P )
n


′E−1

k ⇒ βk =
[
E(ZnX

′
n)
]−1

E
(
ZnỸ

k
n

)
,

where the Ỹ k
n is defined as

∑P
p=1 w

k
pY

k(p)
n , where w = [wk

1 , . . . , w
k
J ]

′ is the first column of E−1
k .
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