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ONLINE APPENDIX
This document contains supplementary results and discussions that relate to the

paper “Discrete Choice with Generalized Social Interactions”. It does not include

proofs of main results. All notation is consistent with the main text of the paper.

APPENDIX A: JUSTIFICATION FOR THE REMARKS IN THE FOOTNOTES

Remark in Footnote 9
Let J be a symmetric matrix with eigenvalues that all have non-positive real parts. Since

β(m∗) is a diagonal matrix with positive elements, J is congruent to β1/2(m∗)Jβ1/2(m∗),

which is similar to β1/2(m∗)[β1/2(m∗)Jβ1/2(m∗)]β−1/2(m∗) = β(m∗)J = D(m∗). By

Sylvester’s law of inertia, D(m∗) also has eigenvalues with non-positive real parts for any

equilibrium m∗. Therefore, 0<
∏K

k=1

(
1−λk(m

∗)
)
= det

(
I−D(m∗)

)
= det

(
DH(m

∗)
)

at every equilibrium m∗. By the index theorem, the model always has a unique equilibrium.

Remark in Footnote 11
Consider the equation m∗ = Fε(Jm

∗), where J < 0. By the previous remark, there is al-

ways a unique equilibrium. Moreover, since h= 0 and Fε is symmetric about zero, the equi-

librium equals m∗ = 0. It is unstable if ∂Fε(Jm)
∂m

∣∣
m=0

= J × fε(0)<−1⇔ J <−f−1
ε (0).

Remark in Footnote 12
Claim. Let sgn(Jkℓ) = sgn(JkmJmℓ) for every k, ℓ,m ∈K. Then Assumption A.1 holds.

Proof. To begin, let sgn(Jkℓ) = sgn(JkmJmℓ) for all k, ℓ,m ∈ K. I prove by induction

that sgn(Jj0j1Jj1j2 · · ·JjM j0) ≥ 0 for any arbitrary indices j0, j1, . . . , jM ∈ K. First, note

that sgn(Jj0j2) = sgn(Jj0j1Jj1j2). Next, let sgn(Jj0jm) = sgn(Jj0j1Jj1j2 · · ·Jjm−1jm) for

some positive integer m ∈N. By construction, the following equalities must be satisfied:

sgn(Jj0jm+1) = sgn(Jj0jmJjmjm+1) = sgn(Jj0j1Jj1j2 · · ·Jjm−1jmJjmjm+1)

By induction, sgn(Jj0jM ) = sgn(Jj0j1Jj1j2 · · ·JjM ℓ) for any index ℓ ∈K. By setting ℓ= j0,

I find that sgn(Jj0j1Jj1j2 · · ·JjM j0) = sgn(Jj0j0) where sgn(Jj0j0) = sgn(Jj0j0Jj0j0)≥ 0.

Q.E.D.

Claim. Let Jkℓ = E(Jij |i ∈ k, j ∈ ℓ), where Jij ∈ {−1,1}. Then sgn(Jkℓ) = sgn(JkmJmℓ)

for all k, ℓ,m ∈K if P(Ji0i1Ji1i2 = Ji0i2|i0 ∈ k, i1 ∈m, i2 ∈ ℓ)≥ 0.5 for every k, ℓ,m ∈K.

https://www.econometricsociety.org/


2

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

Proof. For any indices k, ℓ,m ∈K, the product JkmJmℓ equals:

JkmJmℓ = E(Jij |i ∈ k, j ∈m)× E(Ji′j′ |i′ ∈m,j′ ∈ ℓ)

= E
(
Jij × E(Ji′j′ |i′ ∈m,j′ ∈ ℓ)|i ∈ k, j ∈m

)
= E(JijJi′j′ |i ∈ k; j, i′ ∈m; j′ ∈ ℓ)

= 2P(JijJi′j′ = 1|i ∈ k; j, i′ ∈m; j′ ∈ ℓ)− 1

Let P(Ji0i1Ji1i2 = Ji0i2|i0 ∈ k, i1 ∈m, i2 ∈ ℓ) ≥ 0.5 for all k, ℓ,m ∈ K. To ease notation,

define: γ = P(JijJji′ = Jii′|i ∈ k; j, i′ ∈m), δ = P(Jii′Ji′j′ = Jij′|i ∈ k; i′ ∈m; j′ ∈ ℓ), and

κ= P(Jji′ = 1|j, i′ ∈m). Next, I decompose P(JijJi′j′ = 1|i ∈ k; j, i′ ∈m; j′ ∈ ℓ) so that:

P(JijJi′j′ = 1|i ∈ k; j, i′ ∈m; j′ ∈ ℓ) = κ× P(JijJji′Ji′j′ = 1|i ∈ k; j, i′ ∈m; j′ ∈ ℓ, Jji′ = 1)

+ (1− κ)× P(JijJji′Ji′j′ =−1|i ∈ k; j, i′ ∈m; j′ ∈ ℓ, Jji′ =−1)

= κ×
[
γ × P(Jii′Ji′j′ = 1|i ∈ k; j, i′ ∈m; j′ ∈ ℓ, JijJji′ = Jii′)

+ (1− γ)× P(Jii′Ji′j′ ̸= 1|i ∈ k; j, i′ ∈m; j′ ∈ ℓ, JijJji′ ̸= Jii′)
]

+ (1− κ)×
[
γ × P(Jii′Ji′j′ ̸= 1|i ∈ k; j, i′ ∈m; j′ ∈ ℓ, JijJji′ = Jii′)

+ (1− γ)× P(Jii′Ji′j′ = 1|i ∈ k; j, i′ ∈m; j′ ∈ ℓ, JijJji′ ̸= Jii′)
]

= κ×
[
γ ×

[
δ× P(Jij′ = 1|i ∈ k; j′ ∈ ℓ) + (1− δ)× P(Jij′ ̸= 1|i ∈ k; j′ ∈ ℓ)

]
+ (1− γ)×

[
δ× P(Jij′ ̸= 1|i ∈ k; j′ ∈ ℓ) + (1− δ)× P(Jij′ = 1|i ∈ k; j′ ∈ ℓ)

]]
+ (1− κ)×

[
γ ×

[
δ× P(Jij′ ̸= 1|i ∈ k; j′ ∈ ℓ) + (1− δ)× P(Jij′ = 1|i ∈ k; j′ ∈ ℓ)

]
+ (1− γ)×

[
δ× P(Jij′ = 1|i ∈ k; j′ ∈ ℓ) + (1− δ)× P(Jij′ ̸= 1|i ∈ k; j′ ∈ ℓ)

]]
= (1− κ) + (1− γ)(2κ− 1) + (1− δ)(2γ − 1)(2κ− 1)

+ (2κ− 1)(2γ − 1)(2δ− 1)P(Jij′ = 1|i ∈ k; j′ ∈ ℓ)

=
1

2

[
1− (2κ− 1)(2γ − 1)(2δ− 1)

]
+ (2κ− 1)(2γ − 1)(2δ− 1)P(Jij′ = 1|i ∈ k; j′ ∈ ℓ)

Note that κ, γ, δ ∈ [0.5,1] by assumption. So (2κ− 1)(2γ− 1)(2δ− 1) is bounded between

0 and 1. It follows from the last equality that P(Jij′ = 1|i ∈ k; j′ ∈ ℓ) ≥ 0.5 if and only if

P(JijJi′j′ = 1|i ∈ k; j, i′ ∈m; j′ ∈ ℓ)≥ 0.5. This statement further implies that Jkℓ has the

same sign as JkmJmℓ. Because this result applies for every k,m, ℓ ∈K, the claim is true.

Q.E.D.
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Remark in Paragraph 3 of Page 16
I justify that “both m∗ and m∗ are always locally stable”. Consider the mapping Q̂(m) =

BQ(B−1m) that is defined in the proof of Property 6. Tarski’s fixed point theorem implies

that Q̂ has a least fixed point Bm∗ and a greatest fixed point Bm∗. Suppose, for sake of

contradiction, that m∗ is unstable. Then, as argued in the proof of Property 4, Q̂ must have

another fixed point, which is strictly greater than Bm∗. Arriving at a contradiction in this

case, I conclude that m∗ is a locally stable. By the same reasoning, m∗ is also locally stable.

APPENDIX B: ADAPTING THE IDENTIFICATION RESULTS TO ALLOW FOR

COVARIATES

Suppose that the choice equation is modified to allow for exogenous covariates Xi ∈Rr.

Let ωi = 1{X ′
ic+ hk +αn+

∑K
ℓ=1 Jkℓm

ℓ∗
n + εi ≥ 0} where P(εi ≤ z|Xi, k,αn) = Fε|k(z)

and P(Xi ≤ x|k,αn) = FX|k(x). Then mk∗
n =

∫
E(ωi|Xi, k,αn,{mℓ∗

n }Kℓ=1)dFX|k, where:

E(ωi|Xi, k,αn,{mℓ∗
n }Kℓ=1) = Fε|k

(
hk + αn +X ′

ic+

K∑
ℓ=1

Jkℓm
ℓ∗
n

)
, for k = 1, . . . ,K.

Proof of Lemma 2 (Version with Covariates)
In the presence of covariates, Lemma 2 must be adapted. I do so in the following way.

Lemma 2. (Sufficiency.) For an agent i in group k1 and an agent j in group k2 in a net-

work n: E(ωi|Xi, k1, αn,{mℓ∗
n }Kℓ=1) = E(ωi|Xi,Xj , k1,{mℓ∗

n }Kℓ=1,E(ωj |Xj , k2, αn,{mℓ∗
n }Kℓ=1)).

Proof. As Fε|k2 is strictly increasing, its inverse F−1
ε|k2 exists. By this property, I can write:

αn = F−1
ε|k2

(
E(ωj |Xj , k2, αn,{mℓ∗

n }Kℓ=1)
)
− hk2 −X ′

jc−
K∑
ℓ=1

Jk2ℓm
ℓ∗
n

By plugging this expression for αn into the definition of E(ωi|Xi, k1, αn,{mℓ∗
n }Kℓ=1), I find:

E(ωi|Xi, k1, αn,{mℓ∗
n }Kℓ=1) = Fε|k1

(
hk1 − hk2 + (Xi −Xj)

′c

+
K∑
ℓ=1

(Jk1ℓ − Jk2ℓ)m
ℓ∗
n + F−1

ε|k2

(
E(ωj |Xj , k2, αn,{mℓ∗

n }Kℓ=1)
))

Q.E.D.
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Proof of Theorem 1 (Version with Covariates)
For semiparametric identification (Theorem 1), I need an additional assumption. In par-

ticular, I require that there is some k ∈K such that supp(X|k) is not contained in a proper

linear subspace of Rr. Note that this condition is weaker than Assumption B.3. However,

using Proposition 5 in Manski (1988), it is enough to show that c, {hk1 − hk2}k1,k2 and

{Jk1ℓ−Jk2ℓ}k1,k2,ℓ are identified. The proof of Theorem 1 is adapted in the following way.

Theorem 1. Suppose that Assumptions B.1 & B.2 hold and that mk∗
n is observed for

all networks n and social groups k. Also, suppose that there is some k ∈ K where

supp(X|k) is not contained in a proper linear subspace of Rr. If {Fε|k}Kk=1 is known:

(i) Without more assumptions, {hk1−hk2}k1,k2 , {Jk1ℓ−Jk2ℓ}k1,k2,ℓ, and c are identified.

(ii) If αn =W ′
nd for an observed vector Wn, then d, {hk}k, {Jkℓ}k,ℓ, and c are identified.

Proof. Fix some network n and define the term ζkn = hk + αn +
∑K

ℓ=1 Jkℓm
ℓ∗
n . I write:

E(ωi|Xi, k,αn,{mℓ∗
n }Kℓ=1) = Fε|k(ζ

k
n +X ′

ic)

To recover c, I must show that Fε|k(ζ
k
n+X ′

ic) = Fε|k(ζ̂
k
n+X ′

i ĉ) implies c= ĉ. Since Fε|k is

known, this property holds by Proposition 5 of Manski (1988). It follows that c is identified.

Having demonstrated that c can be recovered, I now focus on the other parameters. Con-

sider any two social groups k1 and k2, and then define the function ϕ :R→ [0,1] so that:

ϕ(ν) =

∫
Fε|k1

(
(Xi −Xj)

′c+ ν
)
dFX|k1 ,

where Xj is chosen from supp(X|k2) and the integral is evaluated over the conditional

support of Xi given k1. By definition, ϕ(·) is nonlinear and monotonically increasing in ν.

For any n, let νn = hk1−hk2+
∑K

ℓ=1(Jk1ℓ−Jk2ℓ)m
ℓ∗
n +F−1

ε|k2(E(ωj |Xj , k2, αn,{mℓ∗
n }Kℓ=1)).

By Lemma 2, the expected average choice mk1∗
n equals ϕ(νn). Because ϕ(·) is monotonic:

mk1∗
n =

∫
Fε|k1

(
hk1 − hk2 + (Xi −Xj)

′c+
K∑
ℓ=1

(Jk1ℓ − Jk2ℓ)m
ℓ∗
n + F−1

ε|k2(E(ωj |Xj , k2, αn,{mℓ∗
n }Kℓ=1))

)
dFX|k1

=

∫
Fε|k1

(
̂hk1 − hk2 + (Xi −Xj)

′c+
K∑
ℓ=1

̂(Jk1ℓ − Jk2ℓ)m
ℓ∗
n + F−1

ε|k2(E(ωj |Xj , k2, αn,{mℓ∗
n }Kℓ=1))

)
dFX|k1

is satisfied if and only if
∑K

ℓ=1

[
( ̂Jk1ℓ − Jk2ℓ) − (Jk1ℓ − Jk2ℓ)

]
mℓ

n = (hk1 − hk2) −
( ̂hk1 − hk2) for all networks n ∈ {1, . . . ,N}. Since the expected average choices are non-
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linear functions of one another, sufficient variation in equilibria across networks implies:

hk1 − hk2 =
̂hk1 − hk2 and Jk1ℓ − Jk2ℓ =

̂Jk1ℓ − Jk2ℓ,

for all ℓ ∈K. Also, since k1 and k2 are chosen arbitrarily, this result holds for all k1, k2 ∈K.

Q.E.D.

For nonparametric identification (Theorem 2), there is nothing to modify, since these

results already rely on individual-level covariates. Also, for identification in contexts with

unknown expected average choices (Theorem 3), all modifications will follow directly from

Theorems 1 and 2. Specifically, the IV estimands may be adapted to incorporate covariates.

APPENDIX C: ADDITIONAL DETAILS ABOUT THE MONTE CARLO SIMULATIONS

To perform simulations, I draw observations from the following data generating process:

ωi = 1

{
hk + αn + Jk1m

1∗
n + Jk2m

2∗
n + εi ≥ 0

}
,

where mk∗
n = Fε|k(hk + αn + Jk1m

1∗
n + Jk2m

2∗
n ) for k ∈ {1,2} and n = 1, . . . ,N . The

idiosyncratic payoffs follow logistic distributions, i.e., εi|k
i.i.d.∼ Logistic(0,1) for k ∈ {1,2}.

The network effect αn is a continuous random variable that is evenly distributed on [−2,2].

The identity-specific effects are: h1 = 0 and h2 = 1. Finally, the interaction matrix equals:

J=

[
2 −1

−1 2

]
.

For case (ii), i.e., where αn =W ′
nd for some observed Wn, I set Wn = αn and d= 2. Note

that these parameters are chosen arbitrarily, and alternative DGP’s produce similar results.

To draw agent’s choices ωi in equilibrium, I run a fixed point iteration on the equilibrium

condition. This procedure leverages the fact that J satisfies Assumption A, which ensures

there is at least one locally stable equilibrium (Property 4). Note that it is not necessary that

Assumption A holds for this estimation procedure to be valid. However, this condition is

helpful for conducting simulations as it facilitates the computation of an equilibrium. For

all additional details about specifications for the simulations, I refer to the replication code.
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APPENDIX D: ROBUSTNESS ANALYSES

1. Verifying Random Assignment to Classrooms
Under the experimental protocols, students in each school were randomly assigned into

classrooms of three different types. However, of the 79 schools in the study, 48 schools had

more than three kindergarten classrooms. Since these schools had more than one classroom

of each type, it is conceivable that there may have been nonrandom sorting within the same

class type. As Graham (2008) argues, this scenario is unlikely. Indeed, he finds no evidence

of within-class-type sorting. Nevertheless, I present a version of the IV estimates where I

restrict the sample to the 31 schools that have only three classrooms. In doing so, I rule out

any possibility of nonrandom assignment to classrooms of the same type. These estimates

are presented below, and they appear consistent with the results that use the full sample.

TABLE D.I

IV ESTIMATES FOR SCHOOLS WITH FEWER THAN 4 CLASSROOMS

Outcome Variable:

Math Reading

Top 25% Top 50% Top 75% Top 25% Top 50% Top 75%

Jff − Jmf 3.494 4.215∗∗∗ 3.961∗∗ 3.843 5.265∗∗ 6.425

(2.826) (1.039) (1.444) (3.951) (1.952) (4.974)

Jmm − Jfm 3.251 4.088∗∗∗ 4.104∗∗∗ 3.048 5.117∗∗∗ 6.522

(3.133) (1.251) (1.111) (5.612) (1.552) (5.430)

Intercept −0.280 −0.097 0.081 −0.008 −0.045 1.088

(0.443) (0.201) (0.273) (1.282) (0.218) (2.872)

Number of Classrooms 89 89 89 89 89 89

School Fixed Effects Yes Yes Yes Yes Yes Yes

F(df1,df2) 1st-Stage (ω̄m
n ) 2.23(2,10) 3.06(2,19) 2.78(2,17) 2.58(2,12) 2.82(2,17) 8.35(2,13)

F(df1,df2) 1st-Stage (ω̄f
n) 2.01(2,10) 2.26(2,19) 2.18(2,17) 5.71(2,12) 2.02(2,17) 3.61(2,13)

Notes. Estimates are obtained by computing β̂IV
f,m, which corresponds to the estimand in equation (24). For

implementation, I randomly split each classroom so that half the sample is used to form endogenous
variables Xn, and the remaining half is used to form instruments Zn. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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2. Misspecification Tests
I conduct hypothesis tests to determine whether any of the gender-specific parameters

in the model depend on the observed classroom-level variables. Specifically, I test the null

hypotheses that Jff − Jmf , Jmm − Jfm, and the intercept (respectively) are different for:

1. high poverty classrooms (≥ 50% FRPL) and low poverty classrooms (< 50% FRPL)

2. high minority classrooms (< 75% white) and low minority classrooms (≥ 75% white)

3. more experienced teachers (> 10 years) and less experienced teachers (≤ 10 years)

4. more educated teachers (graduate deg.) and less educated teachers (no graduate deg.)

5. rural classrooms (in rural district) and urban classrooms (in urban or suburban district)

TABLE D.II

TESTS FOR MISSPECIFICATION (Outcome: TOP 50% ON MATH EXAM)

Large Share Large Share Teacher Has Teacher Has Rural

Poverty Minority >10yrs Experience Higher Degree District

Jff − Jmf 0.948 0.35 0.525 0.754 0.927

Jmm − Jfm 0.634 0.77 0.611 0.893 0.945

Intercept 0.568 0.198 0.767 0.606 0.92

Notes. This table reports p-values corresponding to the one-dimensional hypothesis tests for whether
Jff − Jmf , Jmm − Jfm, and the intercept (respectively) differ by observed classroom features.

TABLE D.III

TESTS FOR MISSPECIFICATION (Outcome: TOP 50% ON READING EXAM)

Large Share Large Share Teacher Has Teacher Has Rural

Poverty Minority >10yrs Experience Higher Degree District

Jff − Jmf 0.762 0.984 0.911 0.996 0.662

Jmm − Jfm 0.626 0.979 0.967 0.875 0.886

Intercept 0.532 0.977 0.898 0.905 0.321

Notes. This table reports p-values corresponding to the one-dimensional hypothesis tests for whether
Jff − Jmf , Jmm − Jfm, and the intercept (respectively) differ by observed classroom features.
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The p-values from each of these one-dimensional hypothesis tests are reported in Tables

D.2 and D.3. When conducting these tests, I consider two different outcomes variables: (1)

scoring in the top 50% on the math exam and (2) scoring in the top 50% on the reading

exam. Recall that these percentiles are all calculated relative to the full sample of Tennessee

kindergarten students who participated in the study. For both outcome variables, I find no

evidence to reject the hypothesis that any of the gender-specific parameters differ across

networks. These results help to justify the model specification and identification strategy.

3. Sensitivity of IV Estimates to the Partitioning of Classrooms
To estimate the model, internal instruments are defined by randomly partitioning each

classroom into two equal (or almost equal if there is an odd number of students) subsam-

ples. In general, the estimates will be sensitive to the way in which the classrooms are

partitioned. Nevertheless, as long as the model is correctly specified, this IV strategy al-

ways generates consistent estimates regardless of which partitions are realized. To justify

the efficacy of this approach, I re-estimate the model M = 1000 times, each time randomly

choosing a different partition of classrooms when constructing the instruments. With this

procedure, I evaluate the sensitivity of IV estimates to how internal instruments are defined.

I report histograms of the parameter estimates for each outcome variable in Figure D.1.

Observe that the point estimates appear approximately normally distributed, and the amount

of dispersion is not large enough to invalidate any of the qualitative findings in the paper.

Moreover, the main IV estimates reported in Table 2 do not seem to be outliers, which

indicates that most alternative partitions of classrooms would give similar results. So, I

interpret Figure D.1 as evidence that the main results in the empirical application are robust.
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FIGURE D.1.—Densities of IV Estimates over Random Classroom Partitions
(a) Parameter: Intercept

Outcome: Math Score in Top 25%

Parameter Estimate (Mean = 0.027, Std. Dev. = 0.148)
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(b) Parameter: Jmm − Jfm

Outcome: Math Score in Top 25%

Parameter Estimate (Mean = 4.526, Std. Dev. = 0.559)
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(c) Parameter: Jff − Jmf

Outcome: Math Score in Top 25%

Parameter Estimate (Mean = 4.54, Std. Dev. = 0.617)
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Outcome: Math Score in Top 50%

Parameter Estimate (Mean = 0.021, Std. Dev. = 0.169)
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Outcome: Math Score in Top 50%

Parameter Estimate (Mean = 4.52, Std. Dev. = 0.498)
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Outcome: Math Score in Top 50%

Parameter Estimate (Mean = 4.486, Std. Dev. = 0.609)
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Outcome: Math Score in Top 75%

Parameter Estimate (Mean = 0.025, Std. Dev. = 0.287)
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Outcome: Math Score in Top 75%

Parameter Estimate (Mean = 4.603, Std. Dev. = 0.677)
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Outcome: Math Score in Top 75%

Parameter Estimate (Mean = 4.513, Std. Dev. = 0.659)
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Outcome: Reading Score in Top 25%

Parameter Estimate (Mean = 0.024, Std. Dev. = 0.147)
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Outcome: Reading Score in Top 25%

Parameter Estimate (Mean = 4.673, Std. Dev. = 0.45)
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Outcome: Reading Score in Top 25%

Parameter Estimate (Mean = 4.633, Std. Dev. = 0.565)
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Outcome: Reading Score in Top 50%

Parameter Estimate (Mean = −0.008, Std. Dev. = 0.211)
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Outcome: Reading Score in Top 50%

Parameter Estimate (Mean = 4.573, Std. Dev. = 0.482)
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Outcome: Reading Score in Top 50%

Parameter Estimate (Mean = 4.577, Std. Dev. = 0.602)
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Outcome: Reading Score in Top 75%

Parameter Estimate (Mean = 0.065, Std. Dev. = 0.377)
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Parameter Estimate (Mean = 4.524, Std. Dev. = 0.623)
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Outcome: Reading Score in Top 75%

Parameter Estimate (Mean = 4.426, Std. Dev. = 0.702)
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