Submitted to *Econometrica*

1	ONLINE APPENDIX	1
2	This document contains supplementary results and discussions that relate to the	2
3	paper "Discrete Choice with Generalized Social Interactions". It does not include	3
4	proofs of main results. All notation is consistent with the main text of the paper.	4
5		5
6	APPENDIX A: JUSTIFICATION FOR THE REMARKS IN THE FOOTNOTES	6
7	Remark in Footnote 9	7
8	Let J be a symmetric matrix with eigenvalues that all have non-positive real parts. Since	8
9	$\beta(m^*)$ is a diagonal matrix with positive elements, J is congruent to $\beta^{1/2}(m^*) J \beta^{1/2}(m^*)$,	9
10	which is similar to $\beta^{1/2}(m^*)[\beta^{1/2}(m^*)\mathbf{J}\beta^{1/2}(m^*)]\beta^{-1/2}(m^*) = \beta(m^*)\mathbf{J} = \mathbf{D}(m^*)$. By	10
11	Sylvester's law of inertia, $\mathbf{D}(m^*)$ also has eigenvalues with non-positive real parts for any	11
12	equilibrium m^* . Therefore, $0 < \prod_{k=1}^{K} (1 - \lambda_k(m^*)) = \det (I - \mathbf{D}(m^*)) = \det (\mathbf{D}_{\mathcal{H}}(m^*))$	12
13	at every equilibrium m^* . By the index theorem, the model always has a unique equilibrium.	13
14		14
15	Remark in Footnote 11	15
16	Consider the equation $m^* = F_{\varepsilon}(Jm^*)$, where $J < 0$. By the previous remark, there is al-	16
17	ways a unique equilibrium. Moreover, since $h = 0$ and F_{ε} is symmetric about zero, the equi-	17
18	librium equals $m^* = 0$. It is unstable if $\frac{\partial F_{\varepsilon}(Jm)}{\partial m}\Big _{m=0} = J \times f_{\varepsilon}(0) < -1 \Leftrightarrow J < -f_{\varepsilon}^{-1}(0)$.	18
19	Demonski in Frankright 10	19
20	Remark in Footnote 12 CL is Let $u_{i}(L) = u_{i}(L-L)$ for every $l_{i}(L-L)$ Then Assumption A 1 holds	20
21	Claim. Let $\operatorname{sgn}(J_{k\ell}) = \operatorname{sgn}(J_{km}J_{m\ell})$ for every $k, \ell, m \in \mathcal{K}$. Then Assumption A.1 holds.	21
22	<i>Proof.</i> To begin, let $sgn(J_{k\ell}) = sgn(J_{km}J_{m\ell})$ for all $k, \ell, m \in \mathcal{K}$. I prove by induction	22
23	that $\operatorname{sgn}(J_{j_0j_1}J_{j_1j_2}\cdots J_{j_Mj_0}) \ge 0$ for any arbitrary indices $j_0, j_1, \ldots, j_M \in \mathcal{K}$. First, note	23
	that $\operatorname{sgn}(J_{j_0j_2}) = \operatorname{sgn}(J_{j_0j_1}J_{j_1j_2})$. Next, let $\operatorname{sgn}(J_{j_0j_m}) = \operatorname{sgn}(J_{j_0j_1}J_{j_1j_2}\cdots J_{j_{m-1}j_m})$ for	
25	some positive integer $m \in \mathbb{N}$. By construction, the following equalities must be satisfied:	25
26 27	$\operatorname{sgn}(J_{j_0 j_{m+1}}) = \operatorname{sgn}(J_{j_0 j_m} J_{j_m j_{m+1}}) = \operatorname{sgn}(J_{j_0 j_1} J_{j_1 j_2} \cdots J_{j_{m-1} j_m} J_{j_m j_{m+1}})$	26 27
28	By induction, $\operatorname{sgn}(J_{j_0j_M}) = \operatorname{sgn}(J_{j_0j_1}J_{j_1j_2}\cdots J_{j_M\ell})$ for any index $\ell \in \mathcal{K}$. By setting $\ell = j_0$,	28
29	I find that $\operatorname{sgn}(J_{j_0j_1}J_{j_1j_2}\cdots J_{j_Mj_0}) = \operatorname{sgn}(J_{j_0j_0})$ where $\operatorname{sgn}(J_{j_0j_0}) = \operatorname{sgn}(J_{j_0j_0}) \ge 0$.	29
30	Q.E.D.	30
31	<i>Claim.</i> Let $\mathbf{J}_{k\ell} = \mathbf{E}(J_{ij} i \in k, j \in \ell)$, where $J_{ij} \in \{-1, 1\}$. Then $\operatorname{sgn}(\mathbf{J}_{k\ell}) = \operatorname{sgn}(\mathbf{J}_{km}\mathbf{J}_{m\ell})$	31
32	for all $k, \ell, m \in \mathcal{K}$ if $P(J_{i_0i_1}J_{i_1i_2} = J_{i_0i_2} i_0 \in k, i_1 \in m, i_2 \in \ell) \ge 0.5$ for every $k, \ell, m \in \mathcal{K}$.	32
	$= \{(v_{i})_{i} = (v_{i})_{i} = (v_{i})_{i}$	

<i>Proof.</i> For any indices $k, \ell, m \in \mathcal{K}$, the product $\mathbf{J}_{km} \mathbf{J}_{m\ell}$ equals:						
$\mathbf{J}_{km}\mathbf{J}_{m\ell} = \mathbf{E}(J_{ij} i \in k, j \in m) \times \mathbf{E}(J_{i'j'} i' \in m, j' \in \ell)$						
$= \mathbf{E} \left(J_{ij} \times \mathbf{E} (J_{i'j'} i' \in m, j' \in \ell) i \in k, j \in m \right)$						
$= \mathbf{E}(J_{ij}J_{i'j'} i \in k; j, i' \in m; j' \in \ell)$						
$= 2\mathbf{P}(J_{ij}J_{i'j'} = 1 i \in k; j, i' \in m; j' \in \ell) - 1$						
Let $P(J_{i_0i_1}J_{i_1i_2} = J_{i_0i_2} i_0 \in k, i_1 \in m, i_2 \in \ell) \ge 0.5$ for all $k, \ell, m \in \mathcal{K}$. To ease notation, define: $\gamma = P(J_{ij}J_{ji'} = J_{ii'} i \in k; j, i' \in m), \delta = P(J_{ii'}J_{i'j'} = J_{ij'} i \in k; i' \in m; j' \in \ell)$, and $\kappa = P(J_{ji'} = 1 j, i' \in m)$. Next, I decompose $P(J_{ij}J_{i'j'} = 1 i \in k; j, i' \in m; j' \in \ell)$ so that:						
$\mathbf{P}(J_{ij}J_{i'j'} = 1 i \in k; j, i' \in m; j' \in \ell) = \kappa \times \mathbf{P}(J_{ij}J_{ji'}J_{i'j'} = 1 i \in k; j, i' \in m; j' \in \ell, J_{ji'} = 1)$						
$+ (1 - \kappa) \times \mathbb{P}(J_{ij}J_{ji'}J_{i'j'} = -1 i \in k; j, i' \in m; j' \in \ell, J_{ji'} = -1)$						
$= \kappa \times \Big[\gamma \times \mathbb{P}(J_{ii'}J_{i'j'} = 1 i \in k; j, i' \in m; j' \in \ell, J_{ij}J_{ji'} = J_{ii'})$						
$+ (1 - \gamma) \times \mathbb{P}(J_{ii'}J_{i'j'} \neq 1 i \in k; j, i' \in m; j' \in \ell, J_{ij}J_{ji'} \neq J_{ii'}) \Big]$						
$+ \left(1 - \kappa\right) \times \left[\gamma \times \mathbb{P}(J_{ii'}J_{i'j'} \neq 1 i \in k; j, i' \in m; j' \in \ell, J_{ij}J_{ji'} = J_{ii'})\right.$						
$+ (1 - \gamma) \times \mathbb{P}(J_{ii'}J_{i'j'} = 1 i \in k; j, i' \in m; j' \in \ell, J_{ij}J_{ji'} \neq J_{ii'}) \Big]$						
$= \kappa \times \left[\gamma \times \left[\delta \times \mathbf{P}(J_{ij'} = 1 i \in k; j' \in \ell) + (1 - \delta) \times \mathbf{P}(J_{ij'} \neq 1 i \in k; j' \in \ell) \right] \right]$						

20
$$+ (1 - \gamma) \times \left[\delta \times \mathbf{P}(J_{ij'} \neq 1 | i \in k; j' \in \ell) + (1 - \delta) \times \mathbf{P}(J_{ij'} = 1 | i \in k; j' \in \ell) \right]$$
21
$$+ (1 - \kappa) \times \left[\gamma \times \left[\delta \times \mathbf{P}(J_{ij'} \neq 1 | i \in k; j' \in \ell) + (1 - \delta) \times \mathbf{P}(J_{ij'} = 1 | i \in k; j' \in \ell) \right]$$

22
23

$$+ (1 - \gamma) \times \left[\delta \times P(J_{ij'} = 1 | i \in k; j' \in \ell) + (1 - \delta) \times P(J_{ij'} \neq 1 | i \in k; j' \in \ell) \right] \right]_{23}$$

24 =
$$(1 - \kappa) + (1 - \gamma)(2\kappa - 1) + (1 - \delta)(2\gamma - 1)(2\kappa - 1)$$
 24

25 +
$$(2\kappa - 1)(2\gamma - 1)(2\delta - 1)\mathbf{P}(J_{ij'} = 1|i \in k; j' \in \ell)$$
 25

$$= \frac{1}{2} \left[1 - (2\kappa - 1)(2\gamma - 1)(2\delta - 1) \right] + (2\kappa - 1)(2\gamma - 1)(2\delta - 1) \mathsf{P}(J_{ij'} = 1 | i \in k; j' \stackrel{2}{\in} \stackrel{6}{\ell} \right]$$

Note that $\kappa, \gamma, \delta \in [0.5, 1]$ by assumption. So $(2\kappa - 1)(2\gamma - 1)(2\delta - 1)$ is bounded between on and 1. It follows from the last equality that $P(J_{ij'} = 1 | i \in k; j' \in \ell) \ge 0.5$ if and only if $P(J_{ij}J_{i'j'} = 1 | i \in k; j, i' \in m; j' \in \ell) \ge 0.5$. This statement further implies that $J_{k\ell}$ has the same sign as $J_{km}J_{m\ell}$. Because this result applies for every $k, m, \ell \in \mathcal{K}$, the claim is true. Q.E.D. 32

Remark in Paragraph 3 of Page 16 I justify that "both \underline{m}^* and \overline{m}^* are always locally stable". Consider the mapping $\hat{\mathcal{Q}}(m) =$ $\mathbf{B}\mathcal{Q}(\mathbf{B}^{-1}m)$ that is defined in the proof of Property 6. Tarski's fixed point theorem implies that $\hat{\mathcal{Q}}$ has a least fixed point $\mathbf{B}m^*$ and a greatest fixed point $\mathbf{B}\overline{m}^*$. Suppose, for sake of contradiction, that \overline{m}^* is unstable. Then, as argued in the proof of Property 4, \hat{Q} must have another fixed point, which is strictly greater than $\mathbf{B}\overline{m}^*$. Arriving at a contradiction in this case, I conclude that \overline{m}^* is a locally stable. By the same reasoning, \underline{m}^* is also locally stable. APPENDIX B: ADAPTING THE IDENTIFICATION RESULTS TO ALLOW FOR COVARIATES Suppose that the choice equation is modified to allow for exogenous covariates $X_i \in \mathbb{R}^r$. Let $\omega_i = \mathbb{1}\{X'_i c + h_k + \alpha_n + \sum_{\ell=1}^K J_{k\ell} m_n^{\ell*} + \varepsilon_i \ge 0\}$ where $P(\varepsilon_i \le z | X_i, k, \alpha_n) = F_{\varepsilon|k}(z)$ and $P(X_i \le x | k, \alpha_n) = F_{X|k}(x)$. Then $m_n^{k*} = \int E(\omega_i | X_i, k, \alpha_n, \{m_n^{\ell*}\}_{\ell=1}^K) dF_{X|k}$, where: $E(\omega_i | X_i, k, \alpha_n, \{m_n^{\ell*}\}_{\ell=1}^K) = F_{\varepsilon|k} \left(h_k + \alpha_n + X_i' c + \sum_{i=1}^K J_{k\ell} m_n^{\ell*} \right), \quad \text{for } k = 1, \dots, K.$ **Proof of Lemma 2 (Version with Covariates)** In the presence of covariates, Lemma 2 must be adapted. I do so in the following way. Lemma 2. (Sufficiency.) For an agent i in group k_1 and an agent j in group k_2 in a net- $\text{work } n: \mathbf{E}(\omega_i | X_i, k_1, \alpha_n, \{m_n^{\ell*}\}_{\ell=1}^K) = \mathbf{E}(\omega_i | X_i, X_j, k_1, \{m_n^{\ell*}\}_{\ell=1}^K, \mathbf{E}(\omega_j | X_j, k_2, \alpha_n, \{m_n^{\ell*}\}_{\ell=1}^K))^{2.1}$ *Proof.* As $F_{\varepsilon|k_2}$ is strictly increasing, its inverse $F_{\varepsilon|k_2}^{-1}$ exists. By this property, I can write: $\alpha_n = F_{\varepsilon|k_2}^{-1} \left(\mathbf{E}(\omega_j | X_j, k_2, \alpha_n, \{m_n^{\ell*}\}_{\ell=1}^K) \right) - h_{k_2} - X_j' c - \sum_{i=1}^K J_{k_2\ell} m_n^{\ell*}$ By plugging this expression for α_n into the definition of $E(\omega_i | X_i, k_1, \alpha_n, \{m_n^{\ell*}\}_{\ell=1}^K)$, I find: $\mathbf{E}(\omega_i | X_i, k_1, \alpha_n, \{m_n^{\ell*}\}_{\ell=1}^K) = F_{\varepsilon|k_1} \Big(h_{k_1} - h_{k_2} + (X_i - X_j)' c \Big)$ $+\sum_{k=1}^{K} (J_{k_{1}\ell} - J_{k_{2}\ell}) m_{n}^{\ell *} + F_{\varepsilon|k_{2}}^{-1} (E(\omega_{j}|X_{j}, k_{2}, \alpha_{n}, \{m_{n}^{\ell *}\}_{\ell=1}^{K})))^{30}$ Q.E.D.

Proof of Theorem 1 (Version with Covariates) For semiparametric identification (Theorem 1), I need an additional assumption. In par-ticular, I require that there is some $k \in \mathcal{K}$ such that supp(X|k) is not contained in a proper linear subspace of \mathbb{R}^r . Note that this condition is weaker than Assumption B.3. However, using Proposition 5 in Manski (1988), it is enough to show that c, $\{h_{k_1} - h_{k_2}\}_{k_1,k_2}$ and $\{J_{k_1\ell} - J_{k_2\ell}\}_{k_1,k_2,\ell}$ are identified. The proof of Theorem 1 is adapted in the following way. **Theorem 1.** Suppose that Assumptions B.1 & B.2 hold and that m_n^{k*} is observed for all networks n and social groups k. Also, suppose that there is some $k \in \mathcal{K}$ where $\operatorname{supp}(X|k)$ is not contained in a proper linear subspace of \mathbb{R}^r . If $\{F_{\varepsilon|k}\}_{k=1}^K$ is known: (i) Without more assumptions, $\{h_{k_1} - h_{k_2}\}_{k_1,k_2}$, $\{J_{k_1\ell} - J_{k_2\ell}\}_{k_1,k_2,\ell}$, and c are identified. (ii) If $\alpha_n = W'_n d$ for an observed vector W_n , then d, $\{h_k\}_k$, $\{J_{k\ell}\}_{k,\ell}$, and c are identified. *Proof.* Fix some network n and define the term $\zeta_n^k = h_k + \alpha_n + \sum_{\ell=1}^K J_{k\ell} m_n^{\ell*}$. I write: $\mathbf{E}(\omega_i | X_i, k, \alpha_n, \{m_n^{\ell*}\}_{\ell=1}^K) = F_{\varepsilon \mid k}(\zeta_n^k + X_i'c)$ To recover c, I must show that $F_{\varepsilon|k}(\zeta_n^k + X'_i c) = F_{\varepsilon|k}(\hat{\zeta}_n^k + X'_i \hat{c})$ implies $c = \hat{c}$. Since $F_{\varepsilon|k}$ is known, this property holds by Proposition 5 of Manski (1988). It follows that c is identified. Having demonstrated that c can be recovered, I now focus on the other parameters. Con-sider any two social groups k_1 and k_2 , and then define the function $\phi : \mathbb{R} \to [0, 1]$ so that: $\phi(\nu) = \int F_{\varepsilon|k_1} \big((X_i - X_j)' c + \nu \big) dF_{X|k_1},$ where X_i is chosen from supp $(X|k_2)$ and the integral is evaluated over the conditional support of X_i given k_1 . By definition, $\phi(\cdot)$ is nonlinear and monotonically increasing in ν . For any n, let $\nu_n = h_{k_1} - h_{k_2} + \sum_{\ell=1}^K (J_{k_1\ell} - J_{k_2\ell}) m_n^{\ell*} + F_{\varepsilon|k_2}^{-1} (\mathcal{E}(\omega_j|X_j, k_2, \alpha_n, \{m_n^{\ell*}\}_{\ell=1}^K))^{2.4}$ By Lemma 2, the expected average choice $m_n^{k_1*}$ equals $\phi(\nu_n)$. Because $\phi(\cdot)$ is monotonic: $m_n^{k_1*} = \int F_{\varepsilon|k_1} \left(h_{k_1} - h_{k_2} + (X_i - X_j)' c + \sum_{k=1}^{K} (J_{k_1\ell} - J_{k_2\ell}) m_n^{\ell*} + F_{\varepsilon|k_2}^{-1} (\mathbf{E}(\omega_j|X_j, k_2, \alpha_n, \{m_n^{\ell*}\}_{\ell=1}^K)) \right) d\mathcal{F}_{X|k_1}$ 2.8 $= \int F_{\varepsilon|k_1} \left(\widehat{h_{k_1} - h_{k_2}} + (X_i - X_j)' c + \sum_{\ell=1}^{K} (\widehat{J_{k_1\ell} - J_{k_2\ell}}) m_n^{\ell *} + F_{\varepsilon|k_2}^{-1} (\mathcal{E}(\omega_j|X_j, k_2, \alpha_n, \{m_n^{\ell *}\}_{\ell=1}^K)) \right) d\mathcal{E}_{X|k_1} \left(\widehat{h_{k_1} - h_{k_2}} + (X_i - X_j)' c + \sum_{\ell=1}^{K} (\widehat{J_{k_1\ell} - J_{k_2\ell}}) m_n^{\ell *} + F_{\varepsilon|k_2}^{-1} (\mathcal{E}(\omega_j|X_j, k_2, \alpha_n, \{m_n^{\ell *}\}_{\ell=1}^K)) \right) d\mathcal{E}_{X|k_1} \right)$ is satisfied if and only if $\sum_{\ell=1}^{K} \left[(J_{k_1\ell} - J_{k_2\ell}) - (J_{k_1\ell} - J_{k_2\ell}) \right] m_n^\ell = (h_{k_1} - h_{k_2}) - (J_{k_1\ell} - J_{k_2\ell}) - (J_{k_2\ell} - J_{k_2\ell}) - (J$ $(h_{k_1} - h_{k_2})$ for all networks $n \in \{1, \dots, N\}$. Since the expected average choices are non-

¹ linear functions of one another, sufficient variation in equilibria across networks implies:

$$h_{k_1} - h_{k_2} = h_{k_1} - h_{k_2} \text{ and } J_{k_1\ell} - J_{k_2\ell} = J_{k_1\ell} - J_{k_2\ell},$$
for all $\ell \in \mathcal{K}$. Also, since k_1 and k_2 are chosen arbitrarily, this result holds for all $k_1, k_2 \in \mathcal{K}$.
Q.E.D.
For nonparametric identification (Theorem 2), there is nothing to modify, since these
results already rely on individual-level covariates. Also, for identification in contexts with
unknown expected average choices (Theorem 3), all modifications will follow directly from
Theorems 1 and 2. Specifically, the IV estimands may be adapted to incorporate covariates.
APPENDIX C: ADDITIONAL DETAILS ABOUT THE MONTE CARLO SIMULATIONS
To perform simulations, I draw observations from the following data generating process:

$$\omega_i = 1 \left\{ h_k + \alpha_n + J_{k1} m_n^{1*} + J_{k2} m_n^{2*} + \varepsilon_i \ge 0 \right\},$$
where $m_n^{k*} = F_{e|k}(h_k + \alpha_n + J_{k1} m_n^{1*} + J_{k2} m_n^{2*})$ for $k \in \{1, 2\}$ and $n = 1, ..., N$. The
idiosyncratic payoffs follow logistic distributions, i.e., $\varepsilon_i | k^{1+t} \ Logistic(0, 1)$ for $k \in \{1, 2\}$.
The network effect α_n is a continuous random variable that is evenly distributed on $[-2, 2]$.
For case (*ii*), i.e., where $\alpha_n = W'_n d$ for some observed W_n , I set $W_n = \alpha_n$ and $d = 2$. Note
that these parameters are chosen arbitrarily, and alternative DGP's produce similar results.
To draw agent's choices ω_i in equilibrium, I run a fixed point iteration on the equilibrium
condition. This procedure leverages the fact that J satisfies Assumption A, which ensures
there is at least one locally stable equilibrium (Property 4). Note that it is not necessary that
Assumption A holds for this estimation procedure to be valid. However, this condition is
helpful for conducting simulations as it facilitates the computation of an equilibrium, For
all additional details about specifications for the simulations, I refer to the replication code.
31

6										
	APPEND	IX D: ROP	BUSTNESS A	Analyses						
1. Verifying Random Assignment to Classrooms										
Under the experimental protocols, students in each school were randomly assigned into										
1	classrooms of three different types. However, of the 79 schools in the study, 48 schools had									
more than three kindergarten classrooms. Since these schools had more than one classroom										
	of each type, it is conceivable that there may have been nonrandom sorting within the same									
	class type. As Graham (2008) argues, this scenario is unlikely. Indeed, he finds no evidence 7									
• •	of within-class-type sorting. Nevertheless, I present a version of the IV estimates where I ⁸									
• •										
-	restrict the sample to the 31 schools that have only three classrooms. In doing so, I rule out									
any possibility of nonrandom assignment to classrooms of the same type. These estimates										
are presented below, a	are presented below, and they appear consistent with the results that use the full sample. 1									
TABLE D.I										
IV Es	IV ESTIMATES FOR SCHOOLS WITH FEWER THAN 4 CLASSROOMS									
			Outcome	Variable:						
6 Math Reading										
	Top 25%	Top 50%	Top 75%	Top 25%	Top 50%	Top 75%				
$J_{ff} - J_{mf}$	3.494	4.215***	3.961**	3.843	5.265**	6.425				
	(2.826)	(1.039)	(1.444)	(3.951)	(1.952)	(4.974)				
$J_{mm} - J_{fm}$	3.251	4.088***	4.104***	3.048	5.117***	6.522				
	(3.133)	(1.251)	(1.111)	(5.612)	(1.552)	(5.430)				
Intercept	-0.280	-0.097	0.081	-0.008	-0.045	1.088				
· · · ·	(0.443)	(0.201)	(0.273)	(1.282)	(0.218)	(2.872)				
Number of Classrooms	89	89	89	89	89	89				
School Fixed Effects	Yes									

 $F_{(df1,df2)}$ 1st-Stage ($\bar{\omega}_n^m$)

 $F_{(df1,df2)}$ 1st-Stage $(\bar{\omega}_n^f)$

29 30

31

32

Notes. Estimates are obtained by computing $\hat{\beta}_{f,m}^{IV}$, which corresponds to the estimand in equation (24). For

 $3.06_{(2,19)}$

 $2.26_{(2,19)}$

 $2.23_{(2,10)}$

 $2.01_{(2,10)}$

implementation, I randomly split each classroom so that half the sample is used to form endogenous

variables X_n , and the remaining half is used to form instruments Z_n . *p<0.1; **p<0.05; ***p<0.01. 32

 $2.78_{(2,17)}$

 $2.18_{(2,17)}$

6

 $8.35_{(2,13)}$

 $3.61_{(2,13)}$

 $2.82_{(2,17)}$

 $2.02_{(2,17)}$

 $2.58_{(2,12)}$

 $5.71_{(2,12)}$

28

29

30

32

I conduct hypothesis tests to determine whether any of the gender-specific parameters							
in the model depend on the observed classroom-level variables. Specifically, I test the null							
hypotheses that $J_{ff} - J_{mf}$, $J_{mm} - J_{fm}$, and the intercept (respectively) are different for:							
1. high poverty classrooms ($\geq 50\%$ FRPL) and low poverty classrooms ($< 50\%$ FRPL)							
 high minority classrooms (< 75% white) and low minority classrooms (≥ 75% white) more experienced teachers (> 10 years) and less experienced teachers (≤ 10 years) 							
5. rural classrooms (in rural district) and urban classrooms (in urban or suburban district)							
TABLE D.II							
	TESTS FOR M	IISSPECIFICATI	ION (<i>Outcome:</i> TOP 50)% on Math Exam	1)		
	Large Share	Large Share	Teacher Has	Teacher Has	Rural		
	Poverty	Minority	>10yrs Experience	Higher Degree	District		
$J_{ff} - J_{mf}$	0.948	0.35	0.525	0.754	0.927		
$J_{mm} - J_{fm}$	0.634	0.77	0.611	0.893	0.945		
Intercept	0.568	0.198	0.767	0.606	0.92		
<i>Notes</i> . This tab	ole reports p-va	lues correspond	ling to the one-dimensi	onal hypothesis tests	s for whether		
J_{ff} –	$J_{mf}, J_{mm} -$	J_{fm} , and the ir	ntercept (respectively)	differ by observed cla	assroom features.		
			TABLE D.III				
]	Tests for Mis	SSPECIFICATIO	N (Outcome: TOP 50%	% on R eading Exa	AM)		
	Large Share	Large Share	Teacher Has	Teacher Has	Rural		
	Poverty	Minority	>10yrs Experience	Higher Degree	District		
$J_{ff} - J_{mf}$	0.762	0.984	0.911	0.996	0.662		
$J_{mm} - J_{fm}$	0.626	0.979	0.967	0.875	0.886		
	0.532	0.977	0.898	0.905	0.321		

 $J_{ff} - J_{mf}$, $J_{mm} - J_{fm}$, and the intercept (respectively) differ by observed classroom features.

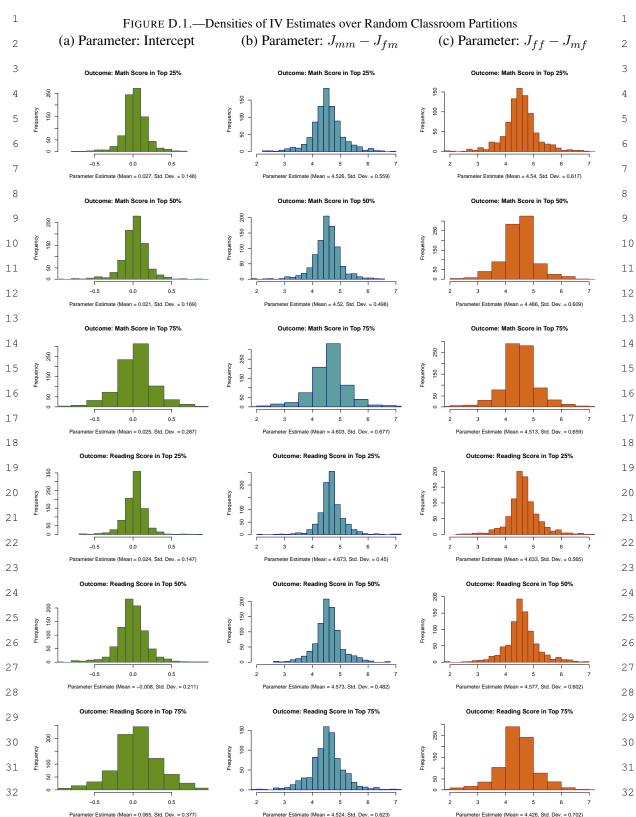
The *p*-values from each of these one-dimensional hypothesis tests are reported in Tables D.2 and D.3. When conducting these tests, I consider two different outcomes variables: (1) scoring in the top 50% on the math exam and (2) scoring in the top 50% on the reading exam. Recall that these percentiles are all calculated relative to the full sample of Tennessee kindergarten students who participated in the study. For both outcome variables, I find no evidence to reject the hypothesis that any of the gender-specific parameters differ across networks. These results help to justify the model specification and identification strategy.

2.8

9 3. Sensitivity of IV Estimates to the Partitioning of Classrooms

To estimate the model, internal instruments are defined by randomly partitioning each classroom into two equal (or almost equal if there is an odd number of students) subsam-ples. In general, the estimates will be sensitive to the way in which the classrooms are partitioned. Nevertheless, as long as the model is correctly specified, this IV strategy al-ways generates consistent estimates regardless of which partitions are realized. To justify the efficacy of this approach, I re-estimate the model M = 1000 times, each time randomly choosing a different partition of classrooms when constructing the instruments. With this procedure, I evaluate the sensitivity of IV estimates to how internal instruments are defined. I report histograms of the parameter estimates for each outcome variable in Figure D.1. Observe that the point estimates appear approximately normally distributed, and the amount of dispersion is not large enough to invalidate any of the qualitative findings in the paper. Moreover, the main IV estimates reported in Table 2 do not seem to be outliers, which indicates that most alternative partitions of classrooms would give similar results. So, I interpret Figure D.1 as evidence that the main results in the empirical application are robust.

2.8



Parameter Estimate (Mean = 4.524, Std. Dev. = 0.623)

ONLINE APPENDIX: DISCRETE CHOICE WITH GENERALIZED SOCIAL INTERACTIONS

Parameter Estimate (Mean = 4.426, Std. Dev. = 0.702)