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This appendix accompanies the paper “Job Preferences, Labor Market Power, and
Inequality”. It includes derivations of economic quantities, along with proofs and dis-
cussions related to equilibrium properties, identification, and estimation. Additionally,
it provides details about data preparation, robustness analyses, and model extensions.

A. Derivation of Equilibrium Quantities and Model Extensions

A.1. Firm Labor Supply

Given a set of wage offers W(𝑋) = {𝑊𝑘 (𝑋)}𝐽𝑘=1, a worker with skills 𝑋 whose marginal
utility of (log) earnings equals 𝛽 would choose to work for an employer 𝑗 with probability:

P( 𝑗 (𝑖) = 𝑗 |𝛽, 𝑋) = P
(
𝑢𝑖 𝑗

(
𝑊 𝑗 (𝑋𝑖), 𝑎 𝑗 (𝑋𝑖)

)
> max

𝑘≠ 𝑗

{
𝑢𝑖𝑘

(
𝑊𝑘 (𝑋𝑖), 𝑎𝑘 (𝑋𝑖)

)} ��� 𝛽𝑖 = 𝛽, 𝑋𝑖 = 𝑋)
= P

(
𝛽 log𝑊 𝑗 (𝑋) + 𝑎 𝑗 (𝑋) + 𝜖𝑖 𝑗 > 𝛽 log𝑊𝑘 (𝑋) + 𝑎𝑘 (𝑋) + 𝜖𝑖𝑘 ,∀𝑘 ≠ 𝑗

)
= P

(
𝜖𝑖𝑘 < 𝛽 log

(
𝑊 𝑗 (𝑋)
𝑊𝑘 (𝑋)

)
+ 𝑎 𝑗 (𝑋) − 𝑎𝑘 (𝑋) + 𝜖𝑖 𝑗 ,∀𝑘 ≠ 𝑗 ,∀𝑘 ≠ 𝑗

)
=

∫ ∞

−∞
P
(
𝜖𝑖𝑘 < 𝛽 log

(
𝑊 𝑗 (𝑋)
𝑊𝑘 (𝑋)

)
+ 𝑎 𝑗 (𝑋) − 𝑎𝑘 (𝑋) + 𝜖𝑖 𝑗 ,∀𝑘 ≠ 𝑗

��� 𝜖𝑖 𝑗 = 𝜖 ) 𝑓𝜖𝑖 𝑗 (𝜖)𝑑𝜖
=

∫ ∞

−∞

∏
𝑘≠ 𝑗

P
(
𝜖𝑖𝑘 < 𝛽 log

(
𝑊 𝑗 (𝑋)
𝑊𝑘 (𝑋)

)
+ 𝑎 𝑗 (𝑋) − 𝑎𝑘 (𝑋) + 𝜖𝑖 𝑗

��� 𝜖𝑖 𝑗 = 𝜖 ) 𝑓𝜖𝑖 𝑗 (𝜖)𝑑𝜖
=

∫ ∞

−∞

∏
𝑘≠ 𝑗

𝐹𝜖

(
𝛽 log

(
𝑊 𝑗 (𝑋)
𝑊𝑘 (𝑋)

)
+ 𝑎 𝑗 (𝑋) − 𝑎𝑘 (𝑋) + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖 .

Here, the second-to-last equality holds because {𝜖𝑖 𝑗 }𝑖, 𝑗 are independent and the final equality
holds because 𝜖𝑖 𝑗 is identically distributed. The mass of workers with skills 𝑋 at firm 𝑗 is:

𝑆 𝑗 (𝑋) =
∫ ©«

∫ ∞

−∞

∏
𝑘≠ 𝑗

𝐹𝜖

(
𝛽 log

(
𝑊 𝑗 (𝑋)
𝑊𝑘 (𝑋)

)
+ 𝑎 𝑗 (𝑋) − 𝑎𝑘 (𝑋) + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖

ª®¬ 𝑓𝛽,𝑋 (𝛽, 𝑋)𝑑𝛽.
Under a logit error structure, where 𝐹𝜖 (𝜖) = exp(− exp(−𝜖)), the choice probability becomes:

P( 𝑗 (𝑖) = 𝑗 |𝛽, 𝑋) =
exp

(
𝛽 log𝑊 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)∑𝐽
𝑘=1 exp

(
𝛽 log𝑊𝑘 (𝑋) + 𝑎𝑘 (𝑋)

) .
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Define 𝐼 (𝛽, 𝑋) = ∑𝐽
𝑘=1 exp

(
𝛽 log𝑊𝑘 (𝑋) + 𝑎𝑘 (𝑋)

)
as the wage index for this type of worker.

For workers with skills 𝑋𝑖 = 𝑋 , the total mass of workers supplied to an employer 𝑗 equals:

𝑆 𝑗 (𝑋) =
∫

1
𝐼 (𝛽, 𝑋) exp

(
𝛽 log𝑊 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
𝑓𝛽,𝑋 (𝛽, 𝑋)𝑑𝛽.

A.2. Equilibrium Wage Equation

Each employer 𝑗 in the market chooses a set of wages {𝑊 𝑗 (𝜒, 𝜑)}𝜒,𝜑 to maximize profit:

Π 𝑗 = 𝑇𝑗
©«
∑︁
𝜒∈X

𝜃 𝑗𝜒

(∫
𝜑𝐷 𝑗 (𝜒, 𝜑)𝑑𝜑

)𝜌 𝑗ª®¬
1−𝛼𝑗

𝜌 𝑗

−
∑︁
𝜒∈X

(∫
𝑊 𝑗 (𝜒, 𝜑)𝐷 𝑗 (𝜒, 𝜑)𝑑𝜑

)
.

In this expression, 𝐷 𝑗 (𝜒, 𝜑) is the labor demand for skills 𝑋 = (𝜒, 𝜑), which equals the labor
supply curve 𝑆 𝑗 (𝜒, 𝜑) in equilibrium. Plugging in these curves, the first order condition is:

𝜕Π 𝑗

𝜕𝑊 𝑗 (𝜒, 𝜑)
=𝜑𝑇𝑗 (1 − 𝛼 𝑗)𝜃 𝑗𝜒

(
𝐿eff
𝑗 (𝜒)

)𝜌 𝑗−1 ©«
∑︁
𝜒′∈X

𝜃 𝑗𝜒′

(
𝐿eff
𝑗 (𝜒′)

)𝜌 𝑗ª®¬
1−𝛼𝑗

𝜌 𝑗
−1
𝜕𝐿 𝑗 (𝜒, 𝜑)
𝜕𝑊 𝑗 (𝜑, 𝜒)

− 𝐿 𝑗 (𝜒, 𝜑) −𝑊 𝑗 (𝜒, 𝜑)
𝜕𝐿 𝑗 (𝜒, 𝜑)
𝜕𝑊 𝑗 (𝜑, 𝜒)

= 0, for all (𝜒, 𝜑) ∈ X × R,

where 𝐿eff
𝑗
(𝜒) =

∫
𝜑𝐿 𝑗 (𝜒, 𝜑)𝑑𝜑 denotes the efficiency units of labor for a given skill type 𝜒.

Let 𝜺 𝑗 (𝑋) = 𝜕 log 𝐿 𝑗 (𝑋)/𝜕 log𝑊 𝑗 (𝑋) be the labor supply elasticity for workers with
skills 𝑋 = (𝜒, 𝜑). As 𝜺 𝑗 (𝑋) = 𝜕𝐿 𝑗 (𝑋)𝑊 𝑗 (𝑋)/𝜕𝑊 𝑗 (𝑋)𝐿 𝑗 (𝑋), the first-order condition is:

𝑊 𝑗 (𝜒, 𝜑) =
𝜺 𝑗 (𝜒, 𝜑)

1 + 𝜺 𝑗 (𝜒, 𝜑)
× 𝜑𝑇𝑗 (1 − 𝛼 𝑗)𝜃 𝑗𝜒

(
𝐿eff
𝑗 (𝜒)

)𝜌 𝑗−1 ©«
∑︁
𝜒′∈X

𝜃 𝑗𝜒′

(
𝐿eff
𝑗 (𝜒′)

)𝜌 𝑗ª®¬
1−𝛼𝑗

𝜌 𝑗
−1

.

For workers with skills 𝑋 , the wage markdown at a firm 𝑗 is 𝑊 𝑗 (𝑋)
𝜕𝑌 𝑗/𝜕𝐿 𝑗 (𝑋) = 𝜺 𝑗 (𝑋)/(1+𝜺 𝑗 (𝑋)).

Lemmas 1 and 2 establish the existence of an equilibrium corresponding to a unique set of
profit-maximizing wages {𝑊 𝑗 (𝑋)}𝑋 for each firm 𝑗 . In this equilibrium, the firm’s problem
has an interior solution, so wages satisfy the first-order condition. In logs, this condition is:

𝑤 𝑗 (𝜒, 𝜑) = log 𝜑 + log𝑇𝑗 + log(1 − 𝛼 𝑗) + log 𝜃 𝑗𝜒 − log
(
1 + 𝜺−1

𝑗 (𝜒, 𝜑)
)

− (1 − 𝜌 𝑗) log 𝐿eff
𝑗 (𝜒) +

1 − 𝛼 𝑗 − 𝜌 𝑗

𝜌 𝑗

log
∑︁
𝜒′∈X

𝜃 𝑗𝜒′

(
𝐿eff
𝑗 (𝜒′)

)𝜌 𝑗

.
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A.3. Firm Labor Supply Elasticity and Higher-Order Derivatives

I now derive the firm-specific elasticity of labor supply, as well as higher derivatives of
the labor supply curves, from the perspective of an employer that views itself as strategically
small. In particular, I assume that the firm does not internalize the impact of its own wage on
a worker 𝑖’s wage index, i.e., 𝜕𝐼 (𝛽, 𝑋)/𝜕𝑊 𝑗 (𝑋) = 0. As a first step, I establish two claims.

Claim A.3.1. For any function 𝑔 : R+ → R taking values in the support of 𝛽, it follows that:

𝜕 E𝑋

(
𝑔(𝛽) exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼𝑖 (𝑋)

)
𝜕𝑤 𝑗 (𝑋)

= E𝑋

(
𝛽𝑔(𝛽) exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼 (𝛽, 𝑋)

)
.

Proof. The derivative of E𝑋
(
𝑔(𝛽) exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼 (𝛽, 𝑋)

)
with respect to 𝑤 𝑗 (𝑋) is:

𝜕 E𝑋

(
𝑔(𝛽) exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼𝑖 (𝑋)

)
𝜕𝑤 𝑗 (𝑋)

=

∫
𝜕

𝜕𝑤 𝑗 (𝑋)

[
𝑔(𝛽) exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
𝑓𝛽 |𝑋 (𝛽 |𝑋)

𝐼 (𝛽, 𝑋)

]
𝑑𝛽

=

∫
𝛽𝑔(𝛽) exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
𝑓𝛽 |𝑋 (𝛽 |𝑋)

𝐼𝑖 (𝛽, 𝑋)
𝑑𝛽

= E𝑋

(
𝛽𝑔(𝛽) exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼 (𝛽, 𝑋)

)
.

□

Claim A.3.2. For any function 𝑔 : R+ → R taking values in the support of 𝛽, it follows that:

E𝑋
(
𝑔(𝛽) exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼 (𝛽, 𝑋)

)
E𝑋

(
exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼 (𝛽, 𝑋)

) = E𝑋
(
𝑔(𝛽) | 𝑗 (𝑖) = 𝑗

)
.

Proof. Given that P( 𝑗 (𝑖) = 𝑗 |𝛽, 𝑋) is equal to exp
(
𝛽 log𝑊 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼 (𝛽, 𝑋), I write:

E𝑋

(
𝑔(𝛽) exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼 (𝛽, 𝑋)

)
E𝑋

(
exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼 (𝛽, 𝑋)

) =
E𝑋

(
𝑔(𝛽) P( 𝑗 (𝑖) = 𝑗 |𝛽, 𝑋)

)
P( 𝑗 (𝑖) = 𝑗 |𝑋) .

Using the Law of Iterated Expectations, I can decompose this quantity in the following way:

E𝑋

(
𝑔(𝛽) P( 𝑗 (𝑖) = 𝑗 |𝛽, 𝑋)

)
P( 𝑗 (𝑖) = 𝑗 |𝑋) =

E𝑋

(
𝑔(𝛽) P( 𝑗 (𝑖) = 𝑗 |𝛽, 𝑋)

�� 𝑗 (𝑖) = 𝑗
)

P( 𝑗 (𝑖) = 𝑗 |𝑋) × P( 𝑗 (𝑖) = 𝑗 |𝑋)

+
E𝑋

(
𝑔(𝛽) P( 𝑗 (𝑖) = 𝑗 |𝛽, 𝑋)

�� 𝑗 (𝑖) ≠ 𝑗
)

P( 𝑗 (𝑖) = 𝑗 |𝑋) ×
[
1 − P( 𝑗 (𝑖) = 𝑗 |𝑋)

]
= E𝑋

(
𝑔(𝛽) × 1

�� 𝑗 (𝑖) = 𝑗
)
+

E𝑋

(
𝑔(𝛽) × 0

�� 𝑗 (𝑖) ≠ 𝑗
)

P( 𝑗 (𝑖) = 𝑗 |𝑋) ×
[
1 − P( 𝑗 (𝑖) = 𝑗 |𝑋)

]
= E𝑋

(
𝑔(𝛽)

�� 𝑗 (𝑖) = 𝑗
)
.

□
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To simplify notation going forward, I define the function 𝜏𝑗 𝑋,𝑠 : R+ → R+ such that:

𝜏𝑗𝑋,𝑠 (𝑤 𝑗 (𝑋)) = E𝑋

(
𝛽𝑠 exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼 (𝛽, 𝑋)

)
.

Claim A.3.1 implies that: 𝜕𝜏𝑗 𝑋,𝑠 (𝑤 𝑗 (𝑥))/𝜕𝑤 𝑗 (𝑋) = 𝜏𝑗 𝑋,𝑠+1(𝑤 𝑗 (𝑋)). Claim A.3.2 implies
that: 𝜏𝑗 𝑋,𝑠 (𝑤 𝑗 (𝑋))/𝜏𝑗 𝑋,0(𝑤 𝑗 (𝑋)) = E𝑋 (𝛽𝑠 | 𝑗 (𝑖) = 𝑗). Using these properties, I derive the
first five derivatives of the (log) labor supply curve ℓ 𝑗 (𝑋) with respect to (log) wage 𝑤 𝑗 (𝑋).

First Derivative. The labor supply elasticity for a firm is 𝜺 𝑗 (𝑋) = 𝜕ℓ 𝑗 (𝑋)/𝜕𝑤 𝑗 (𝑋), where:

𝜕ℓ 𝑗 (𝑋)
𝜕𝑤 𝑗 (𝑋)

=
𝜕 log

(
𝜏𝑗𝑋,0(𝑤 𝑗 (𝑋)) 𝑓𝑋 (𝑋)

)
𝜕𝑤 𝑗 (𝑋)

=
𝜕 log

(
𝜏𝑗𝑋,0(𝑤 𝑗 (𝑋))

)
𝜕𝑤 𝑗 (𝑋)

=
𝜏𝑗𝑋,1(𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0(𝑤 𝑗 (𝑋))

= E𝑋

(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)
.

As a consequence of Claim A.3.2, this elasticity can be decomposed in the following way:

𝜕ℓ 𝑗 (𝑋)
𝜕𝑤 𝑗 (𝑋)

=
E𝑋

(
𝛽 exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼 (𝛽, 𝑋)

)
E𝑋

(
exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼 (𝛽, 𝑋)

)
= E𝑋 (𝛽) +

Cov𝑋

(
𝛽, exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼 (𝛽, 𝑋)

)
E𝑋

(
exp

(
𝛽𝑤 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼 (𝛽, 𝑋)

) .

Second Derivative. The second derivative of the labor supply curve 𝜕2ℓ 𝑗 (𝑋)/𝜕𝑤2
𝑗
(𝑋) is:

𝜕2ℓ 𝑗 (𝑋)
𝜕𝑤2

𝑗
(𝑋)

=
𝜕
(
𝜏𝑗𝑋,1(𝑤 𝑗 (𝑋))/𝜏𝑗𝑋,0(𝑤 𝑗 (𝑋))

)
𝜕𝑤 𝑗 (𝑋)

=
𝜏𝑗𝑋,2(𝑤 𝑗 (𝑋))𝜏𝑗𝑋,0(𝑤 𝑗 (𝑋)) − 𝜏2

𝑗𝑋,1(𝑤 𝑗 (𝑋))
𝜏2
𝑗𝑋,0(𝑤 𝑗 (𝑋))

=
𝜏𝑗𝑋,2(𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0(𝑤 𝑗 (𝑋))

−
(
𝜏𝑗𝑋,1(𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0(𝑤 𝑗 (𝑋))

)2

= E𝑋

(
𝛽2
𝑖 | 𝑗 (𝑖) = 𝑗

)
− E𝑋

(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)2

= Var𝑋
(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)
.
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Third Derivative. The third derivative of the labor supply curve 𝜕3ℓ 𝑗 (𝑋)/𝜕𝑤3
𝑗
(𝑋) is:

𝜕3ℓ 𝑗 (𝑋)
𝜕𝑤3

𝑗
(𝑋)

=
𝜕

𝜕𝑤 𝑗 (𝑋)

(
𝜏𝑗𝑋,2(𝑤 𝑗 (𝑋))𝜏𝑗𝑋,0(𝑤 𝑗 (𝑋)) − 𝜏2

𝑗𝑋,1(𝑤 𝑗 (𝑋))
𝜏2
𝑗𝑋,0(𝑤 𝑗 (𝑋))

)
=
𝜏𝑗𝑋,3(𝑤 𝑗 (𝑋))𝜏3

𝑗𝑋,0(𝑤 𝑗 (𝑋)) − 3𝜏𝑗𝑋,2(𝑤 𝑗 (𝑋))𝜏𝑗𝑋,1(𝑤 𝑗 (𝑋))𝜏2
𝑗𝑋,0(𝑤 𝑗 (𝑋)) + 2𝜏3

𝑗𝑋,1(𝑤 𝑗 (𝑋))𝜏𝑗𝑋,0(𝑤 𝑗 (𝑋))
𝜏4
𝑗𝑋,0(𝑤 𝑗 (𝑋))

=
𝜏𝑗𝑋,3(𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0(𝑤 𝑗 (𝑋))

− 3
(
𝜏𝑗𝑋,2(𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0(𝑤 𝑗 (𝑋))

) (
𝜏𝑗𝑋,1(𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0(𝑤 𝑗 (𝑋))

)
+ 2

(
𝜏𝑗𝑋,1(𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0(𝑤 𝑗 (𝑋))

)3

= E𝑋

(
𝛽3
𝑖 | 𝑗 (𝑖) = 𝑗

)
− 3 E𝑋

(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)
E𝑋

(
𝛽2
𝑖 | 𝑗 (𝑖) = 𝑗

)
+ 2 E𝑋

(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)3

= E𝑋

(
[𝛽𝑖 − E𝑋 (𝛽𝑖 | 𝑗 (𝑖) = 𝑗)]3�� 𝑗 (𝑖) = 𝑗

)
.

Fourth Derivative. The fourth derivative of the labor supply curve 𝜕4ℓ 𝑗 (𝑋)/𝜕𝑤4
𝑗
(𝑋) is:

𝜕4ℓ 𝑗 (𝑋)
𝜕𝑤4

𝑗
(𝑋)

=
𝜕

𝜕𝑤 𝑗 (𝑋)

(
𝜏𝑗𝑋,3 (𝑤 𝑗 (𝑋))𝜏3

𝑗𝑋,0 (𝑤 𝑗 (𝑋)) − 3𝜏𝑗𝑋,2 (𝑤 𝑗 (𝑋))𝜏𝑗𝑋,1 (𝑤 𝑗 (𝑋))𝜏2
𝑗𝑋,0 (𝑤 𝑗 (𝑋)) + 2𝜏3

𝑗𝑋,1 (𝑤 𝑗 (𝑋))𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))
𝜏4
𝑗𝑋,0 (𝑤 𝑗 (𝑋))

)
=
𝜏𝑗𝑋,4 (𝑤 𝑗 (𝑋))𝜏7

𝑗𝑋,0 (𝑤 𝑗 (𝑋)) − 4𝜏𝑗𝑋,3 (𝑤 𝑗 (𝑋))𝜏𝑗𝑋,1 (𝑤 𝑗 (𝑋))𝜏6
𝑗𝑋,0 (𝑤 𝑗 (𝑋)) − 3𝜏2

𝑗𝑋,2 (𝑤 𝑗 (𝑋))𝜏6
𝑗𝑋,0 (𝑤 𝑗 (𝑋))

𝜏8
𝑗𝑋,0 (𝑤 𝑗 (𝑋))

+
12𝜏𝑗𝑋,2 (𝑤 𝑗 (𝑋))𝜏2

𝑗𝑋,1 (𝑤 𝑗 (𝑋))𝜏5
𝑗𝑋,0 (𝑤 𝑗 (𝑋)) − 6𝜏4

𝑗𝑋,1 (𝑤 𝑗 (𝑋))𝜏4
𝑗𝑋,0 (𝑤 𝑗 (𝑋))

𝜏8
𝑗𝑋,0 (𝑤 𝑗 (𝑋))

=
𝜏𝑗𝑋,4 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

− 4
(
𝜏𝑗𝑋,3 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

) (
𝜏𝑗𝑋,1 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

)
− 3

(
𝜏𝑗𝑋,2 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

)2

+ 12
(
𝜏𝑗𝑋,2 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

) (
𝜏𝑗𝑋,1 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

)2
− 6

(
𝜏𝑗𝑋,1 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

)4

= E𝑋

(
𝛽4
𝑖 | 𝑗 (𝑖) = 𝑗

)
− 4 E𝑋

(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)
E𝑋

(
𝛽3
𝑖 | 𝑗 (𝑖) = 𝑗

)
− 3 E𝑋

(
𝛽2
𝑖 | 𝑗 (𝑖) = 𝑗

)2

+ 12 E𝑋

(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)2 E𝑋

(
𝛽2
𝑖 | 𝑗 (𝑖) = 𝑗

)
− 6 E𝑋

(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)4

= E𝑋

(
[𝛽𝑖 − E𝑋 (𝛽𝑖 | 𝑗 (𝑖) = 𝑗)]4�� 𝑗 (𝑖) = 𝑗

)
− 3 Var𝑋

(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)2
.
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Fifth Derivative. The fifth derivative of the labor supply curve 𝜕5ℓ 𝑗 (𝑋)/𝜕𝑤5
𝑗
(𝑋) is:

𝜕5ℓ 𝑗 (𝑋)
𝜕𝑤5

𝑗
(𝑋)

=
𝜕

𝜕𝑤 𝑗 (𝑋)

(
𝜏𝑗𝑋,4 (𝑤 𝑗 (𝑋))𝜏7

𝑗𝑋,0 (𝑤 𝑗 (𝑋)) − 4𝜏𝑗𝑋,3 (𝑤 𝑗 (𝑋))𝜏𝑗𝑋,1 (𝑤 𝑗 (𝑋))𝜏6
𝑗𝑋,0 (𝑤 𝑗 (𝑋)) − 3𝜏2

𝑗𝑋,2 (𝑤 𝑗 (𝑋))𝜏6
𝑗𝑋,0 (𝑤 𝑗 (𝑋))

𝜏8
𝑗𝑋,0 (𝑤 𝑗 (𝑋))

+
12𝜏𝑗𝑋,2 (𝑤 𝑗 (𝑋))𝜏2

𝑗𝑋,1 (𝑤 𝑗 (𝑋))𝜏5
𝑗𝑋,0 (𝑤 𝑗 (𝑋)) − 6𝜏4

𝑗𝑋,1 (𝑤 𝑗 (𝑋))𝜏4
𝑗𝑋,0 (𝑤 𝑗 (𝑋))

𝜏8
𝑗𝑋,0 (𝑤 𝑗 (𝑋))

)
=
𝜏𝑗𝑋,5 (𝑤 𝑗 (𝑋))𝜏15

𝑗𝑋,0 (𝑤 𝑗 (𝑋))

𝜏16
𝑗𝑋,0 (𝑤 𝑗 (𝑋))

−
5𝜏𝑗𝑋,4 (𝑤 𝑗 (𝑋))𝜏𝑗𝑋,1 (𝑤 𝑗 (𝑋))𝜏14

𝑗𝑋,0 (𝑤 𝑗 (𝑋)) − 20𝜏𝑗𝑋,3 (𝑤 𝑗 (𝑋))𝜏2
𝑗𝑋,1 (𝑤 𝑗 (𝑋))𝜏13

𝑗𝑋,0 (𝑤 𝑗 (𝑋))

𝜏16
𝑗𝑋,0 (𝑤 𝑗 (𝑋))

−
10𝜏𝑗𝑋,3 (𝑤 𝑗 (𝑋))𝜏𝑗𝑋,2 (𝑤 𝑗 (𝑋))𝜏14

𝑗𝑋,0 (𝑤 𝑗 (𝑋)) − 30𝜏2
𝑗𝑋,2 (𝑤 𝑗 (𝑋))𝜏𝑗𝑋,1 (𝑤 𝑗 (𝑋))𝜏13

𝑗𝑋,0 (𝑤 𝑗 (𝑋))

𝜏16
𝑗𝑋,0 (𝑤 𝑗 (𝑋))

−
60𝜏𝑗𝑋,2 (𝑤 𝑗 (𝑋))𝜏3

𝑗𝑋,1 (𝑤 𝑗 (𝑋))𝜏12
𝑗𝑋,0 (𝑤 𝑗 (𝑋)) − 24𝜏5

𝑗𝑋,1 (𝑤 𝑗 (𝑋))𝜏11
𝑗𝑋,0 (𝑤 𝑗 (𝑋))

𝜏16
𝑗𝑋,0 (𝑤 𝑗 (𝑋))

=
𝜏𝑗𝑋,5 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

− 5
(
𝜏𝑗𝑋,4 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

) (
𝜏𝑗𝑋,1 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

)
+ 20

(
𝜏𝑗𝑋,3 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

) (
𝜏𝑗𝑋,1 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

)2

− 10
(
𝜏𝑗𝑋,3 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

) (
𝜏𝑗𝑋,2 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

)
+ 30

(
𝜏𝑗𝑋,2 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

)2 ( 𝜏𝑗𝑋,1 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

)
− 60

(
𝜏𝑗𝑋,2 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

) (
𝜏𝑗𝑋,1 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

)3
+ 24

(
𝜏𝑗𝑋,1 (𝑤 𝑗 (𝑋))
𝜏𝑗𝑋,0 (𝑤 𝑗 (𝑋))

)5

= E𝑋

(
𝛽5
𝑖 | 𝑗 (𝑖) = 𝑗

)
− 5 E𝑋

(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)
E𝑋

(
𝛽4
𝑖 | 𝑗 (𝑖) = 𝑗

)
+ 20 E𝑋

(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)2 E𝑋

(
𝛽3
𝑖 | 𝑗 (𝑖) = 𝑗

)
− 10 E𝑋

(
𝛽2
𝑖 | 𝑗 (𝑖) = 𝑗

)
E𝑋

(
𝛽3
𝑖 | 𝑗 (𝑖) = 𝑗

)
+ 30 E𝑋

(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)
E𝑋

(
𝛽2
𝑖 | 𝑗 (𝑖) = 𝑗

)2

− 60 E𝑋

(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)3 E𝑋

(
𝛽2
𝑖 | 𝑗 (𝑖) = 𝑗

)
+ 24 E𝑋

(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)5

= E𝑋

(
[𝛽𝑖 − E𝑋 (𝛽𝑖 | 𝑗 (𝑖) = 𝑗)]5�� 𝑗 (𝑖) = 𝑗

)
− 10 Var𝑋

(
𝛽𝑖 | 𝑗 (𝑖) = 𝑗

)
E𝑋

(
[𝛽𝑖 − E𝑋 (𝛽𝑖 | 𝑗 (𝑖) = 𝑗)]3�� 𝑗 (𝑖) = 𝑗

)
.

A.4. Worker Rents

The average rents for workers with skills 𝑋 at firm 𝑗 are 𝑅𝑤
𝑗𝑋

= E𝑋 (𝑅𝑤𝑖 | 𝑗 (𝑖) = 𝑗), where:

𝑢𝑖 𝑗
(
𝑊 𝑗 (𝑋𝑖) − 𝑅𝑤

𝑖 , 𝑎 𝑗 (𝑋𝑖)
)
= max

𝑗′≠ 𝑗 (𝑖)
𝑢𝑖 𝑗′

(
𝑊 𝑗′ (𝑋𝑖), 𝑎 𝑗′ (𝑋𝑖)

)
.

Let 𝑊 𝑗 (𝑋) be the wage that firm 𝑗 provides to workers with skills 𝑋 . For any 𝑊 ≤ 𝑊 𝑗 (𝑋),
the density of these workers who would be willing to accept their current job at wage𝑊 is:

𝐿′𝑗 (𝑋,𝑊) =
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

����
𝑊𝑗 (𝑋)=𝑊

× 1
𝐿 𝑗 (𝑋)

.

6



Average worker rents are computed by integrating𝑊 𝑗 (𝑋) −𝑊 with respect to this density:

𝑅𝑤
𝑗𝑋 =

∫ 𝑊𝑗 (𝑋)

0

(
𝑊 𝑗 (𝑋) −𝑊

)
𝐿′𝑗 (𝑋,𝑊)𝑑𝑊

=

∫ 𝑊𝑗 (𝑋)

0

(
𝑊 𝑗 (𝑋) −𝑊

) (
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

����
𝑊𝑗 (𝑋)=𝑊

× 1
𝐿 𝑗 (𝑥)

)
𝑑𝑊

=
𝑊 𝑗 (𝑋)
𝐿 𝑗 (𝑋)

×
∫ 1

0
(1 − 𝜔)

(
𝜕

𝜕𝜔

∫ exp
(
𝛽𝑖 log

(
𝜔𝑊 𝑗 (𝑋)

)
+ 𝑎 𝑗 (𝑋)

)
𝑓𝛽 |𝑋 (𝛽𝑖 |𝑋) 𝑓𝑋 (𝑋)

𝐼𝑖 (𝑋)
𝑑𝛽𝑖

)
𝑑𝜔

=
𝑊 𝑗 (𝑋)
𝐿 𝑗 (𝑋)

×
∫ 1

0
(1 − 𝜔)

(∫
𝛽𝑖𝜔

𝛽𝑖−1 exp
(
𝛽𝑖 log𝑊 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
𝑓𝛽 |𝑋 (𝛽𝑖 |𝑋) 𝑓𝑋 (𝑋)

𝐼𝑖 (𝑋)
𝑑𝛽𝑖

)
𝑑𝜔.

The final equality relies on the assumption that firms view themselves as infinitesimal in the
market. By changing the order of integration, the average worker rents can be re-written as:

𝑅𝑤
𝑗𝑋 =

𝑊 𝑗 (𝑋)
𝐿 𝑗 (𝑋)

×
∫

1
𝐼𝑖 (𝑋)

exp
(
𝛽𝑖 log𝑊 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
𝑓𝛽 |𝑋 (𝛽𝑖 |𝑋) 𝑓𝑋 (𝑋)

(∫ 1

0
(1 − 𝜔)𝛽𝑖𝜔𝛽𝑖−1𝑑𝜔

)
𝑑𝛽𝑖

=
𝑊 𝑗 (𝑋)
𝐿 𝑗 (𝑋)

×
∫

1
𝐼𝑖 (𝑋)

(
1

1 + 𝛽𝑖

)
exp

(
𝛽𝑖 log𝑊 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
𝑓𝛽 |𝑋 (𝛽𝑖 |𝑋) 𝑓𝑋 (𝑋)𝑑𝛽𝑖

= 𝑊 𝑗 (𝑋) ×
E𝑋

(
1

1+𝛽𝑖 × exp
(
𝛽𝑖 log𝑊 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼𝑖 (𝑋)

)
E𝑋

(
exp

(
𝛽𝑖 log𝑊 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼𝑖 (𝑋)

)
= 𝑊 𝑗 (𝑋) × E

(
1

1 + 𝛽𝑖

��� 𝑗 (𝑖) = 𝑗 , 𝑋𝑖 = 𝑋

)
.

By averaging over worker skills 𝑋 , I can compute the mean rents for all workers at firm 𝑗 :

𝑅𝑤
𝑗 = E(𝑅𝑤

𝑖 | 𝑗 (𝑖) = 𝑗) =
∫
𝑊 𝑗 (𝑋) E

(
1

1 + 𝛽𝑖

��� 𝑗 (𝑖) = 𝑗 , 𝑋𝑖 = 𝑋

)
𝑓𝑋 (𝑋)𝑑𝑋.

Note that the conditional expectation E
( 1

1+𝛽𝑖

�� 𝑗 (𝑖) = 𝑗 , 𝑋𝑖 = 𝑋
)

can be decomposed such that:

E
( 1
1 + 𝛽𝑖

��� 𝑗 (𝑖) = 𝑗 , 𝑋𝑖 = 𝑋

)
= E𝑋

(
1

1 + 𝛽𝑖

)
+

Cov𝑋

(
1

1+𝛽𝑖 , exp
(
𝛽𝑖 log𝑊 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼𝑖 (𝑋)

)
E𝑋

(
exp

(
𝛽𝑖 log𝑊 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
/𝐼𝑖 (𝑋)

) .

The elasticity of average worker rents with respect to the wage𝑊 𝑗 (𝑋) is
𝜕 log 𝑅𝑤

𝑗𝑋

𝜕 log𝑊 𝑗 (𝑋) , where:

𝜕 log 𝑅𝑤
𝑗𝑋

𝜕 log𝑊 𝑗 (𝑋)
= 1 +

𝜕E
(

1
1+𝛽𝑖

�� 𝑗 (𝑖)= 𝑗 ,𝑋𝑖=𝑋

)
𝜕 log𝑊𝑗 (𝑋)

E
(

1
1+𝛽𝑖

�� 𝑗 (𝑖) = 𝑗 , 𝑋𝑖 = 𝑋

) = 1 +
Cov

(
𝛽𝑖 ,

1
1+𝛽𝑖

�� 𝑗 (𝑖) = 𝑗 , 𝑋𝑖 = 𝑋

)
E
(

1
1+𝛽𝑖

�� 𝑗 (𝑖) = 𝑗 , 𝑋𝑖 = 𝑋

) .

If Var(𝛽𝑖 |𝑋𝑖 = 𝑋) > 0, then the second term is negative, which means that
𝜕𝑅𝑤

𝑗𝑋
𝑊 𝑗 (𝑋)

𝜕𝑊 𝑗 (𝑋)𝑅𝑤
𝑗𝑋

< 1.
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A.5. Employer Rents

Employer rents come in the form of excess profits that firms obtain by exploiting their
wage-setting power. To calculate these rents, I consider a counterfactual setting where firms
are price-takers in the market, facing perfectly-elastic labor supply curves. I define the rents
at firm 𝑗 to be the difference between the true and counterfactual profits 𝑅𝑒

𝑗
= Π 𝑗 −Π

price-taker
𝑗

.

For any employer 𝑗 , the profit Π 𝑗 that is realized in the monopsonistic labor market is:

Π 𝑗 = 𝑌 𝑗 −
∑︁
𝜒∈X

( ∫ (
𝜺 𝑗 (𝜒, 𝜑)

1 + 𝜺 𝑗 (𝜒, 𝜑)

) (
𝜕𝑌 𝑗

𝜕𝐿 𝑗 (𝜒, 𝜑)

)
𝐿 𝑗 (𝜒, 𝜑)𝑑𝜑

)

= 𝑌 𝑗 −
∑︁
𝜒∈X

©«
∫ (

𝜺 𝑗 (𝜒, 𝜑)
1 + 𝜺 𝑗 (𝜒, 𝜑)

)
𝜑𝑇𝑗 (1 − 𝛼 𝑗)𝜃 𝑗𝜒

(
𝐿eff
𝑗 (𝜒)

)𝜌 𝑗−1
( ∑︁
𝜒′∈X

𝜃 𝑗𝜒′

(
𝐿eff
𝑗 (𝜒′)

)𝜌 𝑗

) 1−𝛼𝑗

𝜌 𝑗
−1

𝐿 𝑗 (𝜒, 𝜑)𝑑𝜑
ª®®¬

= 𝑌 𝑗 ×
©«1 − (1 − 𝛼 𝑗)

∑︁
𝜒∈X

(
𝜃 𝑗𝜒

(
𝐿eff
𝑗
(𝜒)

)𝜌 𝑗

∑
𝜒′∈X 𝜃 𝑗𝜒′

(
𝐿eff
𝑗
(𝜒′)

)𝜌 𝑗

) ( ∫ (
𝜺 𝑗 (𝜒, 𝜑)

1 + 𝜺 𝑗 (𝜒, 𝜑)

) (
𝜑𝐿 𝑗 (𝜒, 𝜑)∫
𝜑′𝐿 𝑗 (𝜒, 𝜑′)𝑑𝜑′

)
𝑑𝜑

)ª®®¬ .
To simplify the expression above, define 𝜔 𝑗 (𝜒, 𝜑) as the share of effective labor that workers
with skills 𝑋 = (𝜒, 𝜑) contribute to firm 𝑗 . These effective labor shares are defined so that:

𝜔 𝑗 (𝜒, 𝜑) =
𝜕 log 𝑁 𝑗

𝜕 log 𝐿 𝑗 (𝜒, 𝜑)
=

𝜃 𝑗𝜒

(
𝐿eff
𝑗
(𝜒)

)𝜌 𝑗

∑
𝜒′∈X 𝜃 𝑗𝜒′

(
𝐿eff
𝑗
(𝜒′)

)𝜌 𝑗
×

𝜑𝐿 𝑗 (𝜒, 𝜑)∫
𝜑′𝐿 𝑗 (𝜒, 𝜑′)𝑑𝜑′

.

These shares aggregate to one, since:
∑
𝜒∈X

∫
𝜔 𝑗 (𝜒, 𝜑)𝑑𝜑 = 1. Using this property, I write:

Π 𝑗 = 𝑌 𝑗 ×
©«1 − (1 − 𝛼 𝑗)

∑︁
𝜒∈X

∫ (
𝜺 𝑗 (𝜒, 𝜑)

1 + 𝜺 𝑗 (𝜒, 𝜑)

)
𝜔 𝑗 (𝜒, 𝜑)𝑑𝜑

ª®¬
= 𝑌 𝑗 ×

∑︁
𝜒∈X

∫ [
1 − (1 − 𝛼 𝑗)

(
𝜺 𝑗 (𝜒, 𝜑)

1 + 𝜺 𝑗 (𝜒, 𝜑)

)]
𝜔 𝑗 (𝜒, 𝜑)𝑑𝜑

= 𝑌 𝑗 ×
∑︁
𝜒∈X

∫ (1 + 𝛼 𝑗 𝜺 𝑗 (𝜒, 𝜑)
1 + 𝜺 𝑗 (𝜒, 𝜑)

)
𝜔 𝑗 (𝜒, 𝜑)𝑑𝜑.

If an employer 𝑗 is a price-taker in the market, then its profit Πprice-taker
𝑗

equals:

Π
price-taker
𝑗

= max
{𝐷pt

𝑗
(𝜒,𝜑) }𝜒,𝜑

𝑇𝑗
©«
∑︁
𝜒∈X

𝜃 𝑗𝜒

(∫
𝜑𝐷

pt
𝑗
(𝜒, 𝜑)𝑑𝜑

)𝜌 𝑗ª®¬
1−𝛼𝑗

𝜌 𝑗

−
∑︁
𝜒∈X

(∫
𝑊

pt
𝑗
(𝜒, 𝜑)𝐷pt

𝑗
(𝜒, 𝜑)𝑑𝜑

)
.

Taking first-order conditions with respect to labor demand yields the wage equation:

𝑊
pt
𝑗
(𝜒, 𝜑) = 𝜑𝑇𝑗 (1 − 𝛼 𝑗)𝜃 𝑗𝜒

(∫
𝜑𝐷

pt
𝑗
(𝜒, 𝜑)𝑑𝜑

)𝜌 𝑗−1
( ∑︁
𝜒∈X

𝜃 𝑗𝜒

(∫
𝜑𝐷

pt
𝑗
(𝜒, 𝜑)𝑑𝜑

)𝜌 𝑗

) 1−𝛼𝑗

𝜌 𝑗
−1

.
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In equilibrium, the labor demand 𝐷pt
𝑗
(𝑋) equals the labor supply 𝐿pt

𝑗
(𝑋), which is given by:

𝐿
pt
𝑗
(𝑋) =

∫
1

𝐼 (𝛽, 𝑋) exp
(
𝛽 log𝑊pt

𝑗
(𝑋) + 𝑎 𝑗 (𝑋)

)
𝑓𝛽 |𝑋 (𝛽 |𝑋) 𝑓𝑋 (𝑋)𝑑𝛽.

Given counterfactual wages and labor supply curves, the profit Πprice-taker
𝑗

can be written as:

Π
price-taker
𝑗

= 𝑇𝑗
©«
∑︁
𝜒∈X

𝜃 𝑗𝜒

(∫
𝜑𝐿

pt
𝑗
(𝜒, 𝜑)𝑑𝜑

)𝜌 𝑗ª®¬
1−𝛼𝑗

𝜌 𝑗

× ©«1 − (1 − 𝛼 𝑗)
∑︁
𝜒∈X

∫
𝜔 𝑗 (𝜒, 𝜑)𝑑𝜑

ª®¬
= 𝛼 𝑗𝑇𝑗

©«
∑︁
𝜒∈X

𝜃 𝑗𝜒

(∫
𝜑𝐿

pt
𝑗
(𝜒, 𝜑)𝑑𝜑

)𝜌 𝑗ª®¬
1−𝛼𝑗

𝜌 𝑗

.

For any firm 𝑗 , define𝑌 pt
𝑗
= 𝑇𝑗

(∑
𝜒∈X 𝜃 𝑗 𝜒

(∫
𝜑𝐿

pt
𝑗
(𝜒, 𝜑)𝑑𝜑

) 𝜌 𝑗
) 1−𝛼𝑗

𝜌 𝑗 . The employer rents are:

Π∗
𝑗 − Π

price-taker
𝑗

= 𝑌 𝑗 ×

∑︁
𝜒∈X

∫ (1 + 𝛼 𝑗 𝜺 𝑗 (𝜒, 𝜑)
1 + 𝜺 𝑗 (𝜒, 𝜑)

)
𝜔 𝑗 (𝜒, 𝜑)𝑑𝜑 − 𝛼 𝑗

(
𝑌

pt
𝑗

𝑌 𝑗

) .
A.6. Pass-through of TFP Shocks to Wages

The elasticity of the wage𝑊 𝑗 (𝑋) with respect to a firm’s total factor productivity 𝑇𝑗 is:

𝜕 log𝑊 𝑗 (𝑋)
𝜕 log𝑇𝑗

= 1 +
𝜕 log

(
𝜺 𝑗 (𝑋)

1+𝜺 𝑗 (𝑋)

)
𝜕 log𝑇𝑗

− (1 − 𝜌 𝑗)
𝜕 log 𝐿eff

𝑗
(𝜒)

𝜕 log𝑇𝑗
+

1 − 𝛼 𝑗 − 𝜌 𝑗

𝜌 𝑗

𝜕 log
∑

𝜒′∈X 𝜃 𝑗𝜒′
(
𝐿eff
𝑗
(𝜒′)

)𝜌 𝑗

𝜕 log𝑇𝑗

= 1 +
𝜕 log𝑊 𝑗 (𝑋)
𝜕 log𝑇𝑗

×
(

1
𝜺 𝑗 (𝜒, 𝜑) [1 + 𝜺 𝑗 (𝜒, 𝜑)]

)
×

𝜕2 log 𝐿 𝑗 (𝜒, 𝜑)
𝜕 [log𝑊 𝑗 (𝜒, 𝜑)]2

−
𝜕 log𝑊 𝑗 (𝑋)
𝜕 log𝑇𝑗

× (1 − 𝜌 𝑗)
∫

𝜺 𝑗 (𝜒, 𝜑′)
𝜕 log 𝐿eff

𝑗
(𝜒)

𝜕 log 𝐿 𝑗 (𝜒, 𝜑′)
𝑑𝜑′

+
𝜕 log𝑊 𝑗 (𝑋)
𝜕 log𝑇𝑗

× (1 − 𝛼 𝑗 − 𝜌 𝑗)
∑︁
𝜒′∈X

(∫
𝜺 𝑗 (𝜒′, 𝜑′)

𝜕 log 𝑁 𝑗

𝜕 log 𝐿 𝑗 (𝜒′, 𝜑′)
𝑑𝜑′

)
=

[
1 −

(
1

𝜺 𝑗 (𝜒, 𝜑) [1 + 𝜺 𝑗 (𝜒, 𝜑)]

)
×

𝜕2 log 𝐿 𝑗 (𝜒, 𝜑)
𝜕 [log𝑊 𝑗 (𝜒, 𝜑)]2

+ (1 − 𝜌 𝑗)
∫

𝜺 𝑗 (𝜒, 𝜑′)
𝜕 log 𝐿eff

𝑗
(𝜒)

𝜕 log 𝐿 𝑗 (𝜒, 𝜑′)
𝑑𝜑′

− (1 − 𝛼 𝑗 − 𝜌 𝑗)
∑︁
𝜒′∈X

(∫
𝜺 𝑗 (𝜒′, 𝜑′)

𝜕 log 𝑁 𝑗

𝜕 log 𝐿 𝑗 (𝜒′, 𝜑′)
𝑑𝜑′

)]−1

.
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A.7. Allocative Inefficiency

In this economy, aggregate social welfare is defined as W, where:

W = E
(
max

𝑗

{
𝑢𝑖 𝑗

(
𝑊 𝑗 (𝑋𝑖), 𝑎 𝑗 (𝑋𝑖)

)})
+ log

𝐽∑︁
𝑗=1

Π 𝑗 .

Using the formula for the expectation of a maximum over T1EV random variables, I write:1

W = E
(
max

𝑗

{
𝛽𝑖 log𝑊 𝑗 (𝑋𝑖) + 𝑎 𝑗 (𝑋𝑖) + 𝜖𝑖 𝑗

})
+ log

𝐽∑︁
𝑗=1

Π 𝑗

=

∫
E

[
max

𝑗

{
𝛽𝑖 log𝑊 𝑗 (𝑋𝑖) + 𝑎 𝑗 (𝑋𝑖) + 𝜖𝑖 𝑗

}���𝑋𝑖 = 𝑋]
𝑓𝛽,𝑋 (𝛽𝑖 , 𝑋)𝑑 (𝛽𝑖 , 𝑋) + log

𝐽∑︁
𝑗=1

Π 𝑗

=

∫ ©«log
𝐽∑︁
𝑗=1

exp
[
𝛽𝑖 log𝑊 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

]
+ 𝛾ª®¬ 𝑓𝛽,𝑋 (𝛽𝑖 , 𝑋)𝑑 (𝛽𝑖 , 𝑋) + log

𝐽∑︁
𝑗=1

Π 𝑗

=

∫
log 𝐼 (𝛽𝑖 , 𝑋) 𝑓𝛽,𝑋 (𝛽𝑖 , 𝑋)𝑑 (𝛽𝑖 , 𝑋) + 𝛾 + log

𝐽∑︁
𝑗=1

Π 𝑗 ,

where 𝛾 ≈ 0.5772 is the Euler-Mascheroni constant. The social planner seeks to maximize
welfare by solvingW∗ = max{ 𝑗 (𝑖)}𝑖 W. The optimality condition of the planner’s problem is:

𝜕W
𝜕𝐿 𝑗 (𝑋)

= 0,

for all skills 𝑋 and employers 𝑗 . By evaluating these derivatives, I obtain the following:

𝜕W
𝜕𝐿 𝑗 (𝑋)

=
𝜕
( ∫

log 𝐼 (𝛽𝑖 , 𝑋) 𝑓𝛽 |𝑋 (𝛽𝑖 |𝑋) 𝑓𝑋 (𝑋)𝑑𝛽𝑖
)

𝜕𝐿 𝑗 (𝑋)
+
𝜕 log

∑𝐽
𝑗=1 Π 𝑗

𝜕𝐿 𝑗 (𝑋)

=

∫
𝜕 log 𝐼 (𝛽𝑖 , 𝑋)

)
𝜕𝐿 𝑗 (𝑋)

𝑓𝛽 |𝑋 (𝛽𝑖 |𝑋) 𝑓𝑋 (𝑋)𝑑𝛽𝑖 +
𝜕Π 𝑗

𝜕𝐿 𝑗 (𝑋)
©«

𝐽∑︁
𝑗=1

Π 𝑗
ª®¬
−1

=

∫
𝛽𝑖 exp

(
𝛽𝑖 log𝑊 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
𝐼 (𝛽𝑖 , 𝑋)

(
𝜕 log𝑊 𝑗 (𝑋)
𝜕𝐿 𝑗 (𝑋)

)
𝑓𝛽 |𝑋 (𝛽𝑖 |𝑋) 𝑓𝑋 (𝑋)𝑑𝛽𝑖 +

𝜕Π 𝑗

𝜕𝐿 𝑗 (𝑋)
©«

𝐽∑︁
𝑗=1

Π 𝑗
ª®¬
−1

.

1This property is proven in Small & Rosen (1981). Even without T1EV errors, expected maximal utility is:

W =

𝐽∑︁
𝑗=1

(∫
E

[
𝛽𝑖 log𝑊 𝑗 (𝑋𝑖) + 𝑎 𝑗 (𝑋𝑖) + 𝜖𝑖 𝑗

��� 𝑗 (𝑖) = 𝑗 , 𝑋𝑖 = 𝑋

]
𝐿 𝑗 (𝑋)𝑑𝑋

)
= E

[
𝜖𝑖 𝑗

�� 𝑗 (𝑖) = 𝑗
]
+

𝐽∑︁
𝑗=1

(∫ (
𝜺 𝑗 (𝑋) log𝑊 𝑗 (𝑋) + 𝑎 𝑗 (𝑋)

)
𝐿 𝑗 (𝑋)𝑑𝑋

)
.
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Let 𝜺∗
𝑗
(𝑋) be the elasticity of wage w.r.t. labor in the solution to the social planner’s problem.

𝜕W
𝜕𝐿 𝑗 (𝑋)

=
𝜺 𝑗 (𝑋)
𝜺∗
𝑗
(𝑋) +

𝜕Π 𝑗

𝜕𝐿 𝑗 (𝑋)
©«

𝐽∑︁
𝑗=1

Π 𝑗
ª®¬
−1

=
𝜺 𝑗 (𝑋)
𝜺∗
𝑗
(𝑋) +

𝜕
[
𝑌 𝑗 −

∫
𝑊 𝑗 (𝑋)𝐿 𝑗 (𝑋)𝑑𝑋

]
𝜕𝐿 𝑗 (𝑋)

©«
𝐽∑︁
𝑗=1

Π 𝑗
ª®¬
−1

=
𝜺 𝑗 (𝑋)
𝜺∗
𝑗
(𝑋) +

©«
𝐽∑︁
𝑗=1

Π 𝑗
ª®¬
−1 (

𝜕𝑌 𝑗

𝜕𝐿 𝑗 (𝑋)
−
𝜕𝑊 𝑗 (𝑋)𝐿 𝑗 (𝑋)

𝜕𝐿 𝑗 (𝑋)
−𝑊 𝑗 (𝑋)

)
=
𝜺 𝑗 (𝑋)
𝜺∗
𝑗
(𝑋) +

𝜕𝑌𝑗

𝜕𝐿 𝑗 (𝑋) −𝑊 𝑗 (𝑋)∑𝐽
𝑗=1 Π 𝑗

−
𝑊 𝑗 (𝑋)

𝜺∗
𝑗
(𝑋) × ∑𝐽

𝑗=1 Π 𝑗

.

The solution to the social planner’s problem is to set the elasticity of wages with respect
to labor to zero for all 𝑋 and 𝑗 . This involves adjusting wages so that the markdowns are
zero. To implement the first-best policy, a planner can give wage-specific wage subsidies to
workers, where the shape of the subsidy curve depends on the distribution of preferences.

In the monopsonistic economy, without any policy intervention, welfare is given by:

W =

∫
log 𝐼 (𝛽𝑖 , 𝑋) 𝑓𝛽,𝑋 (𝛽𝑖 , 𝑋)𝑑 (𝛽𝑖 , 𝑋) + 𝛾 + log

𝐽∑︁
𝑗=1
𝑌 𝑗

(∫ (1 + 𝛼 𝑗 𝜺 𝑗 (𝑋)
1 + 𝜺 𝑗 (𝑋)

)
𝜔 𝑗 (𝑋)𝑑𝑋

)
Under the first-best optimal allocation that solves the planner’s problem, welfare is given by:

W∗ =

∫
log 𝐼 (𝛽𝑖 , 𝑋) 𝑓𝛽,𝑋 (𝛽𝑖 , 𝑋)𝑑 (𝛽𝑖 , 𝑋) + 𝛾 + log

𝐽∑︁
𝑗=1
𝛼 𝑗𝑌

∗
𝑗 .

The first-best optimal allocation is achieved in a competitive (Walrasian) economy. To com-
pute optimal welfare W∗, I consider a counterfactual setting where all firms are price-takers.

A.8. Micro-foundation for the Worker’s Indirect Utility Function

I now present a simple micro-foundation for the indirect utility function of the worker,
where each worker 𝑖 chooses a firm 𝑗 to maximize utility from consuming goods and leisure.
Let𝐶𝑖 𝑗 denote the worker’s expected consumption from working at the firm and let𝐻𝑖 𝑗 denote
the worker’s expected time spent working. A worker 𝑖’s utility from choosing a firm 𝑗 equals:

𝑢𝑖 𝑗 = 𝑓𝑖 (𝐶𝑖 𝑗 , 𝐻𝑖 𝑗).

Let �̄� 𝑗 (𝑋𝑖) denote the scheduled work hours for employees with skills 𝑋𝑖 at firm 𝑗 , accounting
for paid time off, overtime, vacation leave, and other benefits. Let �̃�𝑖 𝑗 denote the idiosyncratic

11



component of hours worked, accounting for commuting time and worker-firm match factors.
Assume that 𝑓𝑖 : R2

+ → R is log-additive in consumption and scheduled hours, such that:

𝑓𝑖 (𝐶𝑖 𝑗 , 𝐻𝑖 𝑗) = 𝑎𝑖 + 𝜅𝑖 log𝐶𝑖 𝑗 − 𝜂 log �̄� 𝑗 (𝑋𝑖) − 𝑓 (�̃�𝑖 𝑗).

The marginal rate of substitution between log consumption and log work hours equals −𝜅𝑖/𝜂.
Define the worker’s budget constraint as 𝐶𝑖 𝑗 = 𝑊 𝑗 (𝑋𝑖), where𝑊 𝑗 (𝑋𝑖) denotes total earnings.
Additionally, define 𝑎 𝑗 (𝑋) = − log �̄� 𝑗 (𝑋𝑖), 𝛽𝑖 = 𝜅𝑖/𝜂, and 𝜖𝑖 𝑗 = −𝜂−1 𝑓 (�̃�𝑖 𝑗 ). It follows that:

𝑢𝑖 𝑗 =
𝑎𝑖

𝜂
+ 𝛽𝑖 log𝑊 𝑗 (𝑋𝑖) + 𝑎 𝑗 (𝑋𝑖) + 𝜖𝑖 𝑗 ,

which corresponds to utility specification (1) in the paper.2 Note that this utility function can
be extended to include non-labor income. For example, let𝑉𝑖 denote the worker’s other forms
of income. The budget constraint becomes 𝐶𝑖 𝑗 = 𝑊 𝑗 (𝑋𝑖) +𝑉𝑖. If 𝑉𝑖 is observed in data, then
I can re-define earnings to be �̃�𝑖 𝑗 (𝑋𝑖) = 𝑊 𝑗 (𝑋𝑖)+𝑉𝑖, and the same utility specification applies.

A.9. Extension: Capital and Monopolistic Competition in the Product Market

I now give an extension of the model that includes capital and monopolistic competition
in the product market. Consider a monopolistic firm 𝑗 with the following production function:

𝑄 𝑗 = 𝑇𝑗𝐾
𝜂 𝑗

𝑗
𝑁

1−𝛼𝑗

𝑗
,

where 𝐾 𝑗 denotes capital. In a monopolistic product market, the revenue curve is𝑌 𝑗 = 𝑄
1−𝜅 𝑗
𝑗

.
For each skill vector 𝑋 , labor is hired according to the labor supply curve 𝐿 𝑗 (𝑋) and capital
is rented at some fixed price 𝑟 𝑗 . The firm’s profit function has the following representation:

Π 𝑗 = 𝑄
1−𝜅 𝑗
𝑗

−
∑︁
𝜒∈X

(∫
𝑊 𝑗 (𝜒, 𝜑)𝐿 𝑗 (𝜒, 𝜑)𝑑𝜑

)
− 𝑟 𝑗𝐾 𝑗

= 𝑇𝑗𝐾
�̃� 𝑗

𝑗
𝑁

1− �̃�𝑗

𝑗
−

∑︁
𝜒∈X

(∫
𝑊 𝑗 (𝜒, 𝜑)𝐿 𝑗 (𝜒, 𝜑)𝑑𝜑

)
− 𝑟 𝑗𝐾 𝑗 ,

where 𝑇𝑗 = 𝑇
1−𝜅 𝑗
𝑗

, 𝜂 𝑗 = 𝜂 𝑗 (1 − 𝜅 𝑗 ), and �̃� 𝑗 = 𝛼 𝑗 + 𝜅 𝑗 (1 − 𝛼 𝑗 ). I now show that both perfect
and monopolistic competition in the product market yield the same profit function. As a first
step, I derive the first order condition of the firm’s problem with respect to capital 𝐾 𝑗 . I write:

𝐾 𝑗 =
©«

𝑟 𝑗

𝜂 𝑗𝑇𝑗𝑁
1− �̃�𝑗

𝑗

ª®¬
1

�̃� 𝑗−1

.

2The term 𝑎𝑖
𝜂

does not vary across firms. Therefore, it does not impact the worker’s employment decisions.
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Plugging this condition into the firm’s profit function, I obtain the following:

Π 𝑗 = 𝑇𝑗
©« 𝑟

𝜂 𝑗𝑇𝑗𝑁
1− �̃�𝑗

𝑗

ª®¬
�̃� 𝑗

�̃� 𝑗−1

𝑁
1− �̃�𝑗

𝑗
−

∑︁
𝜒∈X

(∫
𝑊 𝑗 (𝜒, 𝜑)𝐿 𝑗 (𝜒, 𝜑)𝑑𝜑

)
− 𝑟 ©« 𝑟

𝜂 𝑗𝑇𝑗𝑁
1− �̃�𝑗

𝑗

ª®¬
1

�̃� 𝑗−1

=

𝑇𝑗
(
𝑟

𝜂 𝑗𝑇𝑗

) �̃� 𝑗

�̃� 𝑗−1

− 𝑟
(
𝑟

𝜂 𝑗𝑇𝑗

) 1
�̃� 𝑗−1

 𝑁
−

1− �̃� 𝑗

�̃� 𝑗−1

𝑗
−

∑︁
𝜒∈X

(∫
𝑊 𝑗 (𝜒, 𝜑)𝐿 𝑗 (𝜒, 𝜑)𝑑𝜑

)
.

Note that this is just a reinterpretation of the original problem, where the firm’s profit equals:

Π 𝑗 = 𝑇𝑗𝑁
1− �̂�𝑗

𝑗
−

∑︁
𝜒∈X

(∫
𝑊 𝑗 (𝜒, 𝜑)𝐿 𝑗 (𝜒, 𝜑)𝑑𝜑

)
,

where I define the terms (𝑇𝑗 , �̂� 𝑗 ) such that: 𝑇𝑗 = 𝑇𝑗
(

𝑟

𝜂 𝑗𝑇 𝑗

) �̃� 𝑗

�̃� 𝑗−1 − 𝑟
(

𝑟

𝜂 𝑗𝑇 𝑗

) 1
�̃� 𝑗−1 and �̂� 𝑗 =

𝜂 𝑗−�̃� 𝑗

𝜂 𝑗−1 .

B. Properties of the Model: Proofs and Discussion

B.1. Preference Heterogeneity and Substitution Patterns

Consider a version of the utility specification (1) where the taste shocks {𝜖𝑖 𝑗 }𝑖, 𝑗 are i.i.d.
and the coefficient 𝛽 is constant across workers. In this case, preferences can be written as:

𝑢𝑖 𝑗
(
𝑊 𝑗 (𝑋𝑖), 𝑎 𝑗 (𝑋𝑖)

)
= 𝛿 𝑗𝑋𝑖

+ 𝜖𝑖 𝑗 ,

where 𝛿 𝑗 𝑋𝑖 = 𝛽 log𝑊 𝑗 (𝑋𝑖) + 𝑎 𝑗 (𝑋𝑖) is a deterministic function of
(
𝑊 𝑗 (𝑋𝑖), 𝑎 𝑗 (𝑋𝑖)

)
. Given

posted wages {𝑊𝑘 (𝑋)}𝐽𝑘=1, a worker with skills 𝑋 will work for employer 𝑗 with probability:

P( 𝑗 (𝑖) = 𝑗 |𝑋𝑖 = 𝑋) =
∫ ∞

−∞

∏
𝑘≠ 𝑗

𝐹𝜖

(
𝛿 𝑗𝑋 − 𝛿𝑘𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖 .

Proof of Property 1.

Define 𝑃 𝑗 𝑋 = P( 𝑗 (𝑖) = 𝑗 |𝑋𝑖 = 𝑋) as the share of workers with skills 𝑋 at firm 𝑗 . If the

13



terms {𝜖𝑖 𝑗 }𝑖, 𝑗 are i.i.d. and 𝛽𝑖 = 𝛽 for all 𝑖, then the own-wage elasticity of labor supply is:

𝜕𝑃 𝑗𝑋𝑊 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)𝑃 𝑗𝑋

=
𝑊 𝑗 (𝑋)
𝑃 𝑗𝑋

× 𝜕

𝜕𝑊 𝑗 (𝑋)

∫ ∞

−∞

∏
𝑘≠ 𝑗

𝐹𝜖

(
𝛿 𝑗𝑋 − 𝛿𝑘𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖

=
𝑊 𝑗 (𝑋)
𝑃 𝑗𝑋

×
∫ ∞

−∞

𝜕

𝜕𝑊 𝑗 (𝑋)
∏
𝑘≠ 𝑗

𝐹𝜖

(
𝛿 𝑗𝑋 − 𝛿𝑘𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖

=
𝑊 𝑗 (𝑋)
𝑃 𝑗𝑋

×
∫ ∞

−∞

[∑︁
𝑘≠ 𝑗

( ∏
ℓ∉{ 𝑗 ,𝑘}

𝐹𝜖

(
𝛿 𝑗𝑋 − 𝛿ℓ𝑋 + 𝜖

)
𝑓𝜖

(
𝛿 𝑗𝑋 − 𝛿𝑘𝑋 + 𝜖

) 𝜕𝛿 𝑗𝑋

𝜕𝑊 𝑗 (𝑋)

)
𝑓𝜖 (𝜖)𝑑𝜖

]
=
𝑊 𝑗 (𝑋)
𝑃 𝑗𝑋

×
𝜕𝛿 𝑗𝑋

𝜕𝑊 𝑗 (𝑋)
×

∑︁
𝑘≠ 𝑗

[ ∫ ∞

−∞

∏
ℓ∉{ 𝑗 ,𝑘}

𝐹𝜖

(
𝛿 𝑗𝑋 − 𝛿ℓ𝑋 + 𝜖

)
𝑓𝜖

(
𝛿 𝑗𝑋 − 𝛿𝑘𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖

]
=

𝛽

𝑃 𝑗𝑋

×
∑︁
𝑘≠ 𝑗

[ ∫ ∞

−∞

∏
ℓ∉{ 𝑗 ,𝑘}

𝐹𝜖

(
𝛿 𝑗𝑋 − 𝛿ℓ𝑋 + 𝜖

)
𝑓𝜖

(
𝛿 𝑗𝑋 − 𝛿𝑘𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖

]
.

In addition, the cross-wage elasticity of labor supply with respect to any firm 𝑘 ≠ 𝑗 equals:

𝜕𝑃 𝑗𝑋𝑊𝑘 (𝑋)
𝜕𝑊𝑘 (𝑋)𝑃 𝑗𝑋

=
𝑊𝑘 (𝑋)
𝑃 𝑗𝑋

× 𝜕

𝜕𝑊𝑘 (𝑋)

∫ ∞

−∞

∏
ℓ≠ 𝑗

𝐹𝜖

(
𝛿 𝑗𝑋 − 𝛿ℓ𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖

=
𝑊𝑘 (𝑋)
𝑃 𝑗𝑋

×
∫ ∞

−∞

𝜕

𝜕𝑊𝑘 (𝑋)
∏
ℓ≠ 𝑗

𝐹𝜖

(
𝛿 𝑗𝑋 − 𝛿ℓ𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖

= −𝑊𝑘 (𝑋)
𝑃 𝑗𝑋

× 𝜕𝛿𝑘𝑋

𝜕𝑊𝑘 (𝑋)
×

∫ ∞

−∞

∏
ℓ∉{ 𝑗 ,𝑘}

𝐹𝜖

(
𝛿 𝑗𝑋 − 𝛿ℓ𝑋 + 𝜖

)
𝑓𝜖

(
𝛿 𝑗𝑋 − 𝛿𝑘𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖

= − 𝛽

𝑃 𝑗𝑋

×
∫ ∞

−∞

∏
ℓ∉{ 𝑗 ,𝑘}

𝐹𝜖

(
𝛿 𝑗𝑋 − 𝛿ℓ𝑋 + 𝜖

)
𝑓𝜖

(
𝛿 𝑗𝑋 − 𝛿𝑘𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖 .

Suppose that 𝑃 𝑗 𝑋 = 𝑃 𝑗 ′𝑋 for firms 𝑗 , 𝑗 ′ ∈ {1, . . . , 𝐽}. Then 𝛿 𝑗 𝑋 = 𝛿 𝑗 ′𝑋 , which means that:3

𝜕𝑃 𝑗𝑋𝑊 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)𝑃 𝑗𝑋

=
𝛽

𝑃 𝑗′𝑋
×

∑︁
𝑘≠ 𝑗

[ ∫ ∞

−∞

∏
ℓ∉{ 𝑗 ,𝑘}

𝐹𝜖

(
𝛿 𝑗′𝑋 − 𝛿ℓ𝑋 + 𝜖

)
𝑓𝜖

(
𝛿 𝑗′𝑋 − 𝛿𝑘𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖

]
=

𝛽

𝑃 𝑗′𝑋
×
[ ∫ ∞

−∞

∏
ℓ∉{ 𝑗 , 𝑗′ }

𝐹𝜖

(
𝛿 𝑗′𝑋 − 𝛿ℓ𝑋 + 𝜖

)
𝑓 2
𝜖 (𝜖)𝑑𝜖

+
∑︁

𝑘∉{ 𝑗 , 𝑗′ }

[ ∫ ∞

−∞

∏
ℓ∉{ 𝑗 , 𝑗′ ,𝑘}

𝐹𝜖

(
𝛿 𝑗′𝑋 − 𝛿ℓ𝑋 + 𝜖

)
𝐹𝜖

(
𝜖
)
𝑓𝜖

(
𝛿 𝑗′𝑋 − 𝛿𝑘𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖

] ]
=

𝛽

𝑃 𝑗′𝑋
×

∑︁
𝑘≠ 𝑗′

[ ∫ ∞

−∞

∏
ℓ∉{ 𝑗′ ,𝑘}

𝐹𝜖

(
𝛿 𝑗′𝑋 − 𝛿ℓ𝑋 + 𝜖

)
𝑓𝜖

(
𝛿 𝑗′𝑋 − 𝛿𝑘𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖

]
.

3The labor shares 𝑃 𝑗𝑋 are strictly increasing in (and thus are uniquely determined by) the parameters 𝛿 𝑗𝑋.
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This final expression corresponds to
𝜕𝑃 𝑗′𝑋𝑊

′
𝑗
(𝑋)

𝜕𝑊 ′
𝑗
(𝑋)𝑃 𝑗′𝑋

. Moreover, for any 𝑘 ∉ { 𝑗 , 𝑗 ′}, I can write:

𝜕𝑃 𝑗𝑋𝑊𝑘 (𝑋)
𝜕𝑊𝑘 (𝑋)𝑃 𝑗𝑋

= − 𝛽

𝑃 𝑗′𝑋
×

∫ ∞

−∞

∏
ℓ∉{ 𝑗 ,𝑘}

𝐹𝜖

(
𝛿 𝑗′𝑋 − 𝛿ℓ𝑋 + 𝜖

)
𝑓𝜖

(
𝛿 𝑗′𝑋 − 𝛿𝑘𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖

= − 𝛽

𝑃 𝑗′𝑋
×

∫ ∞

−∞

∏
ℓ∉{ 𝑗 , 𝑗′ ,𝑘}

𝐹𝜖

(
𝛿 𝑗′𝑋 − 𝛿ℓ𝑋 + 𝜖

)
𝐹𝜖

(
𝜖
)
𝑓𝜖

(
𝛿 𝑗′𝑋 − 𝛿𝑘𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖

= − 𝛽

𝑃 𝑗′𝑋
×

∫ ∞

−∞

∏
ℓ∉{ 𝑗′ ,𝑘}

𝐹𝜖

(
𝛿 𝑗′𝑋 − 𝛿ℓ𝑋 + 𝜖

)
𝑓𝜖

(
𝛿 𝑗′𝑋 − 𝛿𝑘𝑋 + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖 .

This expression equals 𝜕𝑃 𝑗′𝑋𝑊𝑘 (𝑋)
𝜕𝑊𝑘 (𝑋)𝑃 𝑗′𝑋

, the cross-wage elasticity at firm 𝑗 ′ with respect to firm 𝑘 .
□

Consider the special case where 𝜖𝑖 𝑗 follows a Type I extreme value distribution. The labor
shares in this case have the following closed form expressions: 𝑃 𝑗 𝑋 = exp(𝛿 𝑗 𝑋)/

∑𝐽
𝑘=1 exp(𝛿𝑘𝑋).

Under this specification, it is easy to see that Property 1 holds since the wage elasticities are:

𝜕𝑃 𝑗𝑋𝑊𝑘 (𝑋)
𝜕𝑊𝑘 (𝑋)𝑃 𝑗𝑋

=

{
𝛽(1 − 𝑃 𝑗𝑋) if 𝑗 = 𝑘
−𝛽𝑃𝑘𝑋 if 𝑗 ≠ 𝑘.

Next, suppose that 𝛽𝑖 is heterogeneous across workers. Then the choice probabilities are:

P( 𝑗 (𝑖) = 𝑗 |𝑋𝑖 = 𝑋) =
∫

P( 𝑗 (𝑖) = 𝑗 |𝛽𝑖 = 𝛽, 𝑋𝑖 = 𝑋) 𝑓𝛽 |𝑥 (𝛽 |𝑋)𝑑𝛽.

Equivalently, this probability can be expressed as E[P( 𝑗 (𝑖) = 𝑗 |𝛽𝑖, 𝑋𝑖) |𝑋𝑖 = 𝑋], which equals
the conditional expectation of 𝛽-specific choice probabilities among workers with skills 𝑋 .

Proof of Property 2.

To ease notation, let 𝑃 𝑗 𝑋 = P( 𝑗 (𝑖) = 𝑗 |𝑋𝑖 = 𝑋) and 𝑃 𝑗 𝑋 (𝛽𝑖) = P( 𝑗 (𝑖) = 𝑗 |𝛽𝑖, 𝑋𝑖 = 𝑋) be
the aggregate and 𝛽-specific labor shares, respectively, for a firm. The wage elasticities are:

𝜕𝑃 𝑗𝑋𝑊𝑘 (𝑋)
𝜕𝑊𝑘 (𝑋)𝑃 𝑗𝑋

=
𝑊𝑘 (𝑋)
𝑃 𝑗𝑋

× 𝜕

𝜕𝑊𝑘 (𝑋)

( ∫
𝑃 𝑗𝑋 (𝛽) 𝑓𝛽 |𝑥 (𝛽 |𝑋)𝑑𝛽

)
= 𝑃−1

𝑗𝑋

∫
𝜕𝑃 𝑗𝑋 (𝛽)
𝜕𝑊𝑘 (𝑋)

𝑊𝑘 (𝑋) 𝑓𝛽 |𝑥 (𝛽 |𝑋)𝑑𝛽

= 𝑃−1
𝑗𝑋

∫
𝜕𝑃 𝑗𝑋 (𝛽)𝑊𝑘 (𝑋)
𝜕𝑊𝑘 (𝑋)𝑃 𝑗𝑋 (𝛽)

𝑃 𝑗𝑋 (𝛽) 𝑓𝛽 |𝑥 (𝛽 |𝑋)𝑑𝛽,
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for any firm 𝑘 ∈ {1, . . . , 𝐽}. These elasticities can also be expressed in terms of expectations:

𝜕𝑃 𝑗𝑋𝑊𝑘 (𝑋)
𝜕𝑊𝑘 (𝑋)𝑃 𝑗𝑋

= 𝑃−1
𝑗𝑋 E

(
𝜕𝑃 𝑗𝑋 (𝛽𝑖)𝑊𝑘 (𝑋)
𝜕𝑊𝑘 (𝑋)𝑃 𝑗𝑋 (𝛽𝑖)

𝑃 𝑗𝑋 (𝛽𝑖)
)

= 𝑃−1
𝑗𝑋

[
E

(
𝜕𝑃 𝑗𝑋 (𝛽𝑖)𝑊𝑘 (𝑋)
𝜕𝑊𝑘 (𝑋)𝑃 𝑗𝑋 (𝛽𝑖)

× 1
��� 𝑗 (𝑖) = 𝑗

)
𝑃 𝑗𝑋 + E

(
𝜕𝑃 𝑗𝑋 (𝛽𝑖)𝑊𝑘 (𝑋)
𝜕𝑊𝑘 (𝑋)𝑃 𝑗𝑋 (𝛽𝑖)

× 0
��� 𝑗 (𝑖) ≠ 𝑗

)
(1 − 𝑃 𝑗𝑋)

]
= E

(
𝜕𝑃 𝑗𝑋 (𝛽𝑖)𝑊𝑘 (𝑋)
𝜕𝑊𝑘 (𝑋)𝑃 𝑗𝑋 (𝛽𝑖)

��� 𝑗 (𝑖) = 𝑗

)
.

So, the aggregate elasticity is the average of 𝛽-specific elasticities among workers at the firm.
□

Proof of Property 3.

To ease notation, let 𝜺 𝑗 (𝑋) =
𝜕𝑃 𝑗𝑋𝑊 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)𝑃 𝑗𝑋

and 𝜺 𝑗 (𝛽, 𝑋) =
𝜕𝑃 𝑗𝑋 (𝛽𝑖)𝑊𝑘 (𝑋)
𝜕𝑊𝑘 (𝑋)𝑃 𝑗𝑋 (𝛽𝑖) be the aggregate

and 𝛽-specific own-wage elasticities of labor supply, respectively, for a firm. It follows that:

𝜕 𝜺 𝑗 (𝑋)
𝜕 log𝑊 𝑗 (𝑋)

=
𝜕

𝜕 log𝑊 𝑗 (𝑋)

[
𝑃−1

𝑗𝑋

∫
𝜺 𝑗 (𝛽, 𝑋)𝑃 𝑗𝑋 (𝛽) 𝑓𝛽 |𝑥 (𝛽 |𝑋)𝑑𝛽

]
= 𝑃−1

𝑗𝑋

∫
𝜕
[
𝜺 𝑗 (𝛽, 𝑋)𝑃 𝑗𝑋 (𝛽)

]
𝜕 log𝑊 𝑗 (𝑋)

𝑓𝛽 |𝑥 (𝛽 |𝑋)𝑑𝛽 − 𝑃−2
𝑗𝑋

(
𝜕𝑃 𝑗𝑋𝑊 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

) ∫
𝜺 𝑗 (𝛽, 𝑋)𝑃 𝑗𝑋 (𝛽) 𝑓𝛽 |𝑥 (𝛽 |𝑋)𝑑𝛽

= 𝑃−1
𝑗𝑋

∫
𝜕
[
𝜺 𝑗 (𝛽, 𝑋)𝑃 𝑗𝑋 (𝛽)

]
𝜕 log𝑊 𝑗 (𝑋)

𝑓𝛽 |𝑥 (𝛽 |𝑋)𝑑𝛽 − 𝜺2
𝑗 (𝑋)

= 𝑃−1
𝑗𝑋

[ ∫
𝜕 𝜺 𝑗 (𝛽, 𝑋)
𝜕 log𝑊 𝑗 (𝑋)

𝑃 𝑗𝑋 (𝛽) 𝑓𝛽 |𝑥 (𝛽 |𝑋)𝑑𝛽 +
∫

𝜕𝑃 𝑗𝑋 (𝛽)
𝜕 log𝑊 𝑗 (𝑋)

𝜺 𝑗 (𝛽, 𝑋) 𝑓𝛽 |𝑥 (𝛽 |𝑋)𝑑𝛽
]
− 𝜺2

𝑗 (𝑋)

= 𝑃−1
𝑗𝑋

∫
𝜕 𝜺 𝑗 (𝛽, 𝑋)
𝜕 log𝑊 𝑗 (𝑋)

𝑃 𝑗𝑋 (𝛽) 𝑓𝛽 |𝑥 (𝛽 |𝑋)𝑑𝛽 + 𝑃−1
𝑗𝑋

∫
𝜺2
𝑗 (𝛽, 𝑋)𝑃 𝑗𝑋 (𝛽) 𝑓𝛽 |𝑥 (𝛽 |𝑋)𝑑𝛽 − 𝜺2

𝑗 (𝑋).

By the same reasoning that is used in the proof of Property 2, I can re-write this quantity as:

𝜕 𝜺 𝑗 (𝑋)
𝜕 log𝑊 𝑗 (𝑋)

= E𝑋

(
𝜕 𝜺 𝑗 (𝛽𝑖 , 𝑋)
𝜕 log𝑊 𝑗 (𝑋)

��� 𝑗 (𝑖) = 𝑗

)
+ E𝑋

(
𝜺2
𝑗 (𝛽𝑖 , 𝑋)

�� 𝑗 (𝑖) = 𝑗
)
− E𝑋

(
𝜺 𝑗 (𝛽𝑖 , 𝑋)

�� 𝑗 (𝑖) = 𝑗
)2

= E
(
𝜕 𝜺 𝑗 (𝛽𝑖 , 𝑋)
𝜕 log𝑊 𝑗 (𝑋)

��� 𝑋𝑖 = 𝑋, 𝑗 (𝑖) = 𝑗

)
+ Var

(
𝜺 𝑗 (𝛽𝑖 , 𝑋)

�� 𝑋𝑖 = 𝑋, 𝑗 (𝑖) = 𝑗
)
.

The final expression above is additively separable into two terms. The first term is the
average derivative of 𝜺 𝑗 (𝛽𝑖, 𝑋) taken with respect to log𝑊 𝑗 (𝑋) among workers 𝑖 at the firm.
The second term represents the conditional variance of 𝜺 𝑗 (𝛽𝑖, 𝑋) among workers 𝑖 at the firm.

□
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B.2. Existence and Uniqueness of an Equilibrium

In order to prove the existence and uniqueness of an equilibrium, it is first necessary to
establish some basic properties about the firm-specific labor supply curves, as well as the
production and profit functions. The properties that I discuss below will guide my analysis.

Firm-Specific Labor Supply Curves

The total mass of workers with skills 𝑋 employed at a firm 𝑗 is given by 𝑆 𝑗 (𝑋), where:

𝑆 𝑗 (𝑋) =
∫ ©«

∫ ∞

−∞

∏
𝑘≠ 𝑗

𝐹𝜖

(
𝛽 log

(
𝑊 𝑗 (𝑋)
𝑊𝑘 (𝑋)

)
+ 𝑎 𝑗 (𝑋) − 𝑎𝑘 (𝑋) + 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖ª®¬ 𝑓𝛽,𝑋 (𝛽, 𝑋)𝑑𝛽.

Throughout my analysis, I assume that firms perceive themselves to be strategically small
within the economy. Thus, a firm 𝑗 sets its wages {𝑊 𝑗 (𝑋)}𝑋 without considering the impact
of changing its own wages on the labor that is supplied to other firms. By Property 2, I write:

𝜕 log 𝑆 𝑗 (𝑋)
𝜕 log𝑊 𝑗 (𝑋)

= E

(
𝜕 log P( 𝑗 (𝑖) = 𝑗 |𝛽𝑖 , 𝑋𝑖)

𝜕 log𝑊 𝑗 (𝑋𝑖)

����� 𝑋𝑖 = 𝑋, 𝑗 (𝑖) = 𝑗

)
= E ©« 𝛽𝑖

𝑃 𝑗𝑋𝑖

×
∑︁
𝑘≠ 𝑗

[ ∫ ∞

−∞

∏
ℓ∉{ 𝑗 ,𝑘}

𝐹𝜖

(
𝛿 𝑗𝑋𝑖

− 𝛿ℓ𝑋𝑖
+ 𝜖

)
𝑓𝜖

(
𝛿 𝑗𝑋𝑖

− 𝛿𝑘𝑋𝑖
+ 𝜖

)
𝑓𝜖 (𝜖)𝑑𝜖

] ����� 𝑋𝑖 = 𝑋, 𝑗 (𝑖) = 𝑗
ª®¬ ,

where I define 𝛿 𝑗 𝑋𝑖 = 𝛽 log𝑊 𝑗 (𝑋𝑖) + 𝑎 𝑗 (𝑋𝑖). Using this formula, I prove the following claim.

Claim B.2.1. The labor supplied to a firm 𝑆 𝑗 (𝑋) is strictly-increasing in the wage𝑊 𝑗 (𝑋).

Proof. Because log(·) is a strictly-increasing transformation, it is sufficient to show that
the derivative 𝜕 log 𝑆 𝑗 (𝑋)/𝜕 log𝑊 𝑗 (𝑋) is strictly positive for any wage𝑊 𝑗 (𝑋) ∈ R++. First,
note that 0 < 𝐹𝜖

(
𝜖𝑖 𝑗

)
< 1 and 0 < 𝑓𝜖

(
𝜖𝑖 𝑗

)
< 1 for all 𝜖𝑖 𝑗 ∈ R since the taste shocks 𝜖𝑖 𝑗 take

positive density everywhere on R. In addition, because P(𝛽𝑖 > 0|𝑋𝑖 = 𝑋) > 0 for every 𝑋 , it
must be that 𝜕 log P( 𝑗 (𝑖) = 𝑗 |𝛽𝑖, 𝑋𝑖)/𝜕 log𝑊 𝑗 (𝑋𝑖) is strictly positive for all values of (𝛽𝑖, 𝑋𝑖).
From this property, I conclude that the derivative 𝜕 log 𝑆 𝑗 (𝑋)/𝜕 log𝑊 𝑗 (𝑋) is strictly positive.

□

This claim ensures that, for any values of {𝑊𝑘 (𝑋)}𝑘≠ 𝑗 , the labor supply 𝑆 𝑗 (𝑋) for firm 𝑗

is uniquely defined by firm 𝑗’s wage𝑊 𝑗 (𝑋). Thus, any equilibrium is uniquely characterized
by the wages that maximize the firms’ profit function subject to the labor supply constraint.
The goal of the rest of this section is to demonstrate that such wages do exist and are unique.
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Firm Production Functions

In equilibrium, labor demand 𝐷 𝑗 (𝑋) equals labor supply 𝑆 𝑗 (𝑋). A firm 𝑗’s output is:

𝑌 𝑗 = 𝑇𝑗

( ∑︁
𝜒∈X

𝜃 𝑗𝜒

(∫
𝜑𝐿 𝑗 (𝜒, 𝜑)𝑑𝜑

)𝜌 𝑗

) 1−𝛼𝑗

𝜌 𝑗

.

Among workers with skills 𝑋 = (𝜒, 𝜑), the marginal product of labor at the firm is given by:

𝜕𝑌 𝑗

𝜕𝐿 𝑗 (𝜒, 𝜑)
= 𝜑𝑇𝑗 (1 − 𝛼 𝑗)𝜃 𝑗𝜒

(∫
𝜑′𝐿 𝑗 (𝜒, 𝜑′)𝑑𝜑′

)𝜌 𝑗−1
( ∑︁
𝜒′∈X

𝜃 𝑗𝜒′

(∫
𝜑′𝐿 𝑗 (𝜒′, 𝜑′)𝑑𝜑′

)𝜌 𝑗

) 1−𝛼𝑗

𝜌 𝑗
−1

= 𝜑𝑇𝑗 (1 − 𝛼 𝑗)𝜃 𝑗𝜒
(
𝐿eff
𝑗 (𝜒)

)𝜌 𝑗−1
( ∑︁
𝜒′∈X

𝜃 𝑗𝜒′

(
𝐿eff
𝑗 (𝜒′)

)𝜌 𝑗

) 1−𝛼𝑗

𝜌 𝑗
−1

.

I prove the next three claims by deriving the Hessian matrix H𝑌 𝑗
of the production function.

Claim B.2.2. If 𝛼 ∈ (0, 1) and 𝜌 𝑗 < 1, then 𝜕2𝑌 𝑗

𝜕𝐿 𝑗 (𝜒,𝜑)𝜕𝐿 𝑗 (𝜒,𝜑′) < 0 for 𝜒 ∈ X and 𝜑, 𝜑′ ∈ R++.

Proof. Fix 𝜒 ∈ X and 𝜑, 𝜑′ ∈ R. The derivative of 𝜕𝑌 𝑗

𝜕𝐿 𝑗 (𝜒,𝜑) with respect to 𝐿 𝑗 (𝜒, 𝜑′) is:

𝜕2𝑌 𝑗

𝜕𝐿 𝑗 (𝜒, 𝜑)𝜕𝐿 𝑗 (𝜒, 𝜑′)
= 𝜑𝑇𝑗 (1 − 𝛼 𝑗)𝜃 𝑗𝜒

[
𝜑′(𝜌 𝑗 − 1)

(∫
𝜑𝐿 𝑗 (𝜒, 𝜑)𝑑𝜑

)𝜌 𝑗−2
( ∑︁
𝜒∈X

𝜃 𝑗𝜒

(∫
𝜑𝐿 𝑗 (𝜒, 𝜑)𝑑𝜑

)𝜌 𝑗

) 1−𝛼𝑗

𝜌 𝑗
−1

+ 𝜑′(1 − 𝛼 𝑗 − 𝜌 𝑗)𝜃 𝑗𝜒
(∫

𝜑𝐿 𝑗 (𝜒, 𝜑)𝑑𝜑
)2𝜌 𝑗−2

( ∑︁
𝜒∈X

𝜃 𝑗𝜒

(∫
𝜑𝐿 𝑗 (𝜒, 𝜑)𝑑𝜑

)𝜌 𝑗

) 1−𝛼𝑗

𝜌 𝑗
−2]

.

Define 𝜁 𝑗 𝜒𝜑𝜑′ = 𝜑𝜑′𝑇𝑗 (1 − 𝛼 𝑗 )𝜃 𝑗 𝜒
(
𝐿eff
𝑗
(𝜒)

) 𝜌 𝑗−2 (∑
𝜒′∈X 𝜃 𝑗 𝜒′

(
𝐿eff
𝑗
(𝜒′)

) 𝜌 𝑗
) 1−𝛼𝑗

𝜌 𝑗
−1

. This term
is positive since 𝜑, 𝜑′, 𝑇𝑗 , 𝜃 𝑗 𝜒 > 0 and employment is positive. Using this notation, I write:

𝜕2𝑌 𝑗

𝜕𝐿 𝑗 (𝜒, 𝜑)𝜕𝐿 𝑗 (𝜒, 𝜑′)
= 𝜁 𝑗𝜒𝜑𝜑′

[
(𝜌 𝑗 − 1) + (1 − 𝛼 𝑗 − 𝜌 𝑗)𝜃 𝑗𝜒

(
𝐿eff
𝑗 (𝜒)

)𝜌 𝑗

( ∑︁
𝜒′∈X

𝜃 𝑗𝜒′

(
𝐿eff
𝑗 (𝜒′)

)𝜌 𝑗

)−1]

= 𝜁 𝑗𝜒𝜑𝜑′

[
(𝜌 𝑗 − 1) + (1 − 𝛼 𝑗 − 𝜌 𝑗)

𝜃 𝑗𝜒

(
𝐿eff
𝑗
(𝜒)

)𝜌 𝑗

∑
𝜒′∈X 𝜃 𝑗𝜒′

(
𝐿eff
𝑗
(𝜒′)

)𝜌 𝑗

]
.

As 𝜁 𝑗 𝜒𝜑𝜑′ > 0, it must be that 𝜕2𝑌 𝑗

𝜕𝐿 𝑗 (𝜒,𝜑)𝜕𝐿 𝑗 (𝜒,𝜑′) < 0 if and only if 1
𝜁 𝑗𝜒𝜑𝜑′

× 𝜕2𝑌 𝑗

𝜕𝐿 𝑗 (𝜒,𝜑)𝜕𝐿 𝑗 (𝜒,𝜑′) < 0.
The effective labor share 𝜃 𝑗 𝜒

(
𝐿eff
𝑗
(𝜒)

) 𝜌 𝑗/∑𝜒∈X 𝜃 𝑗 𝜒′
(
𝐿eff
𝑗
(𝜒′)

) 𝜌 𝑗 for skill type 𝜒 is bounded
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between 0 and 1. Given these properties, I conclude that 𝜕2𝑌 𝑗

𝜕𝐿 𝑗 (𝜒,𝜑)𝜕𝐿 𝑗 (𝜒,𝜑′) < 0 if and only if:

0 >
1

𝜁 𝑗𝜒𝜑𝜑′
×

𝜕2𝑌 𝑗

𝜕𝐿 𝑗 (𝜒, 𝜑)𝜕𝐿 𝑗 (𝜒, 𝜑′)
= −(1 − 𝜌 𝑗)

[
1 −

𝜃 𝑗𝜒

(
𝐿eff
𝑗
(𝜒)

)𝜌 𝑗

∑
𝜒∈X 𝜃 𝑗𝜒′

(
𝐿eff
𝑗
(𝜒′)

)𝜌 𝑗

]
− 𝛼 𝑗

𝜃 𝑗𝜒

(
𝐿eff
𝑗
(𝜒)

)𝜌 𝑗

∑
𝜒∈X 𝜃 𝑗𝜒′

(
𝐿eff
𝑗
(𝜒′)

)𝜌 𝑗

= −(1 − 𝜌 𝑗) − 𝛼 𝑗

𝜃 𝑗𝜒

(
𝐿eff
𝑗
(𝜒)

)𝜌 𝑗

∑
𝜒′≠𝜒 𝜃 𝑗𝜒′

(
𝐿eff
𝑗
(𝜒′)

)𝜌 𝑗
.

Re-arranging terms, this inequality becomes: 𝜌 𝑗 < 1+𝛼 𝑗×𝜃 𝑗 𝜒
(
𝐿eff
𝑗
(𝜒)

) 𝜌 𝑗/∑𝜒′≠𝜒 𝜃 𝑗 𝜒′
(
𝐿eff
𝑗
(𝜒′)

) 𝜌 𝑗 .
Whenever 𝛼 𝑗 ∈ (0, 1) and 𝜌 𝑗 < 1, this inequality holds trivially. It is worth noting that values
of 𝜌 𝑗 above unity may also satisfy this inequality, particularly if the returns to scale parameter
1 − 𝛼 𝑗 is small and/or if the effective labor share for the skill type 𝜒 is large within this firm.

□

Claim B.2.3. Suppose that 𝛼 ∈ (0, 1). For any 𝜒, 𝜒′ ∈ X, where 𝜒 ≠ 𝜒′, and 𝜑, 𝜑′ ∈ R++,
the derivative 𝜕2𝑌 𝑗

𝜕𝐿 𝑗 (𝜒,𝜑)𝜕𝐿 𝑗 (𝜒′,𝜑′) is positive when 𝜌 𝑗 < 1− 𝛼 𝑗 and negative when 𝜌 𝑗 > 1− 𝛼 𝑗 .

Proof. Fix 𝜒, 𝜒′ ∈ X, where 𝜒 ≠ 𝜒′, and 𝜑, 𝜑′ ∈ R. The derivative 𝜕2𝑌 𝑗

𝜕𝐿 𝑗 (𝜒,𝜑)𝜕𝐿 𝑗 (𝜒′,𝜑′) is:

𝜕2𝑌 𝑗

𝜕𝐿 𝑗 (𝜒, 𝜑)𝜕𝐿 𝑗 (𝜒′, 𝜑′)
= 𝜑𝜑′𝑇𝑗 (1 − 𝛼 𝑗) (1 − 𝛼 𝑗 − 𝜌 𝑗)𝜃 𝑗𝜒𝜃 𝑗𝜒′

(
𝐿eff
𝑗 (𝜒)𝐿eff

𝑗 (𝜒′)
)𝜌 𝑗−1

( ∑︁
𝜒∈X

𝜃 𝑗𝜒

(
𝐿eff
𝑗 (𝜒)

)𝜌 𝑗

) 1−𝛼𝑗

𝜌 𝑗
−2

.

The term 𝜁 𝑗 𝜒𝜒′𝜑𝜑′ = 𝜑𝜑
′𝑇𝑗 (1−𝛼 𝑗 )𝜃 𝑗 𝜒𝜃 𝑗 𝜒′

(
𝐿eff
𝑗
(𝜒)𝐿eff

𝑗
(𝜒′)

) 𝜌 𝑗−1 (∑
𝜒∈X 𝜃 𝑗 𝜒

(
𝐿eff
𝑗
(𝜒)

) 𝜌 𝑗
) 1−𝛼𝑗

𝜌 𝑗
−2

is always greater than zero. Therefore, the sign of the derivative is pinned down by 1−𝛼 𝑗−𝜌 𝑗 .
This quantity will be positive whenever 𝜌 𝑗 < 1−𝛼 𝑗 and will be negative whenever 𝜌 𝑗 > 1−𝛼 𝑗 .

□

Claim B.2.4. Suppose that 𝛼 ∈ (0, 1) and 𝜌 𝑗 < 1. The production function 𝑌 𝑗 is concave.

Proof. The effective labor 𝐿eff
𝑗 𝜒

=
∫
𝜑𝐿 𝑗 (𝜒, 𝜑)𝑑𝜑 in each skill type 𝜒 is a concave, strictly

increasing function of {𝐿 𝑗 (𝜒, 𝜑)}𝜑. Define the mappings 𝑔 : R|X|
+ → R+ and ℎ : R+ → R+

so that: 𝑔(𝐿eff
𝑗
) = ∑

𝜒∈X 𝜃 𝑗 𝜒
(
𝐿eff
𝑗
(𝜒)

) 𝜌 𝑗 and ℎ(𝑥) = 𝑇𝑗𝑥 (1−𝛼 𝑗 )/𝜌 𝑗 . If 0 < 𝜌 𝑗 ≤ 1, then 𝑔(𝐿eff
𝑗
)

has a diagonal Hessian matrix with negative eigenvalues −𝜌 𝑗 (1− 𝜌 𝑗 )𝜃 𝑗 𝜒
(
𝐿eff
𝑗
(𝜒)

) 𝜌 𝑗−2. Also,
since ℎ(𝑥) is monotonically increasing,𝑌 𝑗 = ℎ(𝑔(𝐿eff

𝑗
)) is quasiconcave in 𝐿eff

𝑗
. Now suppose

that 𝜌 𝑗 < 0. Then the Hessian matrix of 𝑔(𝐿eff
𝑗
) is positive definite, which means that 𝑔(𝐿eff

𝑗
)

is convex. In addition, the function ℎ(𝑥) is monotonically decreasing, so 𝑌 𝑗 = ℎ(𝑔(𝐿eff
𝑗
)) is

quasiconcave in 𝐿eff
𝑗

. Any positive, quasiconcave function is concave if it is homogeneous of
degree 𝑘 ∈ (0, 1]. It follows that𝑌 𝑗 is concave in 𝐿eff

𝑗
. So, it is also concave in {𝐿 𝑗 (𝜒, 𝜑)}𝜒,𝜑.

□
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Claim B.2.2 establishes conditions under which firms face decreasing marginal returns
to hiring labor of the same skill type. Claim B.2.3 presents conditions under which different
skill types are treated as substitutes (or complements) in the firm’s production. Claim B.2.4
demonstrates that the output of a firm is a concave function of its labor inputs {𝐿 𝑗 (𝜒, 𝜑)}𝜒,𝜑.

Firm Profit Functions

After plugging in the labor supply constraint, the profit function for any firm 𝑗 equals:

Π 𝑗 = 𝑌 𝑗 −
∫
𝑊 𝑗 (𝑋)𝐿 𝑗 (𝑋)𝑑𝑋.

The derivative of this function with respect to the wage𝑊 𝑗 (𝑋) for workers with skills 𝑋 is:

𝜕Π 𝑗

𝜕𝑊 𝑗 (𝑋)
=

𝜕𝑌 𝑗

𝜕𝐿 𝑗 (𝑋)
×
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

− 𝐿 𝑗 (𝑋) −𝑊 𝑗 (𝑋)
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

= 𝐿 𝑗 (𝑋) ×
(

𝜕𝑌 𝑗

𝜕𝐿 𝑗 (𝑋)
×

𝜺 𝑗 (𝑋)
𝑊 𝑗 (𝑋)

− 1 − 𝜺 𝑗 (𝑋)
)
.

Next, I derive the Hessian matrix HΠ 𝑗
of the firm’s profit function. The diagonal entries are:

𝜕2Π 𝑗

𝜕𝑊2
𝑗
(𝑋)

=
𝜕2𝑌 𝑗

𝜕𝐿2
𝑗
(𝑋)

×
(
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

)2
+

𝜕𝑌 𝑗

𝜕𝐿 𝑗 (𝑋)
×
𝜕2𝐿 𝑗 (𝑋)
𝜕𝑊2

𝑗
(𝑋)

−
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

−
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

−𝑊 𝑗 (𝑋)
𝜕2𝐿 𝑗 (𝑋)
𝜕𝑊2

𝑗
(𝑋)

=
𝜕2𝑌 𝑗

𝜕𝐿2
𝑗
(𝑋)

×
(
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

)2
+

(
𝜕𝑌 𝑗

𝜕𝐿 𝑗 (𝑋)
−𝑊 𝑗 (𝑋)

)
𝜕2𝐿 𝑗 (𝑋)
𝜕𝑊2

𝑗
(𝑋)

− 2
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

.

If the first-order condition binds, then 𝜕𝑌 𝑗

𝜕𝐿 𝑗 (𝑋) −𝑊 𝑗 (𝑋) = 𝑊 𝑗 (𝑋)/𝜺 𝑗 (𝑋), which implies that:

𝜕2Π 𝑗

𝜕𝑊2
𝑗
(𝑋)

=
𝜕2𝑌 𝑗

𝜕𝐿2
𝑗
(𝑋)

×
(
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

)2
+
𝑊 𝑗 (𝑋)
𝜺 𝑗 (𝑋)

×
𝜕2𝐿 𝑗 (𝑋)
𝜕𝑊2

𝑗
(𝑋)

− 2
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

=
𝐿 𝑗 (𝑋)
𝑊 𝑗 (𝑋)

×
[
𝜕2𝑌 𝑗

𝜕𝐿2
𝑗
(𝑋)

×
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

× 𝜺 𝑗 (𝑋) +
𝑊2

𝑗
(𝑋)

𝜺 𝑗 (𝑋)𝐿 𝑗 (𝑋)
×
𝜕2𝐿 𝑗 (𝑋)
𝜕𝑊2

𝑗
(𝑋)

− 2 𝜺 𝑗 (𝑋)
]

=
𝐿 𝑗 (𝑋)
𝑊 𝑗 (𝑋)

×

𝜕2𝑌 𝑗

𝜕𝐿2
𝑗
(𝑋)

×
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

× 𝜺 𝑗 (𝑋) +
𝜕𝜺 𝑗 (𝑋)

𝜕 log𝑊𝑗 (𝑋) + 𝜺2
𝑗
(𝑋) − 𝜺 𝑗 (𝑋)

𝜺 𝑗 (𝑋)
− 2 𝜺 𝑗 (𝑋)


=
𝐿 𝑗 (𝑋)
𝑊 𝑗 (𝑋)

×

𝜕2𝑌 𝑗

𝜕𝐿2
𝑗
(𝑋)

×
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

× 𝜺 𝑗 (𝑋) +
𝜕𝜺 𝑗 (𝑋)

𝜕 log𝑊𝑗 (𝑋)

𝜺 𝑗 (𝑋)
− 𝜺 𝑗 (𝑋) − 1

 .
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where the second-to-last equality above relies on the observation that 𝜕 𝜺 𝑗 (𝑋)
𝜕 log𝑊 𝑗 (𝑋) is equal to:

𝜕
𝜕𝐿 𝑗 (𝑋)𝑊𝑗 (𝑋)
𝜕𝑊𝑗 (𝑋)𝐿 𝑗 (𝑋)𝑊 𝑗 (𝑋)

𝜕𝑊 𝑗 (𝑋)
= 𝑊 𝑗 (𝑋) ×

[
𝑊 𝑗 (𝑋)
𝐿 𝑗 (𝑋)

×
𝜕2𝐿 𝑗 (𝑋)
𝜕𝑊2

𝑗
(𝑋)

−
(
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

)2
×
𝑊 𝑗 (𝑋)
𝐿2
𝑗
(𝑋)

+
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

× 1
𝐿 𝑗 (𝑋)

]
=
𝑊2

𝑗
(𝑋)

𝐿 𝑗 (𝑋)
×
𝜕2𝐿 𝑗 (𝑋)
𝜕𝑊2

𝑗
(𝑋)

−
(
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

)2
×
𝑊2

𝑗
(𝑋)

𝐿2
𝑗
(𝑋)

+
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

×
𝑊 𝑗 (𝑋)
𝐿 𝑗 (𝑋)

=
𝑊2

𝑗
(𝑋)

𝐿 𝑗 (𝑋)
×
𝜕2𝐿 𝑗 (𝑋)
𝜕𝑊2

𝑗
(𝑋)

− 𝜺2
𝑗 (𝑋) + 𝜺 𝑗 (𝑋).

The off-diagonal entries of the Hessian matrix are given by 𝜕2Π 𝑗

𝜕𝑊 𝑗 (𝑋)𝜕𝑊 𝑗 (𝑋 ′) , for 𝑋 ≠ 𝑋′, where:

𝜕2Π 𝑗

𝜕𝑊 𝑗 (𝑋)𝜕𝑊 𝑗 (𝑋 ′) =
𝜕2𝑌 𝑗

𝜕𝐿 𝑗 (𝑋)𝜕𝐿 𝑗 (𝑋 ′) ×
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

×
𝜕𝐿 𝑗 (𝑋 ′)
𝜕𝑊 𝑗 (𝑋 ′) .

Taken together, the Hessian ofΠ 𝑗 has the form HΠ 𝑗
= A⊺ (H𝑌 𝑗

)A+B, where H𝑌 𝑗
is the Hessian

matrix of the firm’s production function, and where A and B are both diagonal matrices with
entries A𝑋𝑋 =

𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋) and B𝑋𝑋 =

𝐿 𝑗 (𝑋)
𝑊 𝑗 (𝑋)

[
( 𝜕 𝜺 𝑗 (𝑋)
𝜕 log𝑊 𝑗 (𝑋) )/𝜺 𝑗 (𝑋) − (𝜺 𝑗 (𝑋) + 1)

]
, respectively.4

To interpret the properties of the Hessian matrix HΠ 𝑗
, I will consider two special cases:

Special Case 1. Assume 𝛽 is constant for workers with skills 𝑋 , i.e., Var(𝛽𝑖 |𝑋𝑖 = 𝑋) = 0. In
this case, 𝜕 𝜺 𝑗 (𝑋)/𝜕 log𝑊 𝑗 (𝑋) = Var(𝛽𝑖 |𝑋𝑖 = 𝑋, 𝑗 (𝑖) = 𝑗) = 0. It follows that HΠ 𝑗

equals:

HΠ 𝑗
= A⊺ (H𝑌𝑗

)A + B, where B = − diag
( [
𝐿 𝑗 (𝑋)

(
𝜺 𝑗 (𝑋) + 1

)
𝑊 𝑗 (𝑋)

]
𝑋

)
.

This matrix is negative definite, which means that the profit function Π 𝑗 is concave. To see
why, note that B has strictly negative eigenvalues and that H𝑌 𝑗

is always negative definite
when 𝛼 𝑗 ∈ (0, 1) and 𝜌 𝑗 < 1. Thus, HΠ 𝑗

must also be negative definite, since, for any 𝑣 ≠ 0:

𝑣⊺HΠ 𝑗
𝑣 = 𝑣⊺

(
A⊺ (H𝑌𝑗

)A + B
)
𝑣

= 𝑣⊺A⊺ (H𝑌𝑗
)A𝑣 + 𝑣⊺B𝑣

= (A𝑣)⊺ (H𝑌𝑗
) (A𝑣) + 𝑣⊺B𝑣 < 0.

Special Case 2. Assume that firms do not exercise wage-setting power, i.e.,𝑊 𝑗 (𝑋) =
𝜕𝑌 𝑗

𝜕𝐿 𝑗 (𝑋) .
In this setting, the Hessian matrix of the firm’s profit function equals HΠ 𝑗

= A⊺ (H𝑌 𝑗
)A + B,

where B = −2 diag
( [ 𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

]
𝑋

)
. Just as in the previous case, this simplification ensures that

this matrix HΠ 𝑗
is negative definite. Therefore, the firm’s profit function must be concave.

Both special cases lead to concavity of the profit function, which is a useful property for
proving that a unique equilibrium exists. However, this property does not apply in general,

4Since 𝜕𝐿 𝑗 (𝑋)
𝜕𝑊𝑗 (𝑋) > 0 for all 𝑋 , the entries of the matrix A⊺ (H𝑌𝑗

)A share the same signs as the entries of H𝑌𝑗
.
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which means that I cannot use it in the proof. To understand why, consider the matrix B. The
diagonal entries of B, which also correspond to its eigenvalues, are negative as long as:

𝜕 𝜺 𝑗 (𝑋)
𝜕 log𝑊 𝑗 (𝑋)

< 𝜺 𝑗 (𝑋)
(
𝜺 𝑗 (𝑋) + 1

)
, for all 𝑋.

Under the logit model, 𝜺 𝑗 (𝑋) equals E(𝛽𝑖 |𝑋𝑖 = 𝑋, 𝑗 (𝑖) = 𝑗) and 𝜕 𝜺 𝑗 (𝑋)/𝜕 log𝑊 𝑗 (𝑋)
equals Var(𝛽𝑖 |𝑋𝑖 = 𝑋, 𝑗 (𝑖) = 𝑗). So, the inequality above is more likely to hold if workers
at firm 𝑗 have higher marginal utilities of (log) earnings and/or if the dispersion of these
marginal utilities is low. Since the elasticity 𝜺 𝑗 (𝑋) increases in a firm’s wage 𝑊 𝑗 (𝑋), the
inequality is more likely to hold when firms offer higher wages. Note that it is difficult to
draw general conclusions about the signs of the entries of B without placing restrictions on
the distribution of 𝛽. This ambiguity makes it hard to establish when HΠ 𝑗

is negative definite.

Lemma 1. There exists an equilibrium involving strictly positive wages and employment.

Proof. I only consider equilibria where wages are positive, i.e.,𝑊 𝑗 (𝑋) > 0 for every 𝑋 . Also,
since the taste shocks 𝜖𝑖 𝑗 take positive density on R, it follows that P( 𝑗 (𝑖) = 𝑗 |𝛽𝑖, 𝑋𝑖) > 0 for
all (𝛽𝑖, 𝑋𝑖). Thus, 𝐿 𝑗 (𝑋) = 𝑓𝑋 (𝑋) × E

[
P( 𝑗 (𝑖) = 𝑗 |𝛽𝑖, 𝑋𝑖) |𝑋𝑖 = 𝑋

]
> 0 for any 𝑋 , which

means that any equilibrium involves strictly positive employment. For a firm to be profitable,
its wage cannot exceed the revenue that it receives per unit of labor. Because 𝜕2𝑌 𝑗

𝜕𝐿2
𝑗
(𝑋) < 0, this

restriction guarantees that there exists a strict upper bound on the wage 𝑊 𝑗 (𝑋) at each firm.
Therefore, for any firm 𝑗 , the set of feasible wages {𝑊 𝑗 (𝑋)}𝑋 is contained within a convex,
compact subset of the Euclidean space. Moreover, any equilibrium must lie in the interior of
this subspace since lim𝑊 𝑗 (𝑋)→0 𝜕Π 𝑗/𝜕𝑊 𝑗 (𝑋) > 0 and lim𝑊 𝑗 (𝑋)→∞ 𝜕Π 𝑗/𝜕𝑊 𝑗 (𝑋) < 0 for all
𝑋 , implying that a firm is always able to increase profit by deviating from a corner solution.

Given this reasoning, I restrict attention to wages that satisfy the first-order condition:

𝑊 𝑗 (𝑋) =
𝜺 𝑗 (𝑋)

1 + 𝜺 𝑗 (𝑋)
×

𝜕𝑌 𝑗

𝜕𝐿 𝑗 (𝑋)
, for all 𝑋.

This condition takes the form of a continuously differentiable system of equations, where
the right-hand-side is bounded within the set of feasible wages.5 By Brouwer’s fixed point
theorem, there is a solution to this system of equations, which corresponds to an equilibrium.

□

Note. Not every critical point of the profit function is necessarily an equilibrium. For
the wages {𝑊 𝑗 (𝑋)}𝑋 to exist in equilibrium, they must be a global maximizer of the firm’s
profit function Π 𝑗 . I now prove that there is almost always a unique global maximizer of Π 𝑗 .

5Specifically, 0 <
(

𝜺 𝑗 (𝑋)
1+𝜺 𝑗 (𝑋)

) (
𝜕𝑌𝑗

𝜕𝐿 𝑗 (𝑋)

)
<

𝜕𝑌𝑗

𝜕𝐿 𝑗 (𝑋) , where 𝜕𝑌𝑗

𝜕𝐿 𝑗 (𝑋) is finite for all 𝐿 𝑗 (𝑋) > 0. The labor supply
curve 𝐿 𝑗 (𝑋) is bounded from below by 0: 𝐿 𝑗 (𝑋 |𝑊 𝑗 (𝑋) = 0) = 𝑓𝑋 (𝑋)

∫
1

𝐼𝑖 (𝑋) exp(𝑎 𝑗 (𝑋)) 𝑓𝛽 |𝑥 (𝛽𝑖 |𝑋)𝑑𝛽𝑖 > 0.
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Lemma 2. There is a unique solution to the firm’s problem for almost all values of (𝛼 𝑗 , 𝜌 𝑗 ).

Proof. Let𝑊 𝑗 (X) = [𝑊 𝑗 (𝑋)]𝑋 denote the vector of wages at firm 𝑗 . The first-order condition
requires that 𝑔 𝑗

(
𝑊 𝑗 (X)

)
equals zero, where 𝑔 𝑗

(
𝑊 𝑗 (X)

)
is a multi-valued function satisfying:

𝑔 𝑗𝑋
(
𝑊 𝑗 (X)

)
= 𝑊 𝑗 (𝑋) −

𝜺 𝑗 (𝑋)
1 + 𝜺 𝑗 (𝑋)

×
𝜕𝑌 𝑗

(
𝑊 𝑗 (X)

)
𝜕𝐿 𝑗 (𝑋)

, for all 𝑋.

I examine the properties of 𝑔 𝑗 by deriving the Jacobian J𝑔 𝑗 . This matrix has diagonal entries:

𝜕𝑔𝑋
(
𝑊 𝑗 (X)

)
𝜕𝑊 𝑗 (𝑋)

= 1 −
(
1 + 𝜺 𝑗 (𝑋)

)−2 ×
𝜕 𝜺 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

×
𝜕𝑌 𝑗

(
𝑊 𝑗 (X)

)
𝜕𝐿 𝑗 (𝑋)

−
𝜺 𝑗 (𝑋)

1 + 𝜺 𝑗 (𝑋)
×
𝜕2𝑌 𝑗

(
𝑊 𝑗 (X)

)
𝜕𝐿2

𝑗
(𝑋)

×
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

= 1 − 1
𝜺 𝑗 (𝑋)

(
1 + 𝜺 𝑗 (𝑋)

) × 𝜕 𝜺 𝑗 (𝑋)
𝜕 log𝑊 𝑗 (𝑋)

−
𝜺 𝑗 (𝑋)

1 + 𝜺 𝑗 (𝑋)
×
𝜕2𝑌 𝑗

(
𝑊 𝑗 (X)

)
𝜕𝐿2

𝑗
(𝑋)

×
𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋)

,

where the second equality uses the first-order condition. The off-diagonal entries of J𝑔 𝑗 are:

𝜕𝑔𝑋
(
𝑊 𝑗 (X)

)
𝜕𝑊 𝑗 (𝑋 ′) = −

𝜺 𝑗 (𝑋)
1 + 𝜺 𝑗 (𝑋)

×
𝜕2𝑌 𝑗

(
𝑊 𝑗 (X)

)
𝜕𝐿 𝑗 (𝑋)𝜕𝐿 𝑗 (𝑋 ′) ×

𝜕𝐿 𝑗 (𝑋 ′)
𝜕𝑊 𝑗 (𝑋 ′) , for 𝑋 ≠ 𝑋 ′.

Thus, this Jacobian matrix has the form J𝑔 𝑗 = 𝐼 −
(
diag

( 𝜺 𝑗 (𝑋)
1+𝜺 𝑗 (𝑋)

)
(H𝑌 𝑗

)A + C
)
, where H𝑌 𝑗

is
the Hessian of the production function, A is a diagonal matrix with entries A𝑋𝑋 =

𝜕𝐿 𝑗 (𝑋)
𝜕𝑊 𝑗 (𝑋) , C

is a diagonal matrix with entries C𝑋𝑋 = 𝜺−1
𝑗
(𝑋)

(
1+ 𝜺 𝑗 (𝑋)

)−1 ×
[
𝜕 𝜺 𝑗 (𝑋)/𝜕 log𝑊 𝑗 (𝑋)

]
, 𝐼 is

the identity matrix, and diag
( 𝜺 𝑗 (𝑋)

1+𝜺 𝑗 (𝑋)
)

is a diagonal matrix of skill-specific wage markdowns.

Consider any vector of wages 𝑊 𝑗 (X) that satisfies the first-order condition. Given firm
amenities and the distribution of workers’ preference parameters, the matrices diag

( 𝜺 𝑗 (𝑋)
1+𝜺 𝑗 (𝑋)

)
,

A, and C are fully determined by these wages. Moreover, for any 𝛼 𝑗 ∈ (0, 1) and 𝜌 𝑗 < 1, the
Hessian matrix H𝑌 𝑗

of the production function is always nonsingular for any wage vector that
is realized. Given this property, the determinant of the Jacobian matrix J𝑔 𝑗 , when evaluated
at the wage vector 𝑊 𝑗 (X), is nonzero for almost all values of (𝛼 𝑗 , 𝜌 𝑗 ) ∈ (0, 1) × (−∞, 1).
Therefore, the matrix J𝑔 𝑗 will be nonsingular with probability one at the wage vector𝑊 𝑗 (X).
By the inverse function theorem, it is further guaranteed that𝑊 𝑗 (X) is a locally unique fixed
point solution to the first-order condition with probability one. Furthermore, given that the
set of fixed points is compact, it must have finitely-many elements with probability one.

Lastly, suppose that there are two equilibria. Since they are almost always locally stable,
we may use the implicit function theorem to define the marginal effect of 1−𝛼 𝑗

𝜌 𝑗
on the firm’s

profit at each equilibrium. Since these marginal effects are different, any slight change in 1−𝛼 𝑗

𝜌 𝑗

causes profit to differ at the resulting equilibria. So, there is almost always one equilibrium.
□
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C. Identification Proofs and Estimation Details

C.1. Identification of Worker Skills

Proof of Proposition 1.

Suppose that 𝜑 ⊥ 𝛽 |𝜒, 𝜏 and 𝑎 𝑗 (𝜒, 𝜑) = 𝑎 𝑗 𝜒 + 𝑎𝜒𝜑. The labor supplied to a firm 𝑗 is:

𝐿 𝑗 𝜏 (𝜒, 𝜑) =
∫ exp

(
𝛽 log𝑊eff

𝑗 𝜏
(𝜒, 𝜑) + 𝑎 𝑗𝜒

)∑𝐽
𝑘=1 exp

(
𝛽 log𝑊eff

𝑘𝜏
(𝜒, 𝜑) + 𝑎𝑘𝜒

) 𝑓𝛽 |𝜒,𝜏 (𝛽 |𝜒) 𝑓𝜒,𝜑 |𝜏 (𝜒, 𝜑)𝑑𝛽,
where𝑊 eff

𝑗𝜏
(𝜒, 𝜑) = 𝑊 𝑗𝜏 (𝜒, 𝜑)/𝜑 is the effective wage of the skill type 𝜒 at firm 𝑗 . Given any

density 𝑓𝛽 |𝜒,𝜏 and firm amenities {𝑎𝑘 𝜒}𝑘 , the firm-specific labor supply elasticity, defined as
𝜺 𝑗𝜏 (𝜒, 𝜑) = 𝜕 log 𝐿 𝑗𝜏 (𝜒, 𝜑)/𝜕 log𝑊 𝑗𝜏 (𝜒, 𝜑), equals a 𝜒-specific function of {𝑊 eff

𝑘𝜏
(𝜒, 𝜑)}𝑘 :

𝜺 𝑗 𝜏 (𝜒, 𝜑) =
∫

𝛽 ×
[

exp
(
𝛽 log𝑊eff

𝑗 𝜏
(𝜒)

) /
𝐼eff
𝜏 (𝛽, 𝜒, 𝜑)

]
𝑓𝛽 |𝜒,𝜏 (𝛽 |𝜒, 𝜏)∫ [

exp
(
𝛽′ log𝑊eff

𝑗 𝜏
(𝜒)

) /
𝐼eff
𝜏 (𝛽′, 𝜒, 𝜑)

]
𝑓𝛽 |𝜒,𝜏 (𝛽′ |𝜒, 𝜏)𝑑𝛽′

𝑑𝛽,

where 𝐼eff
𝜏 (𝛽, 𝜒, 𝜑) = ∑𝐽

𝑘=1 exp(𝛽 log𝑊 eff
𝑘𝜏
(𝜒, 𝜑) + 𝑎𝑘 𝜒). The equilibrium wage equations are:

𝑊eff
𝑗 𝜏 (𝜒, 𝜑) =

( 𝜺𝜒

(
𝑊eff

𝑗 𝜏
(𝜒, 𝜑)

�� {𝑊eff
𝑘𝜏
(𝜒, 𝜑)}𝑘≠ 𝑗

)
1 + 𝜺𝜒

(
𝑊eff

𝑗 𝜏
(𝜒, 𝜑)

�� {𝑊eff
𝑘𝜏
(𝜒, 𝜑)}𝑘≠ 𝑗

) ) × 𝑇𝑗 (1 − 𝛼 𝑗)𝜃 𝑗𝜒
(
𝐿eff
𝑗 (𝜒)

)𝜌 𝑗−1 ©«
∑︁
𝜒′∈X

𝜃 𝑗𝜒′

(
𝐿eff
𝑗 (𝜒′)

)𝜌 𝑗ª®¬
1−𝛼𝑗

𝜌 𝑗
−1

,

for any firm 𝑗 and vector of skills (𝜒, 𝜑) ∈ X × R++. By construction, the right-hand-side of
these equations is a ( 𝑗 , 𝜒)-specific function of the effective wages {𝑊 eff

𝑘𝜏
(𝜒, 𝜑)}𝑘 . As shown

by Lemma 2, there is almost always a unique, profit-maximizing solution to these equations.
Thus, with probability one, the effective wages satisfy𝑊 eff

𝑗𝜏
(𝜒, 𝜑) = 𝑊 eff

𝑗𝜏
(𝜒) in equilibrium.

□

C.2. Identification of Labor Supply Elasticities

My identification strategy relies on a common trends assumption, which asserts that the
difference in untreated potential outcomes over time is the same, on average, between treated
and untreated firms in the economy. To assess when this assumption is valid, it is necessary
to understand how untreated potential outcomes evolve. In my setting, these outcomes evolve
due to labor supply shifts resulting from the TFP shocks at treated firms. These shifts occur
through a common channel: workers’ wage indices {𝐼 (𝛽, 𝑋)}𝛽,𝑋 and the joint distribution
𝐹𝛽,𝑋 . Therefore, for the common trends assumption to hold, I require that treated and un-
treated firms are affected in the same way, on average by any change in {𝐼 (𝛽, 𝑋)}𝛽,𝑋 and 𝐹𝛽,𝑋 .
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Proof of Proposition 2.

To begin, I consider the evolution of labor supply and effective wages for any untreated
firm 𝑗 between time periods 𝜏0 and 𝜏1. This firm does not experience a TFP shock. Yet, its
wages and labor shift due to changes in {𝐼 (𝛽, 𝑋)}𝛽,𝑋 and 𝐹𝛽,𝑋 . The proof follows two steps.

Step 1. Derive a sufficient statistic for 𝑤eff
𝑗𝜏1,0(𝜒) − 𝑤

eff
𝑗𝜏0,0(𝜒) and ℓ 𝑗𝜏1,0(𝜒) − ℓ 𝑗𝜏0,0(𝜒).

Before proceeding, I introduce some new notation. Let 𝑓𝛽 |𝜒,𝜏0 (𝛽𝑖 |𝜒) and 𝑓𝛽 |𝜒,𝜏1 (𝛽𝑖 |𝜒)
denote the conditional densities of workers’ preference parameters 𝛽𝑖 given their skill type 𝜒
at time periods 𝜏0 and 𝜏1, respectively. I also define 𝑓𝜒 |𝜏0 (𝜒) and 𝑓𝜒 |𝜏1 (𝜒) as the corresponding
densities of worker skill types. Next, for Γ 𝑗 =

(
𝜌 𝑗 , 𝛼 𝑗 , {𝜃 𝑗 𝜒}𝜒, {𝑎 𝑗 𝜒 − 𝑎 𝑗 𝜒′}𝜒,𝜒′

)′, I define:

𝑔𝜒,𝜏 (𝑤 |Γ 𝑗) = log(1 − 𝛼 𝑗) + log 𝜃 𝑗𝜒 − (1 − 𝜌 𝑗)ℎ𝜒,𝜏 (𝑤 |Γ 𝑗) +
1 − 𝛼 𝑗 − 𝜌 𝑗

𝜌 𝑗

log
∑︁
𝜒′∈X

𝜃 𝑗𝜒′
(
ℎ𝜒′ ,𝜏 (𝑤 |Γ 𝑗)

)𝜌 𝑗

ℎ𝜒,𝜏 (𝑤 |Γ 𝑗) =
∫ ∫

𝜑

(exp
(
𝛽𝑤 + 𝑎 𝑗𝜒 − 𝑎 𝑗𝜒∗

)
𝐼eff
𝜏 (𝛽, 𝜒)

)
𝑓𝛽 |𝜒,𝜏 (𝛽 |𝜒) 𝑓𝜑 |𝜒,𝜏 (𝜑) 𝑓𝜒 |𝜏 (𝜒)𝑑𝛽𝑑𝜑.

for 𝜏 ∈ {𝜏0, 𝜏1}, where 𝜒∗ denotes some “reference skill type” at firm 𝑗 . I assume that each
firm 𝑗 takes the effective wage index 𝐼eff

𝜏 (𝛽, 𝜒) as given. I can interpret 𝑔𝜒,𝜏 (𝑤 |Γ 𝑗 ) as the
equilibrium wage equation for a price-taking firm (with zero markdowns) where log(𝑇𝑗 ) = 0
and 𝑎 𝑗 𝜒 = 𝑎 𝑗 𝜒−𝑎 𝑗 𝜒∗ . As shown in Appendix B.2, there is a unique fixed point solution to this
system since the Jacobian matrix is negative definite. So, I can write: 𝑔𝜒,𝜏 (𝑤∗ |Γ 𝑗 ) = 𝑔∗𝜒,𝜏 (Γ 𝑗 ).

By construction, the effective labor of skill type 𝜒 for an untreated firm 𝑗 in period 𝜏1
equals 𝐿eff

𝑗𝜏1,0(𝜒) = exp(𝑎 𝑗 𝜒∗) × ℎ𝜒,𝜏 (𝑤eff
𝑗𝜏1,0(𝜒) |Γ 𝑗 ). So, the potential outcome 𝑤eff

𝑗 ,𝜏1,0(𝜒) is:

𝑤eff
𝑗 𝜏1,0(𝜒) = log𝑇𝑗 + log(1 − 𝛼 𝑗) + log 𝜃 𝑗𝜒 − log

(
1 + 1

𝜺 𝑗 𝜏1,0(𝜒)

)
− (1 − 𝜌 𝑗) log

(
𝐿eff
𝑗 𝜏1,0(𝜒)

)
+

1 − 𝛼 𝑗 − 𝜌 𝑗

𝜌 𝑗

log
∑︁
𝜒′∈X

𝜃 𝑗𝜒′

(
𝐿eff
𝑗 𝜏1,0(𝜒

′)
)𝜌 𝑗

= log𝑇𝑗 − 𝛼 𝑗𝑎 𝑗𝜒∗ − log
(
1 + 1

𝜺 𝑗 𝜏1,0(𝜒)

)
+ 𝑔∗𝜒,𝜏1 (Γ 𝑗).

Since the wage changes are infinitesimal, I can write 𝜺 𝑗𝜏1,0(𝜒) = 𝜺𝜏1,0(𝜒, 𝑤eff
𝑗𝜏0,0(𝜒)), where

𝜺 𝑗𝜏1,0(𝜒, 𝑤eff
𝑗𝜏0,0(𝜒)) represents the labor supply elasticity for an untreated firm 𝑗 during time

period 𝜏1 evaluated at the pre-period effective wage 𝑤eff
𝑗𝜏0,0(𝜒). By this property, I can write:

𝑤eff
𝑗 𝜏1,0(𝜒) = 𝑤

eff
𝑗 𝜏0,0(𝜒) − log

(
1 + 1

𝜺𝜏0,0(𝜒, 𝑤eff
𝑗 𝜏0,0(𝜒))

)
+ log

(
1 + 1

𝜺𝜏1,0(𝜒, 𝑤eff
𝑗 𝜏0,0(𝜒))

)
+ 𝑔∗𝜒,𝜏1 (Γ 𝑗) − 𝑔∗𝜒,𝜏0 (Γ 𝑗)︸                                                                                                                                 ︷︷                                                                                                                                 ︸

𝑞𝑤 (𝑤eff
𝑗𝜏0 ,0

(𝜒) |Γ 𝑗 ,𝜏0,𝜏1,𝜒)

.
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Additionally, I can write the change in untreated labor outcomes ℓ 𝑗𝜏1,0(𝜒) − ℓ 𝑗𝜏0,0(𝜒) to be:

ℓ 𝑗 𝜏1,0(𝜒) − ℓ 𝑗 𝜏0,0(𝜒) = log
©«
∫ exp

(
𝛽𝑞𝑤 (𝑤eff

𝑗𝜏0 ,0
(𝜒) |Γ 𝑗 ,𝜏0,𝜏1,𝜒)+𝑎 𝑗𝜒−𝑎 𝑗𝜒∗

)
𝐼𝜏1 (𝛽,𝑋) 𝑓𝛽 |𝜒,𝜏1 (𝛽 |𝜒) 𝑓𝜒,𝜑 |𝜏1 (𝜒, 𝜑)𝑑𝛽∫ exp

(
𝛽′𝑤eff

𝑗𝜏0 ,0
(𝜒)+𝑎 𝑗𝜒−𝑎 𝑗𝜒∗

)
𝐼𝜏0 (𝛽′ ,𝑋) 𝑓𝛽 |𝜒,𝜏0 (𝛽′ |𝜒) 𝑓𝜒,𝜑 |𝜏0 (𝜒, 𝜑)𝑑𝛽′

ª®®®¬︸                                                                                              ︷︷                                                                                              ︸
𝑞ℓ (𝑤eff

𝑗𝜏0 ,0
(𝜒) |Γ 𝑗 ,𝜏0,𝜏1,𝜒)

.

Step 2. Demonstrate that the common trends assumption holds under Assumption I.

To begin, I write down the difference-in-differences estimand in the following way:

DiD𝜏0,𝜏1 (𝑤 |𝜒) =
E

[
ℓ 𝑗 𝜏1 (𝜒) − ℓ 𝑗 𝜏0 (𝜒)

��𝑍 𝑗 = 1, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
]
− E

[
ℓ 𝑗 𝜏1 (𝜒) − ℓ 𝑗 𝜏0 (𝜒)

��𝑍 𝑗 = 0, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
]

E
[
𝑤eff

𝑗 𝜏1
(𝜒) − 𝑤eff

𝑗 𝜏0
(𝜒)

��𝑍 𝑗 = 1, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
]
− E

[
𝑤eff

𝑗 𝜏1
(𝜒) − 𝑤eff

𝑗 𝜏0
(𝜒)

��𝑍 𝑗 = 0, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
]

=

E
[
ℓ 𝑗 𝜏1 (𝜒) − ℓ 𝑗 𝜏0 (𝜒)

��𝑍 𝑗 = 1, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
]
− E

[
ℓ 𝑗 𝜏1 (𝜒) − ℓ 𝑗 𝜏0 (𝜒)

��𝑍 𝑗 = 0, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
]

E
[
𝑤eff

𝑗 𝜏1
(𝜒)

��𝑍 𝑗 = 1, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
]
− E

[
𝑤eff

𝑗 𝜏1
(𝜒)

��𝑍 𝑗 = 0, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
] .

In terms of the potential outcomes in the model, this estimand may be re-written to be:

DiD𝜏0,𝜏1 (𝑤 |𝜒) =
E

[
ℓ 𝑗 𝜏1,1(𝜒) − ℓ 𝑗 𝜏0,1(𝜒)

��𝑍 𝑗 = 1, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
]
− E

[
ℓ 𝑗 𝜏1,0(𝜒) − ℓ 𝑗 𝜏0,0(𝜒)

��𝑍 𝑗 = 0, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
]

E
[
𝑤eff

𝑗 𝜏1,1(𝜒)
��𝑍 𝑗 = 1, 𝑤eff

𝑗 𝜏0
(𝜒) = 𝑤

]
− E

[
𝑤eff

𝑗 𝜏1,0(𝜒)
��𝑍 𝑗 = 0, 𝑤eff

𝑗 𝜏0
(𝜒) = 𝑤

] .

Using the functions 𝑞𝑤 (𝑤eff
𝑗𝜏0,0(𝜒) |Γ 𝑗 , 𝜏0, 𝜏1, 𝜒) and 𝑞ℓ (𝑤eff

𝑗𝜏0,0(𝜒) |Γ 𝑗 , 𝜏0, 𝜏1, 𝜒), I can write:

E
[
𝑤eff

𝑗 𝜏1,0(𝜒)
��𝑍 𝑗 = 1, 𝑤eff

𝑗 𝜏0
(𝜒) = 𝑤

]
= E

[
𝑞𝑤 (𝑤eff

𝑗 𝜏0,0(𝜒) |Γ 𝑗 , 𝜏0, 𝜏1, 𝜒)
��𝑍 𝑗 = 0, 𝑤eff

𝑗 𝜏0
(𝜒) = 𝑤

]
= E

[
𝑞𝑤 (𝑤eff

𝑗 𝜏0,0(𝜒) |Γ 𝑗 , 𝜏0, 𝜏1, 𝜒)
��𝑍 𝑗 = 1, 𝑤eff

𝑗 𝜏0
(𝜒) = 𝑤

]
= E

[
𝑤eff

𝑗 𝜏1,0(𝜒)
��𝑍 𝑗 = 1, 𝑤eff

𝑗 𝜏0
(𝜒) = 𝑤

]
E

[
ℓ 𝑗 𝜏1,0(𝜒) − ℓ 𝑗 𝜏0,0(𝜒)

��𝑍 𝑗 = 0, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
]
= E

[
𝑞ℓ (𝑤eff

𝑗 𝜏0,0(𝜒) |Γ 𝑗 , 𝜏0, 𝜏1, 𝜒)
��𝑍 𝑗 = 0, 𝑤eff

𝑗 𝜏0
(𝜒) = 𝑤

]
= E

[
𝑞ℓ (𝑤eff

𝑗 𝜏0,0(𝜒) |Γ 𝑗 , 𝜏0, 𝜏1, 𝜒)
��𝑍 𝑗 = 1, 𝑤eff

𝑗 𝜏0
(𝜒) = 𝑤

]
= E

[
ℓ 𝑗 𝜏1,0(𝜒) − ℓ 𝑗 𝜏0,0(𝜒)

��𝑍 𝑗 = 1, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
]
.

In both these equations, the second equality directly follows from Assumption I. Next, I write:

DiD𝜏0,𝜏1 (𝑤 |𝜒) =
E

[
ℓ 𝑗 𝜏1,1(𝜒) − ℓ 𝑗 𝜏0,1(𝜒)

��𝑍 𝑗 = 1, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
]
− E

[
ℓ 𝑗 𝜏1,0(𝜒) − ℓ 𝑗 𝜏0,0(𝜒)

��𝑍 𝑗 = 0, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
]

E
[
𝑤eff

𝑗 𝜏1,1(𝜒)
��𝑍 𝑗 = 1, 𝑤eff

𝑗 𝜏0
(𝜒) = 𝑤

]
− E

[
𝑤eff

𝑗 𝜏1,0(𝜒)
��𝑍 𝑗 = 0, 𝑤eff

𝑗 𝜏0
(𝜒) = 𝑤

]
=

E
[
ℓ 𝑗 𝜏1,1(𝜒) − ℓ 𝑗 𝜏1,0(𝜒)

��𝑍 𝑗 = 1, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
]

E
[
𝑤eff

𝑗 𝜏1,1(𝜒) − 𝑤
eff
𝑗 𝜏1,0(𝜒)

��𝑍 𝑗 = 1, 𝑤eff
𝑗 𝜏0

(𝜒) = 𝑤
] .
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Letting Δℓ 𝑗 ,𝜏1 (𝜒) = ℓ 𝑗𝜏1,1(𝜒) − ℓ 𝑗𝜏1,0(𝜒) and Δ𝑤eff
𝑗𝜏1
(𝜒) = 𝑤eff

𝑗𝜏1,1(𝜒) − 𝑤
eff
𝑗𝜏1,0(𝜒), I write:

E
[
Δℓ 𝑗 ,𝜏1 (𝜒)

��𝑍 𝑗 = 1, 𝑤eff
𝑗𝜏0
(𝜒) = 𝑤

]
= E

[
𝜺 𝑗𝜏1 (𝜒) × Δ𝑤eff

𝑗𝜏1
(𝜒)

��𝑍 𝑗 = 1, 𝑤eff
𝑗𝜏0
(𝜒) = 𝑤

]
= E

[
𝜺𝜏1

(
𝜒, 𝑤eff

𝑗𝜏0,0(𝜒)
)
× Δ𝑤eff

𝑗𝜏1
(𝜒)

��𝑍 𝑗 = 1, 𝑤eff
𝑗𝜏0
(𝜒) = 𝑤

]
= 𝜺𝜏1 (𝜒, 𝑤) × E

[
Δ𝑤eff

𝑗𝜏1
(𝜒)

��𝑍 𝑗 = 1, 𝑤eff
𝑗𝜏0
(𝜒) = 𝑤

]
where the second equality uses the fact that 𝜺𝜏1,0(𝜒, ·) is a continuous function of the (log)
wage. Since the TFP shocks are infinitesimal, the difference Δ𝑤eff

𝑗𝜏1
(𝜒) is also infinitesimal

for any firm 𝑗 . By continuity, the difference 𝜺 𝑗𝜏1 (𝜒) − 𝜺𝜏1 (𝜒, 𝑤eff
𝑗𝜏0
(𝜒)) is also infinitesimal.

Thus, from the equation above, I conclude that 𝜺𝜏1 (𝜒, 𝑤) = DiD𝜏0,𝜏1 (𝑤) for any wage 𝑤 ∈ R.
□

C.3. Identification of Technology

Proof of Proposition 3.

Consider two skill types 𝜒 and 𝜒′. For any time period 𝜏 ∈ {𝜏, 𝜏′}, equation (10) implies:

log MPLeff
𝑗𝜏 (𝜒) − log MPLeff

𝑗𝜏 (𝜒′) = log 𝜃 𝑗 𝜒 − log 𝜃 𝑗 𝜒′ − (1 − 𝜌 𝑗 )
[

log 𝐿eff
𝑗𝜏 (𝜒) − log 𝐿eff

𝑗𝜏 (𝜒′)
]
.

Because 𝜌 𝑗 and {𝜃 𝑗 𝜒}𝜒 are fixed over time, the elasticity of substitution may be recovered by
computing inter-temporal shifts in the relative marginal products and effective labor shares:

(1 − 𝜌 𝑗 )−1 =

log
(
𝐿eff
𝑗 𝜏
(𝜒)

𝐿eff
𝑗 𝜏
(𝜒′)

)
− log

(
𝐿eff
𝑗 𝜏′ (𝜒)

𝐿eff
𝑗 𝜏′ (𝜒

′)

)
log

(
MPLeff

𝑗 𝜏 (𝜒)

MPLeff
𝑗 𝜏 (𝜒′)

)
− log

(
MPLeff

𝑗 𝜏′ (𝜒)

MPLeff
𝑗 𝜏′ (𝜒′)

) .
□

Proof of Proposition 4.

I normalize the firm-specific efficiencies {𝜃 𝑗 𝜒}𝜒 by setting 𝜃 𝑗 𝜒∗ = 1 for skill type 𝜒∗ ∈ X.
Under this normalization and given knowledge of 𝜌 𝑗 , these parameters may be computed as:

𝜃 𝑗𝜒 = exp

[
log

(
MPLeff

𝑗 𝜏 (𝜒)
MPLeff

𝑗 𝜏 (𝜒∗)

)
+ (1 − 𝜌 𝑗) log

(
𝐿eff
𝑗 𝜏
(𝜒)

𝐿eff
𝑗 𝜏
(𝜒∗)

)]
.

A firm’s returns to scale and total factor productivity can then be recovered from the effective
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marginal products, the effective labor shares, and (log) value added at the firm. I write:

1 − 𝛼 𝑗 = exp
log MPLeff

𝑗 𝜏 (𝜒) − 𝑦 𝑗 𝜏 − log(𝜃 𝑗𝜒) + (1 − 𝜌 𝑗) log 𝐿eff
𝑗 𝜏 (𝜒) + log

∑︁
𝜒′∈X

𝜃 𝑗𝜒′

(
𝐿eff
𝑗 𝜏 (𝜒′)

)𝜌 𝑗

 .
𝑇𝑗 𝜏 = exp

𝑦 𝑗 𝜏 −
1 − 𝛼 𝑗

𝜌 𝑗

log
∑︁
𝜒∈X

𝜃 𝑗𝜒

(
𝐿eff
𝑗 𝜏 (𝜒)

)𝜌 𝑗

 .
□

C.4. Identification of Non-Wage Amenities

Proof of Proposition 5.

For some firm 𝑗∗, set 𝑎 𝑗∗𝜒 = 0. Under this normalization, the amenities 𝑎 𝑗 𝜒, 𝑗 ≠ 𝑗∗, are:

𝑎 𝑗𝜒 = log 𝐿 𝑗 𝜏

(
𝜒, 𝑤eff

𝑘𝜏 (𝜒)
)
− log 𝐿 𝑗∗𝜏 (𝜒),

where 𝐿 𝑗∗𝜏 (𝜒) is the labor supplied to firm 𝑗∗ by skill type 𝜒 at time 𝜏, and 𝐿 𝑗𝜏
(
𝜒, 𝑤eff

𝑘𝜏
(𝜒)

)
is the labor supplied to firm 𝑗 if it posts the same log effective wage as firm 𝑘 . If the elasticity
curve 𝜺 𝑗𝜏 (𝜒, 𝑤) is known to the researcher, then log 𝐿 𝑗 (𝜒, 𝑤eff

𝑘 𝜒
) may be recovered via:

𝑎 𝑗𝜒 = log 𝐿 𝑗 𝜏 (𝜒) +
∫ 𝑤eff

𝑗∗𝜏 (𝜒)

𝑤eff
𝑗𝜏

(𝜒)
𝜺 𝑗 𝜏 (𝜒, 𝑤)𝑑𝑤 − log 𝐿 𝑗∗𝜏 (𝜒).

Note that Proposition 2 establishes that 𝜺 𝑗𝜏 (𝜒, 𝑤) is point-identified from DiD𝜏0,𝜏1

(
𝑤eff
𝑗𝜏0
(𝜒) |𝜒

)
.
□

C.5. Identification of Worker Preferences

Proof of Proposition 6.

Suppose that the elasticity curve 𝜺 𝑗𝜏 (𝜒, 𝑤) is known to the researcher for skill type 𝜒.
Then the firm-specific labor supply curves {𝐿 𝑗𝜏 (𝜒, 𝑤)} 𝑗 can be recovered through integration:

log 𝐿 𝑗 𝜏 (𝜒, 𝑤) = log 𝐿 𝑗 𝜏 (𝜒) +
∫ 𝑤

𝑤eff
𝑗𝜏

(𝜒)
𝜺 𝑗 𝜏 (𝜒, �̃�)𝑑�̃�.

Each labor supply curve 𝐿 𝑗𝜏 (𝜒, 𝑤) may be expressed as a Laplace transform L{𝑔}(𝑠), where:

L{𝑔}(𝑠) =
∫ ∞

0
𝑔(𝑡) exp(−𝑠𝑡)𝑑𝑡, such that

𝑠 = −𝑤

𝑡 = 𝛽

𝑔(𝑡) =
exp(𝑎 𝑗𝜒)∑𝐽

𝑘=1 exp
(
𝑡𝑤eff

𝑘𝜏
(𝜒) + 𝑎𝑘𝜒

) 𝑓𝛽 |𝜒,𝜏 (𝑡 |𝜒) 𝑓𝜒 |𝜏 (𝜒).
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The transform L{𝑔}(𝑠) is a one-to-one mapping of 𝑔(𝑡). Specifically, any two functions 𝑔(𝑡)
can only share the same Laplace transform if they differ on a set of Lebesgue measure zero.
Therefore, when the elasticity 𝜺 𝑗𝜏 (𝜒, 𝑤) is point-identified, so is the function 𝑔(𝛽), where:

𝑔(𝛽) =
exp(𝑎 𝑗𝜒)∑𝐽

𝑘=1 exp
(
𝛽𝑤eff

𝑘𝜏
(𝜒) + 𝑎𝑘𝜒

) 𝑓𝛽 |𝜒,𝜏 (𝛽 |𝜒) 𝑓𝜒 |𝜏 (𝜒).
If the amenities {𝑎 𝑗 𝜒} 𝑗 are identified up-to-scale, i.e., relative to some reference amenity 𝑎 𝑗∗𝜒,
then the density 𝑓𝛽 |𝜒 (𝛽 |𝜒) is point-identified for any 𝛽-value from the following formula:

𝑓𝛽 |𝜒 (𝛽 |𝜒) = 𝑔(𝛽) ×
∑𝐽

𝑘=1 exp
(
𝛽𝑤eff

𝑘
(𝜒) + �̃�𝑘𝜒 − �̃� 𝑗∗𝜒

)
exp

(
𝑎 𝑗𝜒 − 𝑎 𝑗∗𝜒

)
𝑓𝜒 |𝜏 (𝜒)

.

□

C.6. Details on the Estimation of Firm-Specific Labor Supply Elasticities

In my estimation procedure, I consider the following nonparametric Kernel estimator:

D̂iD𝜏0,𝜏1 (𝑤 |𝜒) =
∑

𝑗 𝐾1, 𝑗 (𝑤)1{𝑍 𝑗 = 1}
(
ℓ 𝑗 𝜏1 (𝜒) − ℓ 𝑗 𝜏0 (𝜒)

)
− ∑

𝑗 𝐾0, 𝑗 (𝑤)1{𝑍 𝑗 = 0}
(
ℓ 𝑗 𝜏1 (𝜒) − ℓ 𝑗 𝜏0 (𝜒)

)∑
𝑗 𝐾1, 𝑗 (𝑤)1{𝑍 𝑗 = 1}

(
𝑤eff

𝑗 𝜏1
(𝜒) − 𝑤eff

𝑗 𝜏0
(𝜒)

)
− ∑

𝑗 𝐾0, 𝑗 (𝑤)1{𝑍 𝑗 = 0}
(
𝑤eff

𝑗 𝜏1
(𝜒) − 𝑤eff

𝑗 𝜏0
(𝜒)

) ,
where I define 𝐾𝑧, 𝑗 (𝑤) to be the Kernel weight for firm 𝑗 with treatment status 𝑧 ∈ {0, 1}.
Examples of kernel functions include the Gaussian and Uniform kernel, defined as follows:

Gaussian: 𝐾𝑧, 𝑗 (𝑤) =
1

√
2𝜋

exp
−

1
2

(
𝑤eff

𝑗 𝜏0
(𝜒) − 𝑤
ℎ

)2 .
Uniform: 𝐾𝑧, 𝑗 (𝑤) =

1
{
𝑤 − ℎ ≤ 𝑤eff

𝑗 𝜏0
(𝜒) ≤ 𝑤 + ℎ

}∑
𝑗 1

{
𝑤 − ℎ ≤ 𝑤eff

𝑗 𝜏0
(𝜒) ≤ 𝑤 + ℎ

} .
In each case, the tuning parameter ℎ determines the bandwidth. As ℎ → 0, I find that:

lim
ℎ→0

D̂iD𝜏0,𝜏1 (𝑤 |𝜒) =
1
𝑁1

∑
𝑗 1{𝑍 𝑗 = 1}

(
ℓ 𝑗 𝜏1 (𝜒) − ℓ 𝑗 𝜏0 (𝜒)

)
− 1

𝑁0

∑
𝑗 1{𝑍 𝑗 = 0}

(
ℓ 𝑗 𝜏1 (𝜒) − ℓ 𝑗 𝜏0 (𝜒)

)
1
𝑁1

∑
𝑗 1{𝑍 𝑗 = 1}

(
𝑤eff

𝑗 𝜏1
(𝜒) − 𝑤eff

𝑗 𝜏0
(𝜒)

)
− 1

𝑁0

∑
𝑗 1{𝑍 𝑗 = 0}

(
𝑤eff

𝑗 𝜏1
(𝜒) − 𝑤eff

𝑗 𝜏0
(𝜒)

) ,
where 𝑁0 =

∑
𝑗 1{𝑍 𝑗 = 0} and 𝑁1 =

∑
𝑗 1{𝑍 𝑗 = 1}. Also, by the weak law of large numbers:

1
𝑁𝑧

∑︁
𝑗

1{𝑍 𝑗 = 𝑧}
(
ℓ 𝑗 𝜏1 (𝜒) − ℓ 𝑗 𝜏0 (𝜒)

) 𝑝
→ E

[
ℓ 𝑗 𝜏1 (𝜒) − ℓ 𝑗 𝜏0 (𝜒)

��𝑍 𝑗 = 𝑧, 𝑤
eff
𝑗 𝜏0

(𝜒) = 𝑤
]
, and:

1
𝑁𝑧

∑︁
𝑗

1{𝑍 𝑗 = 𝑧}
(
𝑤eff

𝑗 𝜏1
(𝜒) − 𝑤eff

𝑗 𝜏0
(𝜒)

) 𝑝
→ E

[
𝑤eff

𝑗 𝜏1
(𝜒) − 𝑤eff

𝑗 𝜏0
(𝜒)

��𝑍 𝑗 = 𝑧, 𝑤
eff
𝑗 𝜏0

(𝜒) = 𝑤
]
,

for 𝑧 ∈ {0, 1}. Furthermore, using the continuous mapping theorem, I obtain the property:

lim
ℎ→0

D̂iD𝜏0,𝜏1 (𝑤 |𝜒)
𝑝
→ DiD𝜏0,𝜏1 (𝑤 |𝜒) as 𝐽 → ∞.
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D. Data Preparation and Robustness Analyses

D.1. Details about the Estimation Sample

Figure A.1 plots the empirical distributions of log wages, log labor, log value added, and
log profits for the main estimation sample. Note that the distribution of log labor is truncated,
as the estimation sample is restricted to firms that maintain at least five full-time employees.

Figure A.1: Empirical Distributions of Wages, Labor, Value Added, and Profits
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Notes. This figure plots histograms of wages, labor, value added, and profits (in logs) for the estimation sample.

Additional Data Sources: External Instruments

Public procurement contracts in Norway are enforced by the Public Procurement Act and
associated regulations. The laws apply to procurement of products, services, and construction
contracts valued at over NOK 100,000, and they cover all public sector entities in Norway. All
public sector procurement is competitive, and procurement auctions are publicly announced
on Doffin.no. The number and scale of announcements depends on the size of each contract.

H. de Frahan et al. (2024) collect data on contract award announcements from Doffin.no
during the period from 2003 to 2018, encompassing over 60,000 announcements. The data
collection process involves three main steps. First, the researchers obtain HTML files through
the Doffin IT department, which contain the full history of contract awards for the specified
period. Second, they employ standard scraping techniques to extract information from these
HTML files. For each contract, various characteristics are collected, including the name of
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the winning firm, the size and date of the contract, and the product specifications. Notably,
the Doffin files do not provide information on the names of losing bidders. Also, for 90% of
the contract award announcements, the entire tax identifier of the winning firm is missing.

In the third step, the researchers utilize a fuzzy string matching procedure, following
Raffo and Lhuillery (2009), to link firm names in the Doffin data with government registers
that include both the names and tax identifiers of all Norwegian firms. This matching process
yields results for approximately 30,000 contracts. The researchers assess the accuracy of the
fuzzy matching procedure by analyzing the 10% of contract awards for which both the name
and tax identifier of the winning firm are available. They find that the algorithm correctly
assigns the tax identifier in 93% of cases. The accuracy of this matching procedure does not
appear to be correlated with contract characteristics, such as the value or number of bidders.

The estimation sample is defined using the same data and following similar protocols as
those used to analyze the internal instrument. Firms are classified as “treated” when they win
their first procurement contracts through Doffin. All firms that receive treatment within the
same calendar year 𝜏 are categorized into a “cohort”. The control group for a given cohort
consists of firms that win their first procurement contract in year 𝜏′ > 𝜏 + 3 or never. Future
winner control firms are drawn from the Doffin data, and never winners are drawn from the
full firm sample. Just as with the main sample, the data is restricted to full-time workers and
firms that remain operational, maintaining at least five employees, for nine consecutive years.
In total, the Doffin sample is composed of 25,714 unique firms and 901,811 unique workers.

D.2. Robustness Analyses

The first set of robustness analyses replicates the main IV estimates presented in Figure 4
of the paper using alternative specifications. In Figure A.2, I show a version of the estimates
that exclude market fixed effects, effectively treating Norway as one single labor market. In
Figure A.3, I report estimates based on a restricted sample where firms only operate a single
establishment. In Figures A.4 and A.5, I show estimates computed using different types of
Kernel estimators—Uniform and Epanechnikov kernel functions, respectively. In Figure A.6,
I provide estimates for a restricted sample of firms with market shares below the median in
their local labor markets. Note that these estimates aim to address potential concerns about
firms leveraging their market shares to compete strategically for workers. Finally, in Figure
A.7, I present estimates calibrated using the external instruments described in Appendix D.1.

These exercises reveal that the main IV estimates are robust to specification changes. In
particular, restricting the sample to firms with a single establishment or below-median market
shares does not significantly affect the results. Additionally, alternative types of estimators,
including the nonparametric binning estimator with a Uniform Kernel, yield similar estimates.
Furthermore, all the estimates remain relatively stable with and without market fixed effects.
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Figure A.2: IV Estimates of Labor Supply Elasticities—No Market Fixed Effects
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Notes. This figure presents IV estimates of firm-specific labor supply elasticities, excluding market fixed effects.
Otherwise, the estimates are based on the same specification choices used to generate Figure 4 in the main text.

Figure A.3: IV Estimates of Labor Supply Elasticities—Single-Establishment Firms
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Notes. This figure plots IV estimates of firm-specific labor supply elasticities with the sample restricted to firms
with one establishment. Aside from this change, all other specifications are unchanged, aligning with Figure 4.
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Figure A.4: IV Estimates of Labor Supply Elasticities—Uniform Kernel Estimator
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Notes. This figure plots IV estimates of firm-specific labor supply elasticities using a Uniform Kernel estimator.
Otherwise, the estimates are based on the same specification choices used to generate Figure 4 in the main text.

Figure A.5: IV Estimates of Labor Supply Elasticities—Epanechnikov Kernel Estimator
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(d) College, 10+ Years Experience

Notes. This figure plots IV estimates of firm-specific labor supply elasticities using an Epanechnikov Kernel
estimator. Otherwise, the estimates rely on the same specifications used to generate Figure 4 in the main text.
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Figure A.6: IV Estimates of Labor Supply Elasticities—Small Market Shares

0.0

2.5

5.0

7.5

10.6 10.8 11.0 11.2
Effective Log Wage at Firm

La
bo

r 
S

up
pl

y 
E

la
st

ic
ity

(a) No College, <10 Years Experience

0

3

6

9

10.8 11.1 11.4
Effective Log Wage at Firm

La
bo

r 
S

up
pl

y 
E

la
st

ic
ity

(b) College, <10 Years Experience

0.0

2.5

5.0

7.5

10.75 11.00 11.25
Effective Log Wage at Firm

La
bo

r 
S

up
pl

y 
E

la
st

ic
ity

(c) No College, 10+ Years Experience

0.0

2.5

5.0

7.5

11.0 11.2 11.4 11.6
Effective Log Wage at Firm

La
bo

r 
S

up
pl

y 
E

la
st

ic
ity

(d) College, 10+ Years Experience

Notes. This figure plots IV estimates of firm-specific labor supply elasticities with the sample restricted to firms
with below-median market shares. Otherwise, all other specifications are unchanged and align with Figure 4.

Figure A.7: Calibrated Estimates for External Instruments
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Notes. This figure plots the reduced form estimates for the external instrument, averaged across skill types and
years. The point estimates and standard errors in the first two figures come from H. de Frahan et al. (2024). The
bottom two figures show the estimated firm-specific labor supply elasticities calibrated to my framework. Note
that elasticities are measured at the firm level, and they do not account for skill differences between workers.
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The estimates calibrated using external instruments are not directly comparable to those
presented in Figure 4 due to differences in specification choices between the two papers. In
addition to imposing different sample restrictions, H. de Frahan et al. (2024) do not account
for skill differences among workers. Rather, they estimate wage and employment responses
to the instrument using aggregate firm-level measures, such as average wages and total labor.
Additionally, these wage and labor responses are estimated at the firm level rather than at the
establishment level. Perhaps even more importantly, their DiD estimators for computing wage
and employment responses differ from mine. Whereas I control for a firm’s initial effective
wages, the estimator used by H. de Frahan et al. (2024) controls for a firm’s initial labor
share. This approach would be invalid under my framework, as I allow for the possibility that
two firms with identical labor shares face different labor supply elasticities. Taken together,
these differences in methodology could lead to notable variations in the IV estimates.

Despite these differences, when I calibrate my model using the wage and labor responses
estimated by H. de Frahan et al. (2024), I observe a pattern that closely aligns with the main
IV estimates in my paper. Specifically, I find that labor supply elasticities vary significantly
across firms, with higher elasticities being associated with higher average wages at the firm.
Any discrepancies between the two sets of estimates may attributed to the specification
differences outlined above. Yet, it is reassuring that the same patterns emerge in both cases.

The second set of robustness analyses are misspecification tests. First, I test whether the
internal instrument 𝑍 impacts labor on the intensive margin by influencing work hours. I find
that there is no significant effect. Next, I test whether the IV estimates (averaged across years,
firms, and skill types) differs between firms with below-median and above-median market
shares in their local labor market. I find no significant market share effect, which supports
my assumption that firms do not internalize their market shares when setting workers’ wages.

Table A.1: Two Misspecification Tests

Effect of 𝑍 on Work Hours Market Share Effect

Estimated Effect 𝑝-value Estimated Effect 𝑝-value

Market FEs -0.011 0.105 -0.380 0.311
(0.007) (0.773)

No Market FEs -0.003 0.624 -0.073 0.462
(0.007) (0.774)

Notes. This table presents two misspecification tests. The first two columns report the estimated effect of 𝑍
on worker’s scheduled hours. The third and fourth columns report the effect of having an above-median local
market share on the labor supply elasticities. Both tests are conducted with and without market fixed effects.
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D.3. Additional Tables and Figures

This Appendix section provides additional tables and figures that are not included in the
main text of the paper. In Figure A.8, I plot the estimated distributions of worker skill levels,
disaggregated by college attainment and experience. In Figure A.9, I plot the IV estimates
for my main specification, averaged across all years and skill types. In Figure A.10, I plot the
estimated distributions of worker and firm rents across firms in the main estimation sample.

Figure A.8: Estimated Distributions of Worker Skill Levels
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Notes. This figure plots the the estimated distributions of worker skill levels by college attainment and experience.

Figure A.9: Average IV Estimates by Effective Wage
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(b) Implied Labor Wedge at Firm
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Notes. This figure plots firm-specific labor supply elasticities and labor wedges, averaged across all subgroups
and years. Market fixed effects are included. All standard errors are bootstrapped using 500 bootstrap samples.
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Figure A.10: Estimated Distributions of Worker and Firm Rents
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Notes. This figure plots the distributions of estimated firm rents and estimated average worker rents at a firm.
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