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Abstract

We modify the classic linear supply and demand system to allow for the coeffi-
cients on price to be unobservable random variables that vary across heterogeneous
markets. Known conditions for point identification place strong requirements on the
available instruments. We show how to construct and estimate bounds on scalar target
parameters that are valid for any type of instrument, or even with no instrument at
all. Numerical simulations calibrated to a well-known data set show that the model is
not point identified. However, the bounds can be remarkably informative even under
limited instrument variation. We apply our approach to study the welfare effects of
sales tax.

1 Introduction

Consider the classic linear supply and demand system

Qi = bd1 + bdpPi + Z ′ib
d
z + Udi (demand)

Qi = bs1 + bspPi + Z ′ib
s
z + U si (supply), (1)

where i indexes a market, Qi is quantity, Pi is price, and Zi are a set of covariates and/or

shifters, some of which are usually assumed to enter with zero coefficients in either

supply or demand as an exclusion restriction. This model treats the slopes of supply

and demand, bsp and bdp, as constant (deterministic) parameters that are homogeneous

across markets. In this paper, we analyze a random coefficient generalization of this

model in which the slopes bsp and bdp are replaced by random variables Bs
p,i and Bd

p,i
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that are heterogeneous across markets due to factors unobservable to the researcher.

Heterogeneity of this sort can arise naturally from spatial or temporal variation in

the prices of alternative goods, tax and benefit structures, and unobserved consumer

background characteristics, among many other reasons.

Masten (2018) studied identification and estimation in a class of simultaneous equa-

tions models that includes the random coefficient supply and demand model we analyze.

He showed that the marginal distributions of the random coefficients are point identi-

fied if there is a continuous instrument with large support, or a continuous instrument

with bounded support under some additional tail restrictions on the distribution of

random coefficients. He also provided several negative non-identification results which

show that continuous instrument variation is necessary for point identification, and

that the joint distribution of random coefficients is fundamentally not point identified,

even with large support instruments. See also Hoderlein et al. (2017) for similar nega-

tive results in a triangular random coefficient model. These results raise the question

of how much can be learned in other settings, such as with discrete instruments, and

how much can be learned about target parameters, such as welfare measures, which

depend on the joint distribution of supply and demand coefficients.

We answer these questions by allowing for partial identification. We develop an

approach for estimating sharp bounds on scalar functions of the joint distribution of

random coefficients. The approach uses a linear basis expansion for the density of the

underlying random coefficients. Such an expansion provides the researcher the flexi-

bility to consider anything from a tightly specified parametric model to an extremely

expressive model that becomes nonparametric as the number of terms in the basis

expansion increases. Computing the estimator involves solving a sequence of convex

linearly-constrained quadratic programming problems, so is feasible in high dimensions

and with typical sorts of covariate specifications.

We first use this approach to study the empirical content of the random coefficients

model in a numerical simulation calibrated to the well-known Fulton fish market data

used by Angrist et al. (2000). The two stage least squares estimand is dramatically

smaller than the average of the random coefficient on price in the demand equation. It

also provides no guidance about interesting policy counterfactuals, such as the impact

on consumer surplus of a marginal tax increase. By contrast, we show that bounds on

the average of the price coefficient in the demand equation, as well as bounds on many

other interesting target parameters, are informative and often quite tight, even when

using an extremely flexible basis for the density of random coefficients. The implication

is that the model and data together contain considerable information about the types

of objects that a researcher would be interested in, but that one needs to consider
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partial identification in order to extract this information.

Our paper builds on a classic econometric literature about the simultaneity problem.

Analysis of the linear, constant coefficient model was heavily developed in the classical

Cowles foundation work of the 1940s and 1950s (e.g. Koopmans et al., 1953). There

is a large literature on linear random coefficient models with exogenous variables (e.g.

Beran and Hall, 1992; Hoderlein et al., 2010; Lewbel and Pendakur, 2017; Gaillac and

Gautier, 2022; Hermann and Holzmann, 2024). There is also a sizable literature with

endogenous variables but triangular systems (e.g. Heckman and Vytlacil, 1998; Masten

and Torgovitsky, 2016; Hoderlein et al., 2017), but triangular systems have been shown

to be incompatible with simultaneity (Blundell and Matzkin, 2014). However, there

are only four papers that allow for both random coefficients and simultaneity: Hurwicz

(1950), Kelejian (1974), Hahn (2001), and Masten (2018). As Masten (2018) discusses,

Hurwicz (1950) pointed to the importance of random coefficients, but did not provide

any identification results, while Kelejian (1974) and Hahn (2001) conducted analyses

that imposed self-contradictory assumptions.

Our work is most related to Masten (2018), who provided several novel nonpara-

metric point identification results with continuous instruments, as well as several novel

non-identification results which show that continuity in the instrument is essential for

point identification. Our contribution is to consider partial identification, although our

framework nests point identification as a special case. The approach we consider allows

for any type of instruments and both parametric and nonparametric specifications of

the random coefficient distribution.

The linear random coefficient model is an example of a nonseparable model—a

model in which the unobservables do not enter in an additively separable fashion.

Matzkin (2008, 2015) and Berry and Haile (2018) provided identification results for

nonseparable, nonparametric models that generalize the constant coefficient model in

two ways: by relaxing linearity in price, and by allowing for nonseparability. The class

of models they consider have one unobservable per endogenous variable, while the ran-

dom coefficients model has at least two unobservables per endogenous variable. The

two classes of models are not nested. We find that the additional dimensions of het-

erogeneity in the random coefficients model are useful for motivating microfoundations

from traditional functional forms (see Section 2.2). They can also help accommodate

empirical challenges, such as potential measurement error, or omitted but exogenous

variables, which can be difficult to rationalize through a single unobservable.

Leamer (1981) and Manski (1995, 1997) also considered partial identification in si-

multaneous equations models. Leamer (1981) focused on a constant coefficients frame-

work with no instrument, whereas we allow for random coefficients and instruments.
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Manski (1995, 1997) considered the identifying content of assuming that demand slopes

downward while allowing for completely general forms of nonlinearity and heterogene-

ity. Manski (1995, 1997) did not consider instruments, but they could be exploited

using the results of Manski and Pepper (2000), who did not consider the simultaneity

problem explicitly. Our focus on a linear random coefficients model entails consider-

ably stronger functional form assumptions, which allows us to scale up our approach

to a typically-sized empirical application and produces much tighter bounds.

In the next section, we define and microfound the random coefficients model. In

Section 3, we revisit some results from Angrist et al. (2000) on interpreting linear IV

estimators when the constant coefficient model is misspecified and the actual model has

random coefficients. We extend several of their results, using the discussion to motivate

the need for introducing our new approach. In Section 4, we discuss the identification

problem, abstracting from statistical uncertainty in the distribution of observables,

and report the results of numerical simulations that show how partial identification

arises with limited instrument variation. We then propose a computationally-tractable

estimator in Section 5. In Section 6, we apply our methodology to study the consumer

surplus incidence of sales taxes. Section 7 contains a brief conclusion.

2 Linear Supply and Demand with Random Coefficients

In this section, we formally define the model, notation, and assumptions that we use

throughout the paper. We provide economic microfoundations that motivate the con-

sideration of random coefficients. We discuss natural target parameters and their

relationship to the random coefficient distribution.

2.1 Random coefficients model

We write the random coefficients generalization of (1) as

Q = Z ′Bd
z − hd(P )′Bd

p (demand)

Q = Z ′Bs
z + hs(P )′Bs

p (supply), (2)

where B ≡ (Bd
z , B

d
p , B

s
z , B

s
p) is an unobserved vector of random coefficients, hd and

hs are known, vector-valued functions, P and Q are observed equilibrium price and

quantity, and Z is a vector of observed exogenous covariates and/or instruments that

includes a constant term. Quantity and/or price could be measured in levels or logs, but

we keep this implicit in the notation until it becomes relevant. The additive residual

and constant terms in the classical model (1) have been combined into the component
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of the random coefficients Bd
z and Bs

z that corresponds to the constant term of Z. We

suppress the market subscript i until considering estimation in Section 5.

We assume throughout that p 7→ hd(p)′Bd
p and p 7→ hs(p)′Bs

p are always increasing

functions of p, so that demand slopes down and supply slopes up. This implies that at

most one (P,Q) pair can satisfy (2). We further assume that the demand and supply

curves always intersect, so that an equilibrium exists and there is always exactly one

(P,Q) pair that satisfies (2). For any realization of (B,Z), let εp(B,Z) and εq(B,Z)

denote the equilibrium price and quantity, so that the reduced form equations are:

P = εp(B,Z) and Q = εq(B,Z). (3)

In the leading case that hd(p) = p and hs(p) = p are linear functions of p, the reduced

form equations have a simple closed form:

P = Z ′
(
Bd
z −Bs

z

Bd
p +Bs

p

)
and Q = Z ′

(
Bs
pB

d
z +Bd

pB
s
z

Bd
p +Bs

p

)
. (4)

In more general cases, εp and εq may need to be computed numerically. This does

not create any additional conceptual problems for our partial identification analysis in

Section 4, although it does add to the computational challenge.

Masten (2018) observed that the moments of the reduced form equations might not

exist when the coefficients on price are random. In the supply and demand setting

with linear functions of price and reduced form (4), this could happen if Bd
p and/or

Bs
p have densities that put a large amount of mass near zero. Most of our analysis

is based on distribution functions, so does not depend on the existence of reduced

form moments. In cases where it does, we assume without further mention that the

appropriate moments exist.

We maintain the exogeneity condition that Z is independent of B. Exclusion restric-

tions will be imposed by assuming that certain components of Bd
z or Bs

z are constant

and equal to zero. For example, assuming that the third component of Bd
z is zero would

imply that Z3 is a supply shifter, an assumption which would traditionally be used to

estimate a constant demand slope bdp in the classical model. Other components of Z

may have non-zero coefficients in both Bd
z and Bs

z , in which case these variables can

be interpreted as covariates.
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2.2 Microfoundations

In this section, we show how the random coefficients system (2) can be motivated

from the choices of consumers and firms. We focus on a linear example, though other

known functional forms of deterministic functions hd and hs in (2) can be similarly

micro-founded.

The first proposition provides conditions on consumer preferences that lead to a

linear market demand with heterogeneous coefficients. The second proposition provides

conditions on a firm’s production function that lead to linear market supply with

heterogeneous coefficients. Proofs for both propositions are in Appendix A.

Proposition 1 (Demand). Consider a set J of consumers indexed by j in a single

market. Each consumer has preferences over quantities of a numeraire q0,j and a focal

good qj given by

Uj (q0,j , qj) =

{
q0,j + ξjq

χ
j − γj if qj > 0

q0,j if qj = 0
, (5)

where 0 < χ < 1 measures the concavity of the sub-utility over the focal good, ξj > 0

is the relative weight of the focal good, and γj is a disutility shock from consuming

any positive amount of the product, for example due to a fixed transaction cost. Let

N(ξ) denote the mass of consumers of type ξj = ξ, and suppose that γj is distributed

independently of ξj according to the Pareto distribution:

F (γ) =


(
γ
γ

)ψ
if γ ≤ γ

0 if γ > γ
.

Each consumer chooses qj to maximize utility subject to budget constraint q0,j +Pqj =

yj where yj is individual income, P is the price of the focal good, and the price of the

numeraire is normalized to one. Then

log(Q) = Bd
z −Bd

p log(P )

where Bd
z ≡ log

(
χ

1+ψχ
1−χ

(
1− χ
γ

)ψ ∫
ξ

1+ψ
1−χN (ξ) dξ

)
and Bd

p ≡
1 + ψχ

1− χ
.

Proposition 1 gives one example of how a market demand equation that is linear in

the logarithms of price and quantity can be derived from individual consumer behavior.

The parametric assumptions are strong and stylized. The point of the proposition is

not that one should necessarily embrace these assumptions. Instead, it is that even

if one maintains these assumptions, the intercept and slope of the resulting demand
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curve will depend on preference parameters that are likely to vary across markets.

In Proposition 1, the slope coefficient depends on utility parameters χ and ψ that

characterize how preferences differ across individuals. While consumer theory provides

a characterization of how individual consumers with these preferences will behave,

it provides no restriction on how these preference parameters vary across markets

composed of different consumers.

Proposition 2 (Supply). Suppose that each market is characterized by a represen-

tative firm that produces output of the focal good in Proposition 1 using labor L and

capital K through a Cobb-Douglas production function:

F (K,L) ≡ AKagL(1−a)g,

where A is total factor productivity, 0 ≤ a ≤ 1 is capital intensity, and g ≤ 1 measures

returns to scale. Total cost is given by

C (K,L) ≡ w0
KK

1+bK + w0
LL

1+bL ,

where bK , bL ≥ 0 allow input costs to increase with the use of each input. Suppose that

the firm takes the output price as given and chooses inputs to maximize profit. Then

log(Q) = Bs
z +Bs

p log(P )

where Bs
z ≡ ιs(a, g, bK , bL, A,w0

K)

and Bs
p ≡

g [a(1 + bK) + (1− a)(1 + bL)]

(1 + bK)(1 + bL)− g [a(1 + bK) + (1− a)(1 + bL)]
.

where ιs is a complicated function whose expression is given in the appendix.

Proposition 2 gives a supply-side counterpart to Proposition 1. The parametric

assumptions are again strong and stylized, but the point is that even under these

assumptions, the coefficient on price will depend on parameters that characterize both

the production function and the input market. If the structure of the production

function or input market differ across product markets, then the supply equation will

have random coefficients. Differences in the structure of the input market elasticities

in particular could be caused by differences in monopsony power or taxes.

2.3 Counterfactuals and target parameters

The marginal distributions of Bd
p and Bs

p control how supply and demand would change

if there were exogenous shocks to one side of the market. If P and Q are specified in
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levels and (2) is assumed to be linear (hd(P ) = hs(P ) = P ), then the average effect

over markets of a supply-driven shock that increases price by a known fixed amount

∆P in all markets is E[∆Q] = −E[Bd
p ]∆P . The marginal distributions of Bd

p and

Bs
p can also be used to determine the excess supply created by imposing a binding

price floor. Masten (2018) provided positive point identification results for marginal

distributions that could be used to identify target parameters that summarize these

types of counterfactuals, although the conditions require a continuous instrument.

For most counterfactuals, the relevant target parameters depend on the joint dis-

tribution of random coefficients, not just the marginals. In Section 6, we model Q and

P in logs, and our primary counterfactual of interest is a change in the ad valorem

sales tax, either by a marginal or discrete amount. For a marginal increase, the corre-

sponding change in average log quantity and average log price are determined by the

relative supply and demand elasticities:

E [∆Q] = −E

[
Bd
pB

s
p

Bd
p +Bs

p

]
and E [∆P ] = −E

[
Bd
p

Bd
p +Bs

p

]
. (6)

These averages depend on the joint distribution of Bd
p and Bs

p. Masten (2018) shows

that this joint distribution is fundamentally not point identified without additional

parametric assumptions. In fact, even in the classical, constant coefficient case, the

dependence of these quantity and price responses on both the supply and demand slopes

means that both supply and demand shifters would be necessary for point identification.

These observations motivate the partial identification approach developed in Section

4, which gets around both Masten’s negative result and the classical requirement of

having shifters for both sides of the market.

In our application, we also consider standard welfare counterfactuals related to

either a marginal or discrete sales tax change. Assuming there are no income effects,

these counterfactuals can often be summarized through target parameters that depend

only on the market level supply and demand curves (e.g. Harberger, 1964; Chetty,

2009). However, they are complicated functions of the joint distribution of random

coefficients. For example, in Appendix B, we show that the average relative consumer

surplus impact (the incidence) of a marginal tax increase is given by

inc = E

[
(1 + t)Bs

p

(1 + t)Bs
p(1 + t) +Bd

p

]
, (7)

where t is the existing tax rate, assuming (for simplicity), that it is the same across

markets. As another example, we also show in Appendix B that the average ratio of
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deadweight loss to revenue increased from a marginal tax increase is given by

dwl = E

[
tBd

pB
s
p

Bd
p +Bs

p + t
(
1−Bd

p

)
Bs
p

]
. (8)

Expressions for the consumer surplus and deadweight loss impacts of a discrete tax

increase, which are considerably more complicated, are also derived in Appendix B.

The partial identification approach that we develop is computational, which makes

it applicable to these and other target parameters, even despite their complicated

dependence on the distribution of random coefficients.

3 Interpreting Linear IV Estimators

The traditional identification result for the classical linear model with constant co-

efficients is that the coefficients in the demand equation are identified if there is an

excluded, exogenous, and relevant supply shifter that can be used as an instrument

for price (see, for example Manski, 1995, Chapter 6). Angrist et al. (2000, Corollary

2) considered the interpretation of the IV estimand when the data is generated by a

model with random coefficients. They analyzed the special case of a binary excluded

supply shifter with no covariates. In this section, we extend their analysis to allow

for a vector of any type of discrete or continuous instruments, as well as a vector of

covariates.

Let βtsls denote the two stage least squares estimand with outcome variable Q,

endogenous variable P , and Z ≡ (Z1, Z2) divided into excluded variables (instruments),

Z1, and included covariates, Z2. An application of the Frisch-Waugh Theorem shows

that

βtsls =
E[Q(Ṗ −L[Ṗ |Z2])]

E[P (Ṗ −L[Ṗ |Z2])]
, (9)

where L[·|·] denotes the linear projection (population fitted values) from regressing the

first argument onto the second, so that Ṗ ≡ L[P |Z] are the population fitted values

from regressing P onto Z. The first proposition shows that βtsls will be a weighted

average of the demand slope if Z1 are supply shifters that are excluded from the demand

equation.

Proposition 3. Suppose that hd(P ) = P and hs(P ) = P . Divide Z = (Z1, Z2) and

assume that Bd
z = (0, Bd

z2), so that Z1 correspond to excluded supply shifters. Let

Z̃1 ≡ Z1 − L[Z1|Z2] denote the population residuals from a linear regression of each
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component of Z1 onto Z2. Then

−βtsls = E
[
Bd
pW
]

where W ≡ E

[
Bs
z1

Bd
p +Bs

p

∣∣∣Bd
p

]′
E[Z̃1Z̃

′
1δ1]

E[(Z̃ ′1δ1)2]
, with δ1 ≡ E

[
Bs
z1

Bd
p +Bs

p

]
.

The weights W satisfy E[W ] = 1.

Note that the interpretation in Proposition 3 is for −βtsls rather than βtsls simply

because of our normalization in (2) that Bd
p is non-negative.

Blandhol et al. (2022) show that linear IV estimands for specifications that include

covariates will not in general be equal to a weighted average of causal effects unless

L[Z1|Z2] = E[Z1|Z2]. Proposition 3 shows that the random coefficients structure

breaks this necessary condition, ensuring that βtsls is a weighted average of Bd
p with

weights that sum to one. However, the weights can be negative. The next proposition

provides two sufficient conditions for the weights to be non-negative.

Proposition 4. Suppose that the conditions of Proposition 3 are satisfied. Then

P[W ≥ 0] = 1 if either

(a) Z1 is scalar and either P[Bs
z1 ≥ 0] = 1 or P[Bs

z1 ≤ 0] = 1.

(b) Bs
z1 is independent of (Bd

p , B
s
p).

The first condition in Proposition 4 is the same as in Angrist et al. (2000, Corollary

2). The assumption that Bs
z1 takes a single sign is what those authors refer to as the

monotonicity condition. Requiring Z1 to be scalar is important for the monotonicity

condition to reflect a sensible ordering (Mogstad et al., 2021). The second condition

in Proposition 4 allows Z1 to be a vector. It replaces the monotonicity condition with

the assumption that the impact of the supply shifter is independent of the supply and

demand slopes.

Weighting results like Proposition 4 are commonly found in reverse engineering dis-

cussions of linear IV with heterogeneous treatment effects (e.g. Angrist and Pischke,

2009; Mogstad and Torgovitsky, 2024). Their attraction is in ensuring that if the un-

derlying causal effect has the same sign for all units, then the IV estimand also has that

same sign. In the supply and demand context, the underlying “causal effect” of price

on demand is already assumed to be non-negative, so it is unclear what can be learned

by this type of weighting result. Knowing that the IV estimand is a non-negative

weighted average in only helpful insomuch as it implies that obtaining a negative IV

estimand is due to some deficiency of the underlying assumptions rather than some
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Figure 1: Supply shifts lead to a larger price change when demand is more inelastic and vice versa.
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unattractive quirk of the IV estimand itself. It is not helpful for making constructive

statements about magnitude.

One way to see this point is to sign the IV estimand relative to an interpretable

feature of demand, such as the average slope, E[Bd
p ]. For the binary instrument case,

Angrist et al. (2000, pg. 507) noted that if the coefficients in the supply equation

on price and the excluded instrument are both constant, then βtsls is smaller than the

average slope of demand, E[Bd
p ]. The next proposition shows that this conclusion holds

in considerably more generality.

Proposition 5. Suppose that the conditions of Proposition 3 are satisfied. Then

−βtsls = E[Bd
p ] + C[Bd

p ,W ]. (10)

Suppose further that condition (b) of Proposition 4 is satisfied. Then −βtsls ≤ E[Bd
p ] if

and only if

C

[
Bd
p ,

1

Bd
p +Bs

p

]
≤ 0. (11)

In particular, (11) is satisfied under either of the following two conditions:

(a) E[Bd
p | Bs

p] = E[Bd
p ].

(b) E[(Bd
p +Bs

p)
−1 | Bd

p = bdp] is a weakly decreasing function of bdp.

The intuition behind Proposition 5 can be seen with the aid of a standard Mar-

shallian cross. The left side of Figure 1 shows the impact of an additive supply shift

on the equilibria of two markets with the same supply curve but different demand
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curves. In both markets the shift leads equilibrium prices to increase and equilibrium

quantities to decline. Prices change more in the less elastic market because quantity

demanded in that market declines less rapidly as price increases. This means that the

instrument (supply shifter) has a larger impact on the endogenous variable (price) in

markets with more inelastic demand, leading these markets contribute more to the

statistical weighting used by the IV estimator.

This reasoning depends on the slope of supply as well. The right side of Figure 1

shows the same additive supply shift in two markets with the same demand curve but

different supply curves. Prices again change more in the market with less elastic supply

because prices need to increase more to restore equilibrium quantity. Together, Figure

1 shows that markets that are more inelastic—both in supply and demand—receive

larger weight in the IV estimand.

If markets that have highly inelastic demand also tend to have highly elastic sup-

ply, so that Bd
p and Bs

p are strongly negative dependent, then it’s possible for the IV

estimand to overstate the average demand slope. The condition given in Proposition

5 quantifies how strong this negative dependence needs to be.

All of this reasoning implicitly depends on the size of the supply shifts Bs
z1 being

independent of the price elasticities in different markets, or at least, larger in more

inelastic markets. If the supply shocks have a systematically larger impact in more

elastic markets, then the relationship of the IV estimand to the average slope of demand

becomes ambiguous.

Proposition 5 illustrates an important difference between simultaneous linear mod-

els with random coefficients and their simpler, triangular counterparts. The triangular

model would replace the supply equation (for example) in (2), with an equation like

P = Z ′B̃ for random coefficients B̃. Heckman and Vytlacil (1998) observed that if the

component of B̃ corresponding to the excluded instrument is in fact constant, then

the linear IV estimand is equal to the average partial effect of the endogenous variable

on the outcome. Proposition 5 shows that this type of reasoning no longer applies

when there is simultaneity. The reason is that the coefficient on the instrument in the

reduced form for price is still heterogeneous due to heterogeneity in the slope of the

demand equation. In this way, simultaneity with random coefficients can be interpreted

as fundamentally creating “essential heterogeneity” in the language of Heckman et al.

(2006).

To get a sense of the magnitudes involved in Proposition 5, we fit a data generating

process (DGP) to the Fulton fish market data used by Angrist et al. (2000). We

discuss the details of how we constructed the DGP in Section 4.4, where we also

use it to compute bounds on some of the target parameters discussed in Section 2.3.
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Figure 2: The TSLS estimand is smaller than the average demand slope.
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Figure 2 shows the linear IV (TSLS) estimand and the average slope of demand in this

DGP together with the underlying weights on the heterogeneity demand slope that

determine these quantities. The linear IV estimand is less than half the size of the

average coefficient on demand, consistent with the intuition supported by Proposition

5. This is due to the weights for the IV estimand overweighting markets that are highly

inelastic. These results suggest that the linear IV estimand is not a particularly useful

measure of the average slope of demand.

4 Partial Identification

In this section, we develop an approach for computing identified sets of a general class

of target parameters. For the identification analysis we assume that we know the

population joint distribution of (P,Q) conditional on Z. This analysis forms the basis

of the estimation procedure in the next section, in which we observe only a finite sample

from the population distribution.

4.1 The identified set

The random coefficients model is fully parameterized by the distribution of B. Let F

denote the cumulative distribution function of B. Let F denote the set of distribution

functions F that satisfy the researcher’s prior assumptions.
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Each distribution F implies a conditional distribution of (P,Q) given Z via the

reduced form relationship (4):

g(p, q, z;F ) ≡
∫

1[εp(b, z) ≤ p, εq(p, z) ≤ q] dF (b), (12)

where the integration is of the Lebesgue-Stieltjes type. Denote the actual conditional

distribution of price and quantity as

g(p, q, z) ≡ P[P ≤ p,Q ≤ q|Z = z].

The identified set for F is then defined as

F? ≡ {F ∈ F : g(p, q, z;F ) = g(p, q, z) for all (p, q) and almost every (a.e.) z} ,

that is, as the set of all distributions F that both satisfy the researcher’s assumptions

and reproduce the distribution of the observed data.

The researcher’s target parameter is a scalar-valued functional τ : F → R that

maps each F into a single summary quantity of interest. Any of the target parameters

discussed in Section 2.3 can be chosen as τ . The identified set for the target parameter

is defined as the image of F? under τ :

T ? ≡ τ(F?) = {t ∈ R : t = τ(F ) for some F ∈ F?} . (13)

The smallest and largest elements of T ? can be expressed as the solutions to two

optimization problems

τ?lb (τ?ub) ≡ min (max)
F∈F

τ(F ) s.t. g(p, q, z;F ) = g(p, q, z) for all (p, q), a.e. z. (14)

The optimal values are sharp bounds in the sense that [τ?lb, τ
?
ub] is the smallest closed

interval that contains T ?.
Masten (2018) provided several novel point identification results for simultaneous

equations models with random coefficients. All of his positive results require the in-

strument to have jointly continuous support, and some of them require the instruments

to have positive support on the entire real line (“large support”). Masten (2018) also

provided several negative non-identification results which show that this type of con-

tinuous variation is necessary for point identification. For example, using a continuous

variable and its square as an instrument leads to a failure of point identification even

for the reduced form coefficients (Masten, 2018, Corollary 1). The joint distributions
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of the random coefficients are also not point identified even when the instruments have

large support (Masten, 2018, Theorem 4). This suggests that target parameters which

depend on both supply and demand, such as welfare measures, will also fail to be point

identified even under extremely strong conditions on the instruments. Taken together,

Masten’s findings suggest that point identification of interesting target parameters is

rarely obtained with random coefficients.

Failure of point identification does not mean that the model does not admit useful

bounds on interesting target parameters. Our characterization of the sharp bounds

in (14) recognizes this possibility, allowing for the instrument to have any type of

support while still permitting point identification as a special case. Instruments with

richer supports create more equality constraints in (14) and thus necessarily reduce

the width of the identified set. Greater instrument variation is rewarded in the form

of tighter bounds, but is not required to proceed with the empirical analysis.

4.2 Computing identified sets

To make computing (14) tractable, we assume that the set of random coefficient dis-

tributions considered by the researcher can be parameterized as

F =

F : F (b) =

dφ∑
k=1

φkFk(b;α) for some (φ, α) ∈ ΦA

 , (15)

where {Fk(b;α)}dφk=1 are a collection of known basis functions. There are two param-

eters in this specification: a linear parameter, φ, which takes values in a known set

Φ ⊆ Rdφ , and a nonlinear parameter, α, which takes values in a known set A ⊆ Rdα .

The distinction between these two parameters is important for computation. The set

ΦA ⊆ Rdφ+dα is possibly a proper subset of Φ×A to allow for the feasible set of φ to

depend on α, a generality we will need in Section 4.3.

The specifications we consider will be such that each Fk(·;α) is a distribution func-

tion for each fixed α. This means that for fixed α, F is a mixture distribution over Fk

with mixing weights φk. We will often take dφ to be large, so that these mixtures are

quite flexible. This allows us to consider bounds generated from rich parameter spaces

that approximate nonparametric specifications, like a sieve (e.g. Chen, 2007). However,

(15) also allows for more tightly parameterized specifications that will produce more

informative bounds and possibly even point identification of certain target parameters.

We primarily use the nonlinear parameter α to allow for some of the basis functions

to be degenerate point masses. For example, we will often restrict some of the compo-
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nents of Bd
z and Bs

z that correspond to covariates to be constant, while still allowing

for randomness in the more salient components of B, such as the intercept and the

coefficient on price. The constant components are treated as constant coefficients that

are contained in α. Changing these constant coefficients changes F through the defi-

nition of one or more of the basis components Fk(·;α) rather than through the mixing

weights.

Assuming that F has the structure given in (15) implies that

g(p, q, z;F ) =

dφ∑
k=1

φk

∫
1[εp(b, z) ≤ p, εq(b, z) ≤ q] dFk(b;α) ≡

dφ∑
k=1

φkḡk(p, q, z;α),

(16)

which is now a linear function of φ with coefficients ḡk(p, q, z;α) that can be calculated

numerically for any given α. We focus our attention on target parameters that have a

similar form,

τ(F ) =

∫
t(b) dF (b) (17)

for some known function t that could depend on the distribution of observables. All

of the target parameters discussed in Section 2.3 can be written in this form. If F is

specified as (15) then

τ(F ) =

dφ∑
k=1

φk

∫
t(b) dFk(b;α) ≡

dφ∑
k=1

φkτ̄k(α) (18)

is also a linear function of φ with coefficients τ̄k(α) that can be calculated given α.

We exploit this linearity by profiling α out of the optimization problem (14) that

characterizes the sharp bounds on T ?. For the lower bound problem,

τ?lb = min
α∈A

 min
φ∈Φ(α)

dφ∑
k=1

φkτ̄k(α) s.t.

dφ∑
k=1

φkḡk(p, q, z;α) = g(p, q, z) for all p, q, z

 ,
(19)

where Φ(α) ≡ {φ : (φ, α) ∈ ΦA}. (We follow the usual convention that the minimum

of an infeasible program is positive infinity in case α is such that the inner problem is

infeasible.) The inner problem of (19) is a linear program as long as Φ(α) is polyhedral,

which it will be in the leading case when φ are mixing weights and Φ(α) = Φ is the

simplex for any α. The upper bound problem maximizes over both α and φ, and we
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profile it in the same way as an outer maximization over α and an inner maximization

of φ given α.

Since P and Q are potentially continuously distributed, the constraints in the inner

problem cannot be imposed for all p and q in their support. A simple approach is to

impose the constraints for a finite (but large) grid of (p, q) and all z, although this can

lead the resulting bounds to be potentially non-sharp. We make the grid as rich as

possible while keeping computation manageable. As a further defense against numeri-

cal non-sharpness, we also evaluate the candidate solutions on a much larger grid, add

points of large constraint violations to the program, and then re-solve the optimiza-

tion problems, iterating a few times until the constraints are satisfied on the larger

grid as well. These computational considerations are only an issue for our numerical

simulations that use the population distribution; the estimator we develop in Section

5 asymptotically incorporates all of the information in the distribution of (P,Q).

4.3 Constant coefficients

The outer problem of (19) can be solved with an unstructured optimization over A,

such as a grid search. In general, this is only reliable if α is a low dimensional parameter.

However, for our leading case in which α is used to characterize constant coefficients,

the linear structure can be used to reduce dimension of α down to two in general, or

one with an exclusion restriction.

To see this, separate Z ≡ (Z1, Z2) into two subvectors, where the coefficients on Z1

are random and the coefficients on Z2 are specified as constant in both the supply and

demand equations. Write the coefficient vectors as Bd
z ≡ (Bd

z1, b
d
z2) and Bs

z ≡ (Bs
z1, b

s
z2).

Substituting this notation into the reduced form equation (4) and taking expectation

(assuming existence of moments) produces

E[P |Z] = Z ′1 E

[
Bd
z1 −Bs

z1

Bd
p +Bs

p

]
+ Z ′2

(
bdz2 − bsz2

)
E

[
1

Bd
p +Bs

p

]
,

E[Q|Z] = Z ′1 E

[
Bd
z1B

s
p +Bs

z1B
d
p

Bd
p +Bs

p

]
+ Z ′2

(
bdz2 E

[
Bs
p

Bd
p +Bs

p

]
+ bsz2 E

[
Bd
p

Bd
p +Bs

p

])
.

The coefficients on Z2 in linear regressions of P and Q onto Z are thus

ρp2 ≡ β
c
(
bdz2 − bsz2

)
, where βc ≡ E

[
1

Bd
p +Bs

p

]
,

and ρq2 ≡ (1− βd)bdz2 − βdbsz2, where βd ≡ E

[
Bd
p

Bd
p +Bs

p

]
.
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Solving this system of equations for bdz2 and bsz2 gives

bdz2 = ρq2 +
βd

βc
ρp2 and bsz2 = ρq2 +

(
βd − 1

βc

)
ρp2. (20)

Equation (20) shows that the constant coefficient vectors bdz2 and bsz2 are fully deter-

mined by the scalars βd and βc together with the reduced form regression coefficients

ρp2 and ρq2. Let α = (βd, βc, bdz2, b
s
z2). Then (20) shows that α is two dimensional given

knowledge of ρp2 and ρq2, regardless of the dimension of Z2. The grid search over A in

the outer problem of (19) has dimension two, which is computationally manageable.

In practice, we fix a point of (βd, βc) on the grid, solve for bdz2 and bsz2, then solve the

inner problem of (19) while adding the deterministic constraints

βc =

dφ∑
k=1

φk

∫ (
1

bdp + bsp

)
fk(b;α) dµ(b),

βd =

dφ∑
k=1

φk

∫ (
bdp

bdp + bsp

)
fk(b;α) dµ(b)

to the definition of Φ(α). We make use of this strategy when including covariates in

our numerical simulations and application.

If there is an exclusion restriction, then the dimension of α can be further reduced

from two to one. Suppose that the coefficient on the first component of Z2 in the

demand equation is known to be zero, so that this component is an excluded supply

shifter. Then (20) implies that

0 = ρq21 +
βd

βc
ρp21 or βc = −ρ

q
21

ρp21

βd, (21)

so that βc is fully determined by βd and the reduced form regression coefficients.

If both the first and second demand coefficients of Z2 are known to be zero, so

that there are two exclusion restrictions in the demand equation, then (21) for both

components produces the testable implication that ρq21/ρ
p
21 = ρq22/ρ

p
22. (This requires

the mild assumption that βd 6= 0, which could only happen if Bd
p = 0 deterministically.)

This represents a partial preservation of the familiar overidentification test from the

constant coefficient case to the random coefficient case. The difference is that the

overidentified quantity is not the slope on price in the demand equation—which is now

non-random—but rather the ratio βd/βc, which is a weighted average of the slope of

price in the demand equation.
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A third case is when one coefficient on Z2 in the demand equation is zero, bdz21 = 0,

and a coefficient for a different component on Z2 is zero in the supply equation, bsz22 = 0.

Then (21) still holds, but the second equation of (20) additionally implies that

0 = ρq22 +

(
βd − 1

βc

)
ρp22. (22)

Combining (21) and (22) shows that βc and βd are point identified from the reduced

form regression coefficients:

βd =

(
1− ρq21ρ

q
22

ρp21ρ
p
22

)−1

and βc = −ρ
q
21

ρp21

(
1− ρq21ρ

q
22

ρp21ρ
p
22

)−1

.

The outer problem of (19) disappears entirely in this case.

4.4 Numerical simulations

In this section, we report the results of numerical simulations designed to shed some

light on the width of bounds for the random coefficient model.

We constructed the data generating process (DGP) by fitting a random coefficients

model to the Fulton fish market data used by Angrist et al. (2000) (see also Graddy,

1995). The data consists of daily aggregated prices and quantity for whiting (a type of

fish) on each of 111 weekdays, which are viewed as the market. We use log quantity and

price for Q and P . There are two mutually exclusive binary instruments indicating

stormy or mixed weather at sea, which are used as excluded supply shifters. The

covariates are a constant (intercept) and four binary day-of-the-week indicators, and

two binary indicators for good weather and rain on the shore. See Angrist et al. (2000,

Section 5) for more detail.

We fit the random coefficients model by minimizing a sample criterion function, the

population version of which is zero if and only if the random coefficient density is in

the population identified set. The construction of this criterion function is discussed

in the next section.

We use a linear basis for the four-dimensional random coefficients reflecting the

intercept and price. We allow for the coefficients on the intercept and price to be

random in both equations, while we restrict all other coefficients to be constant. We

set the basis to be a tensor product of a mixture of Erlang (gamma with integer shape)

distributions with four or five terms, leading to dφ = 320. Figure 3 plots the densities

of the random coefficients in the DGP.

Figure 4 plots bounds on the average slope of demand as a function of the number
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Figure 3: Distribution of random coefficients in the fish market DGPs

Demand slope Supply slope Demand intercept Supply intercept

0 2 4 6 8 0 2 4 6 5 10 15 20 4 8 12

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

0.0

0.5

1.0

1.5

0.0

0.2

0.4

0.6

Coefficient value (slope or intercept)

D
en

si
ty

of terms in the basis, keeping the DGP fixed. We compute these bounds by solving

(19) on a grid of 100 price and quantity pairs crossed with all 28 = 256 values that

the eight binary variables in Z can take. We found that making the grid larger than

this did not appreciably reduce the bounds for the subset of our results that we tested.

The bounds are remarkably tight, ranging from about 1.8 to 2.5 for the richest basis.

Notably, the lower bound of both set of bounds is more than twice as large as the

linear IV estimand shown in Figure 2. The bounds widen as the basis becomes richer,

allowing for more flexible distributions.

There are three important takeaways from Figure 4. First, a natural target param-

eter is not point identified with binary instruments, consistent with Masten’s (2018)

results. Second, while not point identified, the identified sets are still remarkably in-

formative. Third, though the bounds widen with the flexibility of the model, they

stabilize for a rich enough basis, suggesting that the bounds reflect the nonparametric

structure of the model, rather than any particular functional form for the distribution

of random coefficients.

Figure 5 reports analogous bounds for the average supply slope. Perhaps surpris-

ingly, the bounds are somewhat informative, even though there is no demand shifter.

As in Figure 4, the bounds increase with the flexibility of the model but then stabilize,

suggesting that the information on the average slope of supply is not produced by the

functional form of the distribution of random coefficients. In Figure 6, we report bounds
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Figure 4: Bounds on the average slope of demand
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Figure 5: Bounds on the average slope of supply
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on the averages of the demand and supply coefficients while changing the strength of

the excluded supply shifters. Both bounds widen considerably as the shifters becomes

weaker, but only the bounds on the average demand coefficient continue to shrink as

the shifters become stronger. Taken together, Figures 5 and 6 suggest that the excluded

supply shifter does in fact carry some information about the supply curve. However,

consistent with classical reasoning, even a strong supply shifter is insufficient to point

identify a natural feature the slope of supply.

Figure 7 reports bounds on the deadweight loss generated by a counterfactual sales

tax increase that scales demand side prices by (1+t). (As mentioned in Section 2.3, the

deadweight loss interpretation is premised on the assumption that there are no income

effects, so that the demand curve is Marshallian (uncompensated).) Low tax changes

cannot result in equilibria much different than the ones in the observed data, so result
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Figure 6: Impact of instrument strength on bounds of average slopes
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in narrow bounds. For larger tax changes, the randomness in the supply and demand

slopes leads to greater uncertainty about the new equilibrium and the resulting size

of the Harberger triangle. Overall, the relative deadweight loss is small in this market

because supply is quite inelastic and demand is not overly inelastic. An interesting

aspect about Figure 7 is that we are able to obtain quite informative bounds even

though these calculations require some knowledge of the supply curve and we have no

demand shifters. Intuitively, this is because deadweight loss is the product of both

demand and supply. This leads to tight bounds in our situation because the demand

side bounds are quite informative, while the supply side bounds are not overly wide.

5 Estimation

In this section, we use the identification analysis in the previous section to develop an

estimator. We base estimation on a criterion function that measures the extent to which

the distribution of price and quantity implied by a given distribution F matches the

observed distribution. Let Y (p, q) ≡ 1[P ≤ p,Q ≤ q], so that g(p, q, z) ≡ E[Y (p, q)|Z =

z], and let

c(p, q;F ) ≡ E
[
(Y (p, q)− g(p, q, Z;F ))2

]
, (23)
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Figure 7: Bounds on deadweight loss from imposing a sales tax
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where the expectation is taken over the joint distribution of (P,Q,Z) for a fixed (p, q)

evaluation pair. Then

c(p, q;F ) ≥ E
[
(Y (p, q)− g(p, q, Z))2

]
for any F , (24)

by standard least squares arguments, with equality obtained if and only if g(p, q, z;F ) =

g(p, q, z) for almost every z. The population criterion function is an aggregation over

(p, q) pairs:

c(f) ≡
∫
c(p, q;F ) dG(p, q),

where G is the unconditional population distribution of (P,Q). Then F minimizes c

if and only if g(p, q, z;F ) = g(p, q, z) for every (p, q) and almost every z. The criterion

function therefore provides an alternative characterization of the identified set:

F? = F ∩ arg min
f∈F

c(f).

For computation, we continue to restrict the set of distributions F to have the form
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(15), so that F is parameterized by (α, φ), and the criterion function can be written as

c(α, φ) =

∫
E
[
(Y (p, q)− φ′ḡ(p, q, Z;α))2

]
dG(p, q),

where φ and ḡ(p, q, z;α) are dφ-dimensional vectors containing φk and ḡk(p, q, z;α) for

k = 1, . . . , dφ. Given data {Pi, Qi, Zi}ni=1 from a sample of n markets, we estimate c

using sample analogs that replace G by the empirical distribution of (P,Q) and the

inner expectation in the definition of c by the joint distribution of (P,Q,Z):

cn(α, φ) ≡ 1

n2

n∑
j=1

n∑
i=1

(
Yj(pi, qi)− φ′ḡ(pi, qi, zj ;α)

)2
, (25)

where Yj(p, q) ≡ 1[Pi ≤ p,Qi ≤ q].
We use cn to construct penalized estimators of the sharp bounds on the identified

set T ?. The lower bound estimator is

τlb,n ≡ min
α∈A,φ∈Φ

dφ∑
k=1

φkτ̄k,n + λn (cn(α, φ)− c?n) , where c?n ≡ min
α∈A,φ∈Φ

cn(α, φ), (26)

τ̄k,n are estimators of τ̄k (if it needs to be estimated), and λn is a tuning parameter

that diverges with the sample size. The upper bound estimator is the optimal value of

a maximization problem that penalizes in the opposite direction:

τub,n ≡ max
α∈A,φ∈Φ

dφ∑
k=1

φkτ̄k,n − λn (cn(α, φ)− c?n) . (27)

6 Application

In this section, we use our approach to estimate the welfare impacts of sales taxes.

6.1 Sales Taxes in the United States

In the United States, ad valorem sales taxes are imposed on most goods and some

services in 45 states and the District of Columbia. They are the second largest source of

tax revenue for state and local governments. In 2021, aggregate state revenue from sales

taxes was around $370 billion with $107 additional billion raised by local governments

according to figures from the Annual Survey of State and Local Government Finances.

There is considerable spatial variation in sales tax rates. Multiple levels of juris-

diction impose sales taxes: states, counties, cities, and even smaller local authorities
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such as special districts and metropolitan transit authorities. The resulting population-

weighted average total tax rate is 7.2pc (Gaarder and Henry de Frahan, 2024b). State-

level sales taxes account for most of this total rate. The median state (weighted by

population) imposes a 6pc sales tax, while the median city does not impose a sales tax.

There is also considerable spatial variation in the definition of the tax base. The

share of consumption subject to sales taxes varies between 0.20 in California and 0.59

in Hawaii. The median share across states is 0.33 (Gaarder and Henry de Frahan,

2024a). Historically, sales taxes applied to goods and exempted services. However, the

definition of the tax base has expanded in most states to include at least some services.

Within goods, an approximate rule of thumb is that food products are tax-exempt

while non-food products are taxable. However, there are many exceptions to this rule

in state and local jurisdictions.

6.2 Data

We use NielsenIQ scanner data to obtain measures of quantities and before-tax prices.

The scanner data includes weekly sales, price, and volume for millions of uniquely

defined food and non-food products at the UPC level for a large number of stores

spanning 48 U.S. states. We obtain data on sales tax rates by county from the Thomson

Reuters OneSource Sales Tax database (Gaarder and Henry de Frahan, 2024b). From

this database we are able to measure the average statutory tax rate in each county

over the period 2008 to 2014, along with the taxability status of each product, as

collected by (Gaarder and Henry de Frahan, 2024b). Combined, the data provides

spatial variation on both sales tax rates and taxability status by product.

To reduce the dimension of the estimation sample, we aggregate UPCs into larger

categories called product modules. We restrict our attention to product modules that

are in the fourth quartile of the distribution of total yearly sales in 2008 for both food

and non-food products. A price and quantity index are calculated for each module-

store combination in six months time periods. The estimation sample is balanced

and includes only pairs of stores and modules that appear in the data at least once

every period. The resulting data is a panel of 263 modules in 22,626 stores across 2,180

counties observed in every six month period between January 2008 and December 2014.

See Gaarder and Henry de Frahan (2024b) for more details on data construction, price

index calculations, and sample definition.

For estimation, we perform an additional adjustment to control for aggregate time

effects. First, for each module-store combination, we calculate the two-year difference

in the log of quantity and price, and tax rate. Then, we residualize by substracting the
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mean two-year change within each combination of a module, Census region, and time

period.

6.3 Summary statistics

The results are pending review by NielsenIQ, so are not included in this draft.

6.4 Estimates

The results are pending review by NielsenIQ, so are not included in this draft.

7 Conclusion

We considered a classical linear supply and demand system modified to allow for het-

erogeneous supply and demand slopes. This modification is natural in the context of

the modern literature on instrumental variables with heterogeneous treatment effects,

and arises naturally from microfounded models that lead to linear market demand

and supply, but raises substantial complications for identification. While it is known

that most interesting target parameters will not be point identified (Masten, 2018),

we showed that it is still possible to provide remarkably informative bounds on several

interesting target parameters.
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A Proofs

Proof of Proposition 1. Plugging the budget constraint yj = q0,j + Pqj into the

preferences (5), we obtain the following utility maximization problem for the consumer:

max
qj

{
yj + ξjq

χ
j − Pqj − γj if qj > 0

yj if qj = 0

The fixed transaction cost γj creates the possibility of corner solutions where some

consumers prefer not to consume any amount of the focal product (e.g. Dubé, 2019).

Suppose first that the consumer makes an interior solution. Solving the first-order

conditions at an interior solution yields individual-level demand

qj =

(
P

χξj

)− 1
1−χ

.

The associated indirect utility conditional on consuming a positive amount is

yj + ξ
1

1−χ
j χ

χ
1−χ (1− χ)P

− χ
1−χ − γj .

This indirect utility is greater than the utility from purchasing none of the focal good

if and only if

ξ
1

1−χ
j χ

χ
1−χ (1− χ)P

− χ
1−χ ≥ γj (28)

The share of consumers of type ξ that consume a positive amount of the good is given

by the proportion for which (28) is true:

F

(
ξ

1
1−χ
j χ

χ
1−χ (1− χ)P

− χ
1−χ

)
=

ξ 1
1−χ
j χ

χ
1−χ (1− χ)P

− χ
1−χ

γ

ψ

,

where F is the distribution of γj , which is assumed to be independent of ξ. The

aggregate market demand of the focal good is then determined by the combination of

the intensive and extensive margins of demand integrated over ξ:

Q =

∫ (
P

χξj

)− 1
1−χ

F
(
ξ

1
1−χχ

χ
1−χ (1− χ)P

− χ
1−χ
)
N (ξ) dξ

=

[
χ

1+ψχ
1−χ

(
1− χ
γ

)ψ ∫
ξ

1+ψ
1−χN (ξ) dξ

]
P
− 1+ψχ

1−χ .

Taking logs yields the claimed expression. Q.E.D.
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Proof of Proposition 2. The representative firm’s cost of producing q of the focal

good is given by

C(q) ≡
{

min
K,L

w0
KK

1+bK + w0
LL

1+bL s.t. q = AKagL(1−a)g

}
The first-order conditions are:

(1 + bK)w0
KK

bK = νagAKag−1L(1−a)g

and (1 + bL)w0
LK

bL = ν(1− a)gAKagL(1−a)g−1,

where ν is the Lagrange multiplier for the output constraint. Taking the ratio of

first-order conditions and re-arranging, we obtain:

K =

[
a

1− a

(1 + bL)w0
L

(1 + bK)w0
K

] 1
1+bK

L
1+bL
1+bK . (29)

Substituting (29) into the production function yields labor demand conditional on q:

L =

[
1− a

a

(1 + bK)w0
K

(1 + bL)w0
L

] a
a(1+bL)+(1−a)(1+bK ) ( q

A

) 1+bK
g[a(1+bL)+(1−a)(1+bK )] . (30)

Substituting (30) into (29) and re-arranging then yields capital demand conditional on

q:

K =

[
a

1− a

(1 + bL)w0
L

(1 + bK)w0
K

] 1−a
a(1+bL)+(1−a)(1+bK ) ( q

A

) 1+bL
g[a(1+bL)+(1−a)(1+bK )] . (31)

These factor demands imply that the cost function for producing q is

C(q) = C̃(a, g, bK , bL, w
0
K , w

0
L)×

( q
A

) (1+bK )(1+bL)

g[a(1+bL)+(1−a)(1+bK )]

where C̃(a, g, bK , bL, w
0
K , w

0
L) ≡

(
(1− a)(1 + bL)w0

L

)− (1−a)(1+bK )

a(1+bL)+(1−a)(1+bK )

×
(
(a(1 + bK)w0

K

)− a(1+bL)

a(1+bL)+(1−a)(1+bK )

×
[
a(1 + bK)w0

K + (1− a)(1 + bL)w0
L

]
.

To maximize profit taking output price P as given, the firm chooses quantity Q so

solve

Q = arg max
q

Pq − C(q)
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The first-order condition is:

P =
(1 + bK)(1 + bL)

g [a(1 + bL) + (1− a)(1 + bK)]
C̃(a, g, bK , bL, w

0
K , w

0
L)A−1

(
Q

A

) (1+bK )(1+bL)

g[a(1+bL)+(1−a)(1+bK )]
−1

.

Rearranging and taking logs yields the claimed expression with

ιs(a, g, bK , bL, A,w
0
K)

≡ log

[
(1 + bL)(1 + bK)

g [a(1 + bK) + (1− a)(1 + bL)]
C̃(a, g, bK , bL, w

0
K , w

0
L)A

−(1+bL)(1+bK )

g[a(1+bK )+(1−a)(1+bL)]

]
.

Q.E.D.

Proof of Proposition 3. Since Z and B are independent and Bd
z1 = 0, we get from

(4) that

E[P |Z] = Z ′1 E

[
−Bs

z1

Bd
p +Bs

p

]
+ Z ′2 E

[
Bd
z2 −Bs

z2

Bd
p +Bs

p

]
≡ −Z ′1δ1 + Z ′2δ2.

Because this is linear in Z, the first stage fitted values are Ṗ = E[P |Z] and the residuals

from projecting off Z2 are

Ṗ −L[Ṗ |Z2] = −Z̃ ′1δ1,

where Z̃1 ≡ Z1 −L[Z1|Z2]. Then from (9),

βtsls =
E[Q(Ṗ −L[Ṗ |Z2])]

E[P (Ṗ −L[Ṗ |Z2])]
=

E[QZ̃ ′1δ1]

E[PZ̃ ′1δ1]
.

Because Z2 and Z̃1 are orthogonal, the denominator simplifies to

E[PZ̃ ′1δ1] = −E[δ′1Z1Z̃
′
1δ1] = −E[(Z̃ ′1δ1)2].

For the numerator, first note that from (4), the independence of B and Z, and Bd
z1 = 0,

E[Q|Z] = Z ′1 E

[
Bd
pB

s
z1

Bd
p +Bs

p

]
+ Z ′2 E

[
Bs
pB

d
z2 +Bd

pB
s
z2

Bd
p +Bs

p

]
≡ Z ′1η1 + Z ′2η2,

where

η1 ≡ E

[
Bd
p E

[
Bs
z1

Bd
p +Bs

p

∣∣∣Bd
p

]]
.
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Using orthogonality of Z̃1 with Z2, the numerator of βtsls can thus be written as

E[(Z ′1η1 + Z ′2η2)Z̃ ′1δ1] = η′1 E[Z1Z̃
′
1δ1] = E

[
Bd
p E

[
Bs
z1

Bd
p +Bs

p

∣∣∣Bd
p

]′
E[Z̃1Z̃

′
1δ1]

]
.

Combining numerator and denominator, we arrive at

−βtsls = E

[
Bd
p E

[
Bs
z1

Bd
p +Bs

p

∣∣∣Bd
p

]′
E[Z̃1Z̃

′
1δ1]

E[(Z̃ ′1δ1)2]

]
≡ E[Bd

pW ],

which is the claimed expression. To see that E[W ] = 1, notice that

E

[
E

[
Bs
z1

Bd
p +Bs

p

∣∣∣Bd
p

]]
= E

[
Bs
z1

Bd
p +Bs

p

]
≡ δ1.

Q.E.D.

Proof of Proposition 4. (a) If Z1 is scalar, then δ1 is also scalar, so that

E[Z̃1Z̃
′
1δ1]

E[(Z̃ ′1δ1)2]
= δ−1

1 ≡ 1

E[Bs
z1/(B

d
p +Bd

p)]
.

It follows that

W =
E
[
Bs
z1/(B

d
p +Bs

p)|Bd
p

]
E[Bs

z1/(B
d
p +Bd

p)]
.

Because Bd
p +Bs

p is always non-negative, W is also non-negative if Bs
z1 only takes one

sign, which was the claim.

(b) If Bs
z1 is independent of (Bd

p , B
s
p), then δ1 = E[Bs

z1] E[1/(Bd
p +Bs

p)], so that

E

[
Bs
z1

Bd
p +Bs

p

∣∣∣Bd
p

]
= E[Bs

z1] E

[
1

Bd
p +Bs

p

∣∣∣Bd
p

]
= δ1

E
[
1/(Bd

p +Bs
p)|Bd

p

]
E
[
1/(Bd

p +Bs
p)
]

It follows that

W = E

[
Bs
z1

Bd
p +Bs

p

∣∣∣Bd
p

]′
E[Z̃1Z̃

′
1δ1]

E[(Z̃ ′1δ1)2]
=

E[1/(Bd
p +Bs

p)|Bd
p ]

E[1/(Bd
p +Bs

p)]
, (32)

which is always positive because Bd
p +Bs

p is always positive. Q.E.D.

Proof of Proposition 5. Equation (10) follows under the assumptions of Proposi-
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tion 3 because

E[Bd
pW ] = E[Bd

p ] E[W ] + C[Bd
p ,W ] = E[Bd

p ] + C[Bd
p ,W ],

noting that E[W ] = 1.

Now suppose that condition (b) of Proposition 4 is satisfied. Then (32) in the proof

of Proposition 4 is satisfied. So

C[Bd
p ,W ] = C

[
Bd
p ,E

[
1

Bd
p +Bs

p

∣∣∣Bd
p

]]
E

[
1

Bd
p +Bs

p

]−1

.

Because Bd
p , B

s
p are assumed to be non-negative, the sign of this term is determined by

the covariance, which simplifies into

C

[
Bd
p ,E

[
1

Bd
p +Bs

p

∣∣∣Bd
p

]]
= E

[(
Bd
p −E[Bd

p ]
)

E

[
1

Bd
p +Bs

p

∣∣∣Bd
p

]]
= E

[
E

[(
Bd
p −E[Bd

p ]
) 1

Bd
p +Bs

p

∣∣∣Bd
p

]]
= E

[(
Bd
p −E[Bd

p ]
) 1

Bd
p +Bs

p

]
= C

[
Bd
p ,

1

Bd
p +Bs

p

]
.

Together with (10), this shows that (11) is sufficient and necessary for −βtsls ≤ E[Bd
p ].

If E[(Bd
p +Bs

p)
−1 | Bd

p = bdp] is a weakly decreasing function of bdp, then

C

[
Bd
p ,

1

Bd
p +Bs

p

]
= −C

[
Bd
p ,−E

[
1

Bd
p +Bs

p

∣∣∣Bd
p

]]
≤ 0,

because the covariance of two weakly increasing functions of Bd
p is non-negative (e.g.

Thorisson, 1995, Section 2). Alternatively, if Bd
p is mean independent of Bs

p, then

C

[
Bd
p ,

1

Bd
p +Bs

p

]
= E

[
(Bd

p −E[Bd
p ])

1

Bd
p +Bs

p

]
= E

[
(Bd

p −E[Bd
p ])

(
1

Bd
p +Bs

p

− 1

E[Bd
p ] +Bs

p

)]
, (33)

where the second equality follows because

E

[
(Bd

p −E[Bd
p ])

1

E[Bd
p ] +Bs

p

]
= E

[
(E[Bd

p |Bs
p]−E[Bd

p ])
1

E[Bd
p ] +Bs

p

]
= 0.
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Simplifying (33) then shows that

C

[
Bd
p ,

1

Bd
p +Bs

p

]
= E

[
(Bd

p −E[Bd
p ])

(
E[Bd

p ]−Bd
p

(Bd
p +Bs

p)(E[Bd
p +Bs

p])

)]
≤ 0.

Q.E.D.

B Derivation of Welfare Target Parameters

We focus on the case where Q and P are specified in logs and hd(p) = hs(p) = p

are linear, because this is what we use in our application. Similar expressions can be

derived when Q and P are specified in levels and when hd and/or hs are nonlinear.

For notation, we let q ≡ exp(Q) and p ≡ exp(P ) be equilibrium quantity and price in

levels.

We consider an ad valorem tax with rate t and let θ ≡ log(1 + t). Assuming the tax

θ is paid by consumers, the equilibrium price and quantity as a function of the random

coefficients and tax is:

p (θ) = exp

(
Z ′
(
Bd
z +Bs

z

Bd
p +Bs

p

)
−

Bd
p

Bd
p +Bs

p

θ

)
(34)

q (θ) = exp

(
Z ′

(
Bs
pB

d
z +Bd

pB
s
z

Bd
p +Bs

p

)
−

Bd
pB

s
p

Bd
p +Bs

p

θ

)
(35)

Equilibrium sales as a function of θ are therefore:

sal(θ) ≡ p (θ) q (θ) = exp

(
Z ′

(
Bd
z

(
1 +Bs

p

)
−Bs

z

(
1−Bd

p

)
Bd
p +Bs

p

)
−
Bd
p

(
1 +Bs

p

)
Bd
p +Bs

p

θ

)
.

(36)

And government revenue is:

rev (θ) = t× sal(θ) ≡ (exp(θ)− 1)sal(θ). (37)

The difference in consumer and producer surplus from a tax of t relative to a state

with no taxes is given by

cs(θ) ≡
∫ p(0)

(1+t)p(θ)
exp(Z ′Bd

z − log(x)′Bd
p) dx (38)

ps(θ) ≡
∫ p(θ)

p(0)
exp(Z ′Bs

z + log(x)′Bs
p) dx. (39)
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Then deadweight loss from the tax is given by

dwl(θ) = − (cs(θ) + ps(θ) + rev(θ)) . (40)

Using the above expressions, the change in consumer and producer surplus and

revenue from a marginal tax increase can be shown through Leibniz’ rule to be given

by

cs′(θ) ≡ −(1 + t) exp(sal(θ))
Bs
p

Bd
p +Bs

p

ps′(θ) ≡ − exp(sal(θ))
Bd
p

Bd
p +Bs

p

rev′(θ) ≡ exp(sal(θ))

(
1 + t

Bs
p

(
1−Bd

p

)
Bd
p +Bs

p

)
.

The corresponding change in deadweight loss is then

dwl′(θ) ≡ −
(
cs′(θ) + ps′(θ) + rev′(θ)

)
= t exp(sal(θ))

Bd
pB

s
p

Bd
p +Bs

p

.

Usually, we normalize the change in deadweight loss by the corresponding change in

revenue and consider the quantity

dwl′(θ) ≡ dwl′(θ)

rev′(θ)
=

tBd
pB

s
p

Bd
p +Bs

p + t
(
1−Bd

p

)
Bs
p

. (41)

We also consider the marginal incidence on consumers of the tax, which is defined as

the relative consumer surplus impact:

inc(θ) ≡ cs′(θ)

cs′(θ) + ps′(θ)
=

(1 + t)Bs
p

Bd
p + (1 + t)Bs

p

. (42)

We can also compute the impacts of a non-marginal change in the tax from θ0 to

θ1. This results in a non-marginal change in deadweight loss of

dwl(θ0 → θ1) ≡ dwl(θ1)− dwl(θ0) =

∫ θ1

θ0

dwl′(θ) dθ. (43)

Normalizing this against the change in government revenue gives

dwl(θ0 → θ1) ≡ dwl(θ1)− dwl(θ0)

rev(θ1)− rev(θ0)
=

∫ θ1
θ0

dwl′(θ) dθ∫ θ1
θ0

rev′(θ) dθ
, (44)
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which is a complicated function of both supply and demand slopes, as well as the two

tax levels. Similar arguments can be used to derive expressions for discrete changes in

other quantities, such as consumer and producer surplus.
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