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Abstract

We study peer effects in linear-in-means models with heterogeneous interaction ef-

fects. The classical linear-in-means model imposes strict homogeneity on the inter-

action effects, yielding testable implications that can easily be examined in data.

We relax these restrictions to allow for both positive and negative interaction effects

that vary within and across groups. These extensions make the linear-in-means model

suited to study a wide range of economic behaviors in addition to peer effects, includ-

ing joint labor supply decisions within households and strategic interactions among

firms. We analyze what can and cannot be learned from frequently used OLS and IV

estimands for linear-in-means models under heterogeneous interaction effects. While

these estimands do not lead to point identification, they can still be used to draw

inferences about key economic quantities. We apply these results to two economic

applications: classroom peer effects in Kenyan primary schools and strategic pricing

decisions among cocoa traders in Sierra Leone. In each application, we reject homoge-

nous interaction effects. Yet, we still draw meaningful inferences about endogenous

interactions and social multipliers while allowing for heterogeneous interaction effects.

I. Introduction

Peer effects models are widely used in economics to study how individuals’ actions are shaped

by those around them, with applications ranging from education and health to labor mar-

kets and beyond. The classical linear-in-means model (Manski, 1993) remains the most

commonly used framework for empirically analyzing these interactions.1 This model typ-

ically assumes strict homogeneity in the endogenous interaction effects, requiring that all

individuals, within and across peer groups, are positively influenced in exactly the same way

*We thank Lancelot Henry de Frahan for valuable comments. All errors are our own.
�Department of Economics, University of Chicago, Statistics Norway, and NBER.
�Department of Economics, University of Chicago.
§Department of Economics, University of Chicago.

1Applications of the linear-in-means framework include Sacerdote (2001), Guryan et al. (2009), Patacchini
& Zenou (2009), Duflo et al. (2011), Dahl et al. (2014), and Casaburi & Reed (2022), among others. Blume
et al. (2015) and Boucher et al. (2024) study the microfoundations and economic properties of these models.
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by the average outcome of their peers. Identification and estimation is well-studied under

this homogeneity assumption, with researchers typically relying on linear OLS and IV esti-

mators to recover parameters of interest (Kline & Tamer, 2020). However, the identification

arguments behind these estimators do not readily transfer to settings with heterogeneous

interaction effects. Known conditions for point identification under heterogeneous effects,

such as those developed by Masten (2017), put strong demands on available instruments and

can be difficult to implement.

The goal of our paper is to analyze peer effects in linear-in-means models with hetero-

geneity in endogenous interaction effects. We consider a setting with two or more groups,

where each group g comprises a set of agents, denoted by Ng. Each agent i in group g

has an outcome Yig, which is affected by the outcomes of other agents in the group. This

interdependence is characterized by the following system of linear simultaneous equations.

Yig = αig +
βig

|Ng| − 1

∑
j ̸=i

Yjg + Z ′
igγig, for i ∈ Ng. (1)

In these equations, {αig}i∈Ng , {βig}i∈Ng , and {γig}i∈Ng are all unknown structural parameters.

Additionally, {Zig}i∈Ng is a set of observed variables, which could include individual-level

shifters, if Zig ̸= Zjg for i ̸= j, as well as group-level covariates, if Zig = Zjg for all i, j ∈ Ng.

In this model, the parameter βig represents the individual interaction effect, indicating

how each agent i in group g is influenced by the average outcome in the rest of the group.

Whereas the classical linear-in-means model maintains that βig is constant across individuals

i and groups g, we allow the interaction effects to differ along both these dimensions. Also,

unlike previous work, we do not restrict the sign or magnitude of βig. Therefore, agents may

be positively or negatively affected, however intensely, by their peers. The parameters αig

and γig specify how the variables Zig would determine an agent i’s outcome Yig in absence of

spillover effects. We allow these terms to vary freely among agents within and across groups.

We also do not restrict the size or composition of each group, as characterized by the set Ng.

In Section II, we begin by reviewing the economic quantities commonly studied in models

with constant effects, along with the identification strategies used to recover these quantities.

We show that the constant effects assumption yields testable implications in the form of over-

identification tests, which can be used to assess whether individuals have uniform interaction

effects. We apply these tests to data for two economic applications that employ the linear-

in-means model with constant effects: peer effects in Kenyan primary schools (Duflo et al.,

2011) and competition between cocoa traders in Sierra Leone (Casaburi & Reed, 2022).

In both instances, we find evidence against homogeneous interaction effects. In the first

application, we conclude that peer effects vary across classrooms. In the second application,

we find that traders respond strategically in different ways to their competitors’ actions.

Motivated by these findings, we consider, in Section III, the heterogeneous effects model,
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which allows αig, βig, and γig to vary freely among agents within and across groups. Under

this framework, we derive new expressions for the equilibrium outcomes in terms of the in-

dividual interaction effects. We use these expressions to characterize equilibrium behavior

in the presence of heterogeneity, demonstrating how different combinations of interaction ef-

fects distort group-level outcomes. With heterogeneous effects, the equilibrium impact of an

exogenous shock on group-level outcomes depends on which agents in the group are directly

exposed to that shock. These equilibrium effects may also differ across groups. To guide and

interpret our results, we draw on three economic examples: classroom peer effects, house-

hold labor supply decisions, and competition among firms in oligopolies. In each example,

we show how the linear-in-means model with heterogeneous effects can be used to analyze

the economic questions of interest without placing strong restrictions on individual behavior.

In Sections IV and V, we investigate what features of the model are recovered from OLS

and IV estimation under heterogeneous effects. We start by examining a class of OLS esti-

mands that result from regressing the outcomes Y on the exogenous variables Z (or linear

combinations of Z). We demonstrate that a correctly specified OLS regression can recover

the average equilibrium effects of Z on Y across groups, even in the presence of heterogeneous

effects. Additionally, these regressions tell us about social multiplier effects, which quantify

how network spillovers distort the impacts of individual shocks on group outcomes (Glaeser

et al., 2003). In our framework, OLS does not lead to point identification of social multipli-

ers. Still, we show that OLS can be used to test for the presence of positive (or negative)

multiplier effects, providing insight into the role of heterogeneous spillovers in amplifying (or

suppressing) the impacts of policies in equilibrium. Furthermore, we demonstrate that OLS

allows us to test for positive or negative interaction effects in a variety of empirical settings.

Next, we analyze what economic quantities are recovered from IV estimation. We study

a large class of IV estimands that use exclusion restrictions to recover the interaction ef-

fects βig. We show that, with heterogeneous effects, the IV estimand represents a particular

weighted average of interaction effects, which places higher weight on groups where aggregate

outcomes are more responsive to the instruments. We then derive necessary and sufficient

conditions for these weights to be non-negative, which we view as a minimal requirement for

the IV estimand to be informative about interaction effects. We also show how the IV esti-

mand compares to an unweighted average of interaction effects. In general, this relationship

depends on the signs of the interactions, whether they are positive or negative. We prove

that in many common network settings, such as classical peer effects, oligopoly models, and

public goods games, the IV estimand will necessarily overstate the average interaction effect.

In the last section, we take the linear-in-means model with heterogeneous interaction

effects to our two empirical applications. In the analysis of social interactions in Kenyan

primary schools, we find evidence that peer effects are present in many classrooms and are

positive for a significant number of students. Our estimate of the upper bound on the average

interaction effect suggests that, on average, a 1 point increase in the average test score of one’s
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peers does not directly influence a student’s own test score by more than 0.45 points. We also

find evidence of significant positive social multiplier effects, suggesting that, in at least some

classrooms, factors influencing individual achievement are amplified throughout the class due

to social interactions. In the analysis of competition between cocoa traders in Sierra Leone,

we find evidence of strategic interactions and imperfect competition in price setting. We

estimate an upper bound on the average conduct parameter, indicating the extent to which

traders respond strategically to their competitors’ pricing decisions. Our estimated bound

suggests that increasing competitors’ cocoa purchases by 1 pound does not directly reduce

a trader’s own purchases by more than 0.02 pounds on average. We do not find evidence of

social multiplier effects, suggesting that strategic interactions do not materially matter for

conclusions about how trader-specific changes in demand or costs affect total market output.

Our paper contributes to two literatures. First, we contribute to a literature on the

empirical analysis of social interactions; see Paula (2017) and Kline & Tamer (2020) for

recent surveys.2 Within this literature, there is increasing recognition of the importance of

accounting for individual heterogeneity in endogenous interaction effects. While the economic

theory is well-studied in these cases (Jackson & Zenou, 2015), there is less work addressing the

identification of models with heterogeneous interaction effects. One key exception is Masten

(2017), who studies identification for a linear peer effects model with random coefficients.3

He proves that the marginal distributions of the coefficients are point identified if there is

an instrument with continuous variation over a large support. However, he also shows that

instruments are insufficient for recovering the full joint distribution of random coefficients.

These results raise questions about what can be learned about other economic quantities,

such as equilibrium effects and social multipliers, in the presence of heterogeneity. Our paper

addresses this question by analyzing how to interpret and learn from OLS and IV estimation

in contexts with heterogeneous interaction effects. We view our results as constructive. While

point identification might not be achievable, we find that meaningful inferences can still be

made from frequently used OLS and IV estimators. Our approach is broadly applicable for a

variety of settings where access to a continuous instrument with large support is not feasible.

The second literature to which we contribute is concerned with the interpretation of

linear OLS and IV estimands in settings with unobserved heterogeneity in treatment effects.

Mogstad & Torgovitsky (2024) give a recent survey of this work. In a seminal paper, Imbens

& Angrist (1994) pioneer a framework for interpreting linear IV estimands as weighted aver-

ages of local average treatment effects, and Angrist et al. (2000) extend these interpretations

to supply and demand models consisting of two simultaneous equations. The system of linear

simultaneous equations for peer effects differs in two important ways from the linear supply

2See Blume et al. (2011) for more discussion. Also, Sacerdote (2011) surveys the literature on peer effects
in education, and Browning et al. (2014) discusses the use of social interaction models for household behavior.

3Hurwicz (1950), Kelejian (1974), and Hahn (2001) also examine simultaneous equations with random
coefficients. Hurwicz (1950) does not give explicit identification results. In addition, as Masten (2017) points
out, Kelejian (1974) and Hahn (2001) conduct analyses that are based on self-contradictory assumptions.

4



and demand system studied by Angrist et al. (2000). First, the supply and demand system

is restricted to a network of two agents: a representative firm and a representative consumer

in each market. Second, the supply and demand system focuses on specific interaction ef-

fects where the sign is known, i.e., upward-sloping supply and downward-sloping demand. In

contrast, the system of linear simultaneous equations we consider does not place restrictions

on the signs of the interaction effects, which means that agents’ outcomes could be strategic

substitutes and/or complements. Therefore, we can apply our model to a wide range of set-

tings that involve substitutabilities and/or complementarities in decision-making, including

peer effects, household labor supply decisions, and competition among firms in an oligopoly.

Our paper contributes to this literature by demonstrating how to interpret linear OLS

and IV estimands for linear peer effects models with heterogeneous interaction effects. Our

analysis finds that many of the existing tools for interpreting these estimands do not easily

transfer to peer effects models. For example, with peer groups larger than two, the standard

monotonicity conditions for IV to have a causal interpretation (Imbens & Angrist, 1994) place

strong restrictions on the peer effects, which are unlikely to apply in many practical settings.

We propose alternative, weaker conditions under which IV retains a causal interpretation. We

then demonstrate how this causal parameter allows us to learn about economic quantities of

interest. Overall, our analysis gives an accessible framework for learning about heterogeneous

interaction effects and social multipliers from frequently used linear OLS and IV estimands.

II. The Classical Linear-in-Means Model

In this section, we present the classical linear-in-means model, define economic quantities of

interest, and discuss how these quantities can be recovered from the data under the assump-

tion that agents exhibit homogeneous endogenous interaction effects. We then show that this

assumption has testable implications, which are rejected in the data for our two applications.

II.A. Model and Assumptions

The classical linear-in-means model assumes that the interaction effects are constant. Specif-

ically, in equation (1), it assumes that βig = βjg for any two agents i and j in group g, such

that agents are uniformly affected by other members of their group. Additionally, the model

assumes that βig = βi for all i and g, such that all groups exhibit identical spillover effects.

While there are many variants of the linear-in-means model, it is common to assume that

the interaction effects are positive: βig ≥ 0 for all agents i and groups g. This restriction leads

to uniform strategic complementarities, where all agents conform to the average outcome of

their peers. In addition, the literature generally assumes that |βig| < 1 for all i and g, which

ensures that the spillover effects are small in magnitude. Many papers also maintain that

the coefficient γig is constant and that the intercept αig satisfies both E(αig|Zig, g) = E(αig)

and Cov(αig, αjg′ |Zig, Zjg′ , g, g
′) = 0. We summarize these assumptions below for reference.
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Classical Linear-in-Means Assumptions

C.1 (Homogeneous Interactions within Groups). βig = βjg for any two agents i, j ∈ Ng.

C.2 (Homogeneous Interactions across Groups). βig = βi for all agents i and groups g.

C.3 (Positive and Bounded Spillovers). 0 ≤ βig < 1 for all agents i and groups g.

C.4 (Homogeneous Incidence of Z). γig = γ for all agents i and groups g.

C.5 (Mean Independence). E(αig|Zig, g) = E(αig) and Cov(αig, αjg′|Zig, Zjg′ , g, g
′) = 0.

Assumption C.3 ensures that the system of equations (1) possesses a unique solution. Under

the classical linear-in-means assumptions, we derive the following reduced form equations.

Yig = (1 + βδg)(αig + γZig) + δg
∑
j ̸=i

(αjg + γZjg), for i ∈ Ng, (2)

where δg =
β

(1−β)(|Ng |−1+β)
is a term that tends to zero as the group size |Ng| tends to infinity.

II.B. Economic Quantities of Interest

Depending on the empirical context, researchers may be interested in learning about a variety

of reduced form and structural parameters in the model. In Table 1, we list several economic

quantities that are often studied in the classical linear-in-means model. For each of these

quantities, we provide definitions and derive expressions in terms of the structural parame-

ters, both for the heterogeneous effects specification (1) and for the constant effects special

case. We postpone the analysis of these quantities under heterogeneous effects to Section III.

To ease notation in our derivations, we remove group subscripts in the model. We also

define N = {1, . . . , N}, while noting that the number of agents can freely vary across groups.

Finally, for expositional purposes, we assume that Zig is one-dimensional, so that Zig ∈ R,
although including a vector of shifters/covariates does not meaningfully change our analysis.

The first three quantities in the table are reduced form coefficients, which specify how the

exogenous variables Z affect agents’ outcomes Y in equilibrium, after accounting for network

spillovers. In the classical linear-in-means model, the total effect of Zi on Yi is uniform across

i, meaning that all agents are affected in the same way by an exogenous shock to their own

outcome. Also, the individual spillover effect of Zi on Yj is uniform across i and j, implying

that these spillovers do not depend on which agent is directly affected by a shock or on which

agent is indirectly affected by it. Furthermore, the total effect of Zi on Ȳ is uniform across i,

which means that the same shock to any agent’s outcome would have an identical impact on

the average outcome in the group. These equilibrium effects are also uniform across groups.

The fourth parameter that we define is the social multiplier effect. For the classical linear-

in-means model, Glaeser et al. (2003) define the social multiplier as the ratio of aggregate

coefficients to individual coefficients in the reduced form. Specifically, the multiplier equals:

M constant =
∆Ȳ /∆Z̄

∆Yi/∆Zi

=
β +N − 1

β + (1− β)(N − 1)
. (3)
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This parameter measures how the equilibrium impact of Z on Y changes at different levels of

aggregation. As the size of the group N grows large, the multiplier effect tends to (1−β)−1.

The next three parameters are the structural coefficients αi, βi, and γi. Among these

quantities, the interaction effect βi is often a primary target parameter in peer effects models

since it measures the amount of social pressure that an individual experiences (e.g., see Sac-

erdote, 2011). The parameters αi and γi also have an economic significance, as they indicate

how the variable Zi would impact an agent’s outcome Yi without network interference. For

some applications, it may be important to distinguish between the direct treatment responses

and the indirect effects of treatments arising from social interactions (e.g., see Manski, 1993).

Table 1: Economic Quantities of Interest

Estimand Definition Structural Interpretation

Constant Effects Heterogeneous Effects

Reduced Form Quantities

Total Individual Effect ∆Yi/∆Zi γ + β2γ
(1−β)(N−1+β)

γi +
βiγi( 1

N−1

∑
j ̸=i βjνij)

(N−1) det(I−B)

Individual Spillover Effect ∆Yj/∆Zi
βγ

(1−β)(N−1+β)

βjγiνij
(N−1) det(I−B)

Total Effect on the Average ∆Ȳ /∆Zi
1
N
× γ

(1−β)
1
N
× γiνi

det(I−B)

Individual Social Multiplier
∑N

j=1 ∆Yj/∆Zi

∆Yi/∆Zi

β+N−1
β+(1−β)(N−1)

νi
νi− 1

N−1

∑
j ̸=i βjνij

Aggregate Social Multiplier
∑N

i=1 ∆Ȳ /∆Zi
1
N

∑N
j=1 ∆Yj/∆Zj

β+N−1
β+(1−β)(N−1)

1
N

∑N
i=1 νiγi

1
N

∑N
j=1(νj− 1

N−1

∑
k ̸=j βkνjk)γj

Structural Quantities

No Interference Outcome Yi|(Ȳ−i, Zi) = 0 αi αi

No Interference Effect ∆Yi/∆Zi|Ȳ−i γ γi

Individual Interaction Effect ∆Yi/∆Ȳ−i β βi

Interaction Effect Correlation corr
(
∆Yi/∆Ȳ−i,∆Yj/∆Ȳ−j

)
0 corr(βi, βj)

Notes. The reduced form effects ∆Yi/∆Zi, ∆Yi/∆Zi, and ∆Yi/∆Zi are defined by holding {Zj}j ̸=i fixed.

To ease notation in the last column, we let νi =
∏

ℓ̸=i

(
1+ βℓ

N−1

)
and νij =

∏
ℓ/∈{i,j}

(
1+ βℓ

N−1

)
for any i and j.

II.C. Standard Linear Peer Effects Estimands and Testable Implications

We now review the identification strategies typically used to recover reduced form and struc-

tural parameters in models with constant effects. In our analysis, we assume that the vari-

ables Zi are individual-level shifters in the model. We require that these shifters {Zi}Ni=1 are

not perfectly collinear, such that E(ZZ ′) is nonsingular. In addition, we assume that γ ̸= 0,

which ensures that each variable Zi has a nonzero effect on observed outcomes. Under this

assumption, any exogenous, individual-level shifter is a valid instrument in our framework.

Since this model involves simultaneity, instruments play a crucial role in identification.

Namely, they generate exclusion restrictions, which are factors that directly affect a subset of

the agents in a group, while leaving others unaffected. Examples of exclusions include policy

variables that shift an agent’s marginal cost of action. Alternatively, an exclusion could be a
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restriction on the interactions in the network, whereby some agents do not directly influence

certain members of their group. In the Appendix, we show how to extend the linear-in-means

model to reformulate these restrictions as instruments. In doing so, our analysis speaks to a

wide range of identification strategies that use exclusions to recover structural parameters.4

II.C.1. Frequently Used OLS Estimands

We begin by analyzing OLS estimands that result from projecting the outcomes Y on group-

level averages of {Zi}Ni=1. In particular, we consider the estimands βOLS
Yi

= E(Z̃iZ̃
′
i)

−1 E(Z̃iYi)

and βOLS
Ȳ

= E(Z̃Z̃ ′)−1 E(Z̃Ȳ ), corresponding to regressions of the individual outcome Yi on

the vector Z̃i = (1, Zi, Z̄−i) and the average outcome Ȳ in the group on the vector Z̃ = (1, Z̄).

Under Assumptions C.1-C.5, these estimands recover the total individual effect ∆Yi/∆Zi,

the individual spillover effects {∆Yi/∆Zj}j ̸=i, and the total effect on the average ∆Ȳ /∆Zi.

To see why, recall that homogeneous effects ensures that ∆Yi/∆Zj is constant across j ̸= i

and ∆Ȳ /∆Zj is constant across j ∈ {1, . . . , N}. So, in the reduced form, Yi can be expressed

as a linear function of Zi and Z̄−i. Similarly, Ȳ can be expressed as a linear function of Z̄.

One key testable implication of Assumption C.1 is that the reduced form effects ∆Yj/∆Zi

and ∆Yk/∆Zi are equal for any agents i, j, k ∈ N . The lemma below formalizes this property.

Lemma 1. For any distinct agents i, j, k ∈ N , βj = βk if and only if ∆Yj/∆Zi = ∆Yk/∆Zi.

The economic intuition behind Lemma 1 is that, if two agents j and k are influenced in the

same way by another agent i, then an exogenous shock to agent i’s outcome would produce

identical spillover effects on agent j and agent k. This property gives a testable restriction

for the hypothesis H0 : βj = βk, which posits that the interaction effects are constant among

agents in the same group. To test this hypothesis, we evaluate the following OLS estimands:

β̃OLS
Yj

= E(Z̃jkZ̃
′
jk)

−1 E(Z̃jkYj) and β̃OLS
Yk

= E(Z̃jkZ̃
′
jk)

−1 E(Z̃jkYk),

where Z̃jk = (1, Zj, Zk, Z̄−i,−k). If the regression coefficients on Z̄−i,−k differ between the two

estimands, then it must be that βj ̸= βk, and it follows that Assumption C.1 is violated.

II.C.2. Frequently Used IV Estimands

We now shift attention to a large class of IV estimands that use instruments to recover the

interaction effect β. This quantity is often the main target parameter in constant effects mod-

els, and our framework nests a wide variety of existing approaches that are used to recover it.

We define an IV estimand for β that uses Z̃−i as the excluded instrument for Ȳ−i in an

agent i’s outcome equation. We allow Z̃−i to be any monotonic transformation of the vector

Z−i. In particular, we define Z̃−i = g(Z−i), where g is a monotone mapping taking values in

4See Kline & Tamer (2020) for discussion. Bramoullé et al. (2009) formalize how to use network exclu-
sions—where not all agents interact with one another—for identification of classical linear-in-means models.
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the support of Z−i.
5 Our specification encompasses a wide array of IV strategies, including:

(1) using one instrument individually, (2) using multiple instruments jointly, and (3) using

an increasing transformation of multiple instruments, e.g., a group-level average of {Zj}j ̸=i.

For any realization of zi in the support of Zi, we can write down an IV estimand as follows:

βIV
i (zi) =

Cov(Yi,L(Ȳ−i|Z̃−i)|Zi = zi)

Cov(Ȳ−i,L(Ȳ−i|Z̃−i)|Zi = zi)
, (4)

where L(Ȳ−i|Z̃−i) represents the population fitted values from a regression of Ȳ−i on (1, Z̃−i).

Under constant effects, the interaction effect β is point-identified from this IV estimand.

In fact, even if the interaction effects vary within a group, the estimand will still recover

the interaction effect βi for agent i, provided that the interaction effects are homogeneous

across groups. This result is well-established in the literature, and it is reviewed in many

econometrics textbooks tracing back to Fisher (1966).

Lemma 2. Under Assumptions C.2-C.5, the IV estimand βIV
i (zi) recovers the parameter βi.

This lemma generates a testable implication for Assumptions C.2-C.5. Specifically, under

these assumptions, the IV estimand βIV
i (zi) always recovers the same parameter, regardless

of which excluded instruments Z̃−i are used in the regression. Therefore, we can validate the

classical linear-in-means assumptions by conducting an over-identification test. For N > 2,

there may be multiple valid instruments {Zj}j ̸=i for the endogenous variable Ȳ−i in an agent

i’s outcome equation. We can leverage this over-identification to construct two IV estimands

βIV,1
i and βIV,2

i for βi using two distinct instruments Z̃−i,1 and Z̃−i,2, respectively. We can then

empirically assess whether Assumptions C.2-C.5 hold by testing the null H0 : β
IV,1
i = βIV,2

i .

II.D. Empirical Applications of Linear Peer Effects Estimators

We now consider two applications: peer effects in Kenyan primary schools (Duflo et al., 2011)

and strategic pricing decisions of cocoa traders in Sierra Leone (Casaburi & Reed, 2022).

Both studies use a linear-in-means model with constant effects. Also, in both studies, the

model is over-identified, as individual-level shifters affect the outcomes of multiple agents in

a group. We leverage this feature to test the assumption of homogeneous interaction effects.6

II.D.1. Classroom Peer Effects in Kenya

Our first application comes from Duflo et al. (2011), who study peer effects and the impact of

ability tracking in primary schools in Kenya. The study included 121 schools, each assigning

students to one of two classrooms. Students in treatment schools were assigned to classrooms

based on ability, as measured by their baseline test score, while students in control schools

5Formally, we restrict g to the set of functions G = {g : supp(Z−i) → Rn|g(z′−i) ≥ g(z−i) for z
′
−i ≥ z−i}.

For Z̃−i to be a relevant instrument, we require that g is strictly increases in at least one component of Z−i.
6As usual, we also need to maintain the other assumptions of the model for the over-identifying restrictions

to be a test of homogeneous interaction effects. Otherwise, it is a test of all the model assumptions C.1-C.5.
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were randomly assigned. Following Duflo et al. (2011), we restrict the sample to the control

group. This sample is composed of 2,849 students over 61 schools, each split into two rooms.7

To measure peer effects in classrooms, Duflo et al. (2011) consider the following model:

Yi = βȲ−i + Z ′
iγ + νs + εi, (5)

where Yi is the endline test score of a student i, Ȳ−i is the average endline test score of i’s

classmates, Zi is a vector of controls that includes i’s own baseline score, and νs is a school

fixed effect. The authors use the average baseline score of i’s classmates Z̄−i as an instrument

for Ȳ−i. As outcome variables, they consider math, reading, and total endline test scores.8

Table 2 presents results from our re-analysis of the data. The first three columns of

Panel A show estimates from OLS regressions of Yi on Zi and Z̄−i with school fixed effects,

the same specification used by Duflo et al. (2011). For a classical linear-in-means model with

equal class sizes, this regression recovers the equilibrium effects ∆Yi/∆Zi = γ+ β2γ
(1−β)(N−1+β)

and ∆Yi/∆Zj =
βγ

(1−β)(N−1+β)
, for j ̸= i. The last three columns of Panel A present estimates

from OLS regressions of Ȳ−i on Zi and Z̄−i with school fixed effects. The first three columns

of Panel B provide estimates for the main IV specification in Duflo et al. (2011). Under the

classical linear-in-means assumptions, these regressions recover the constant peer effect β.

The last three columns of Table 2, Panel B, report estimates from alternate IV speci-

fications that use multiple excluded instruments. In addition to Z̄−i, we include four more

instrumental variables: (1) minimum baseline score of peers, (2) maximum baseline score of

peers, (3) average baseline score among female peers, and (4) average baseline score among

male peers. Under constant effects, any combination of these instruments lead to the same IV

estimand. Under heterogeneous effects, the IV estimands could differ. To test for constant

effects in the model, we conduct a Sargan–Hansen test for over-identifying restrictions using

all five excluded instruments. This test allows us to assess the validity of over-identifying

restrictions using any linear combination of the excluded instruments. We find that this test

is rejected at the significance level 0.05, suggesting that peer effects vary across classrooms.

II.D.2. Strategic Pricing Decisions in Sierra Leone

Our second application builds on the work of Casaburi & Reed (2022), who examine the

strategic behavior of traders who purchase cocoa from farmers in Sierra Leone. During an

experiment conducted from October to December 2011, half of the 80 traders in the sample

were randomly assigned a subsidy of 150 leones per pound of cocoa sold at village markets.

Data on prices and quantities from these transactions was subsequently collected for analysis.

7After removing missing data, we retain 2,190 students over 48 schools.
8Equation (5) corresponds to (E4) in Duflo et al. (2011). We adapt their notation slightly to align with

our framework. We replicate the reduced form and IV estimates presented in Table 4 of the original paper.
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Table 2: Classroom Peer Effects—Primary Schools in Kenya

Own Endline Score Peers’ Mean Endline Score

Total Math Literature Total Math Literature
(1) (2) (3) (4) (5) (6)

Panel A. Reduced Form
Own Baseline Score 0.507*** 0.496*** 0.413*** 0.007** 0.006* 0.007**

(0.026) (0.022) (0.030) (0.003) (0.003) (0.003)
Peers’ Mean Baseline Score 0.345** 0.324** 0.291** 0.788*** 0.697*** 0.704***

(0.150) (0.160) (0.131) (0.157) (0.174) (0.134)

Observations 2,188 2,188 2,189 2,188 2,188 2,189

One Instrument Spec. Multiple Instrument Spec.

Total Math Literature Total Math Literature

Panel B. Instrumental Variables
Peers’ Mean Endline Score 0.444*** 0.469*** 0.422*** 0.424*** 0.488*** 0.487***

(0.117) (0.124) (0.120) (0.094) (0.103) (0.117)

First-Stage F-Stat 371.8 371.6 1970 293.4 463.4 590.9
Sargan-Hansen Testa 15.12 12.53 12.76

(0.004) (0.014) (0.013)

Observations 2,188 2,188 2,189 2,188 2,188 2,188

Notes. Data comes from Duflo et al. (2011). Following the authors’ specifications, we include school fixed
effects and controls for gender, age, and being assigned to the contract teacher. Columns (1)-(3) in
Panel B use peers’ mean baseline score as an excluded instrument. Columns (4)-(6) in Panel B use
as excluded instruments: peers’ mean baseline score, peers’ minimum and maximum baseline scores,
and mean baseline scores of male and female peers. Standard errors clustered at the school level.

aWe report the Sargan-Hansen χ2
4 test statistic with the corresponding p-value in parentheses below.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Casaburi & Reed (2022) specify a model of imperfect competition among buyers. Each

market consists of N buyers and a unit measure of homogenous producers. The price Pi that

a buyer i pays to producers is given by the inverse supply Pi = λ+κQi+θ
∑

j ̸=iQj, which is

micro-founded by assuming there exists a representative producer with a love for variety.9 A

buyer’s profit function equals Πi = Qi(v + sZi − Pi), where v represents the wholesale price

net of costs and Zi indicates whether the buyer is randomly assigned a subsidy valued at s.

In equilibrium, the buyers choose their quantities Qi to maximize profit, while accounting

for optimal decisions {Qj}j ̸=i of their competitors. The profit-maximizing quantities satisfy

9Following footnote 6 in Casaburi & Reed (2022), a producer’s profit is: V (P,Q) = Q0+
∑N

i=1 PiQi−C(Q),

where C(Q) = λ
∑N

i=1Qi+
1
2κ
∑N

i=1Q
2
i +θ

∑
j ̸=iQiQj is the cost of production, and Q0 is any unsold output.
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the linear-in-means model with constant effects, where the interaction effect β is θ(N−1)/2κ.

Qi =
v − λ

2κ
− θ

2κ

∑
j ̸=i

Qj +
s

2κ
Zi

= α︸︷︷︸
(v−λ)/2κ

+
β

N − 1︸ ︷︷ ︸
−θ/2κ

∑
j ̸=i

Qj + γ︸︷︷︸
s/2κ

Zi, for i ∈ {1, . . . , N}. (6)

In this setting, we can interpret θ/2κ as a conduct parameter that measures how a buyer i’s

demand depends on the total quantity purchased by i’s competitors. Under constant effects,

the conduct parameter is identified from IV, where the quantity purchased by i’s competitors∑
j ̸=iQj is instrumented by the treatment statuses of i’s competitors, denoted by {Zj}j ̸=i.

10

Table 3 presents estimates from our re-analysis of the data. The first two columns of

Panel A show estimates from OLS regressions of a buyer i’s own purchases Qi on his or her

own treatment status Zi and the total number of treated competitors
∑

j ̸=i Zj, with and

without trader controls. Under constant effects, this regression recovers the total individual

effect of the subsidy Zi on i’s own purchases Qi, along with the individual spillover effect of

another trader j receiving a subsidy on i’s own purchases. The last two columns of Panel A

show OLS estimates from regressing
∑

j ̸=iQj on Zi and
∑

j ̸=i Zj, with and without trader

controls. The first two columns of Panel B report estimates from IV regressions of Qi on∑
j ̸=iQj, where the number of treated competitors

∑
j ̸=i Zj is used as the excluded instru-

ment. For constant effects, this regression recovers the (negative) conduct parameter −θ/2κ.

The last two columns of Table 3, Panel B, present estimates from alternate IV specifica-

tions that use multiple instruments. We use these regressions to test whether traders exhibit

identical conduct parameters. In addition to
∑

j ̸=i Zj, we introduce three extra instruments:

(1) number of treated competitors who have access to a storage facility, (2) number of treated

competitors older than the median age (37), and (3) number of treated competitors with

baseline sales above the median (300 lbs of cocoa). Each of these instruments is valid by the

same identification arguments used in the original paper. We then conduct a Sargan–Hansen

test for over-identifying restrictions using all four excluded instruments. From this exercise,

we find strong evidence against the constant effects assumption. This suggests that different

traders likely respond strategically in different ways to their competitors’ pricing decisions.

10Casaburi & Reed (2022) do not run this IV regression since they never explicitly define a market in their
empirical analysis. Rather, they rely on additional model assumptions to estimate the market size N while
never explicitly assigning traders to markets. To conduct our analysis, however, we need to know which
traders belong to which markets. We achieve this objective by defining a market as the interaction between
a week and a chiefdom, which represents a small administrative unit in Sierra Leone. In the data, we find
that 90% of traders operate in a single chiefdom in a given week and that over 98% of traders make more
than half of their sales in the same chiefdom. We leverage this observation to assign traders to chiefdoms.
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Table 3: Strategic Interactions—Cocoa Traders in Sierra Leone

Trader Quantity Competitors’ Total Quantity

(1) (2) (1) (2)

Panel A. Reduced Form
Treatment Trader 416.663*** 454.895*** -166.995 -61.516

(45.733) (49.594) (248.156) (267.626)
Number of Treated Competitors -10.733*** -7.423** 507.685*** 522.394***

(2.975) (3.697) (16.141) (19.948)

Observations 610 602 610 602
Trader Controls X X

One Instrument Spec. Multiple Instrument Spec.

(1) (2) (1) (2)

Panel B. Instrumental Variables
Competitors’ Total Quantity -0.007 -0.020*** -0.004 -0.018***

(0.006) (0.007) (0.006) (0.007)

First-Stage F-Stat 23.06 14.15 22.90 14.09
Sargan-Hansen Testa 9.82 12.35

(0.02) (0.006)

Observations 610 602 610 602
Trader Controls X X

Notes. Data comes from Casaburi & Reed (2022). Following the original paper, we include week
fixed effects. Trader controls are: baseline pounds of cocoa sold, number of villages where
trader operates, baseline share of suppliers receiving credit from trader, age, years working
with wholesaler, ownership of a cement or tile floor, mobile phone, and access to a storage
facility. Sample sizes differ between (1) and (2) due to missing data about trader controls.

aWe report a Sargan-Hansen χ2
3 test statistic with a corresponding p-value in parentheses.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

III. The Linear-in-Means Model with Heterogeneous Interaction Effects

Motivated by the findings in the previous section, we now relax Assumptions C.1-C.5 to allow

agents to exhibit interaction effects of different signs and magnitudes, which vary within and

across groups. Going forward, we treat αg = [αig]i∈Ng , βg = [βig]i∈Ng , and γg = [γ′ig]i∈Ng as

random vectors that are distributed according to a joint density f . We place no parametric

restrictions on this density. In particular, we allow the random coefficients to depend on one

another. For example, an agent i’s interaction effect βig could be shaped by the interaction

effects of i’s peers, as well as by the interaction effects that are realized in the other groups.

Moreover, since we permit the coefficients γig to be heterogeneous, we allow for the possibility
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that the incidence of Zig varies and may even depend on the characteristics of other agents.11

To accommodate heterogeneous effects, we replace Assumption C.5 with a new condition.

Assumption I (Independence of Observed Variables). Zg ⊥ (αg, βg, γg,Ng).

This assumption is standard in the literature on random coefficients. It guarantees that the

distribution of unobservables is statistically independent from the vector of observables Zg.
12

III.A. Economic Interpretations of the Model under Heterogeneous Effects

We now illustrate how the linear-in-means model with heterogeneous effects can be derived as

the estimating equation in three distinct economic decision problems: peer effects in schools,

joint labor supply decisions within households, and strategic interactions between firms in

oligopolistic markets. In each of these examples, it is necessary to make strong assumptions

about preferences or technology to justify the restrictions of homogeneous interaction effects.

Relaxing the assumption of homogeneous effects therefore makes the model better suited for

studying economic behavior in these different settings. Throughout the rest of the paper,

we will draw on these examples to guide and interpret our analysis.

III.A.1. Peer Effects

Consider a peer group g, where each individual i makes a choice Yig from an action space R.
When making their decisions, individuals seek to conform to (or deviate from) the average

behavior of their peers. These social pressures enter directly into the agent’s utility function.

Uig(Yig|Zig, Ȳ−ig) =
(
αig + Z ′

igγig
)
Yig + βigȲ−igYi −

1

2
Y 2
ig.

The first component of utility captures the non-social determinants of an agent’s choice Yig.

The second term contains the peer effect, where the coefficient βig indicates how agent i is

influenced by the average behavior in the peer group g. The third term is a convex cost of

action. In equilibrium, agents’ optimal decisions {Yig}i∈Ng satisfy the system of equations (1).

This utility function is commonly used in the education literature to study peer effects;

e.g., see Epple & Romano (1998) and Calvó-Armengol et al. (2009).13 This work tends to rule

out the possibility of heterogeneous peer effects by assuming that all students have the same

11We allow αg, βg, and γg to be correlated with the group size and composition, as characterized by the set
Ng. This correlation could be economically meaningful. For example, the social pressures that individuals
experience might depend on the number or types of peers within the group. Moreover, this correlation ties
our hands by preventing us from using group size variation as a source of identification. Both Lee (2007)
and Davezies et al. (2009) study how variation in group sizes can be used for identification of peer effects.

12If Zg includes covariates, then we can relax Assumption I to allow for independence of individual-level
shifters conditional on covariates: Zs

g ⊥ (αg, βg, γg,Ng)|Zc
g , where Z

s
g are shifters and Zc

g are covariates. In
addition, if the set of agents Ng in a group is observed, then we can relax it by writing Zg ⊥ (αg, βg, γg)|Ng.

13Blume et al. (2015) specify utility as Uig(Yig|Zig, Ȳ−ig) =
(
αig + Z ′

igγig
)
Yig − 1

2βig(Yig − Ȳ−ig)
2 − 1

2Y
2
ig.

This function also rationalizes our framework, where the coefficients αig, βig and γig are rescaled by 1
1+βig

.
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marginal rate of substitution between private and social utility. By relaxing this assumption,

we allow students to face different social pressures. It could be that some students deviate

from, rather than conform to, their peers; or, it could be that all students conform but some

do so more than others. Our extension allows for such nuances in the study of peer effects.

III.A.2. Household Labor Supply

Consider the following non-unitary model of household labor supply (see Donni & Chiap-

pori, 2011). In household g, the members choose how much of their total time T to allocate

between labor and leisure. Let hig be the amount of time that person i chooses to work, and

letWig be the wage. Each member i of household g earns an income, denoted by Yig = Wighig.

Members of the household pool their incomes. These incomes are then redistributed so

that each member i receives a fraction κig ∈ [0, 1] to spend on personal consumption. The

total value of household consumption, denoted by Cg, cannot exceed total household income.

In addition to consuming κigCg, each member i can also consume non-transferable goods.

These goods may come in the form of workplace amenities or social assistance benefits (e.g.,

healthcare services that only i can access). The value of these goods to person i equals aig.

Each individual maximizes welfare from leisure and consumption. The returns from each

input are marginally decreasing, as captured by the following log-additive utility function.

max
hig

Uig(hig|Wig, Cg) = µig log(T −hig)+(1−µig) log(aig+κigCg), s.t. Cg =
∑
j∈Ng

Wjghjg.

The parameter µig ∈ [0, 1] denotes person i’s relative preference for leisure over consumption.

As long as each person i spends some time hig ∈ (0, T ) working, an interior solution exists.

Yig = −µigaig
κig

− µig

∑
j ̸=i

Yjg + (1− µig)TWig

= αig︸︷︷︸
−

µigaig
κig

+
βig

|Ng| − 1︸ ︷︷ ︸
−µig

∑
j ̸=i

Yjg + γig︸︷︷︸
(1−µig)T

Wig, for i ∈ Ng.

The equilibrium equations satisfy the linear-in-means framework where the interaction effect

βig equals −µig(|Ng| − 1). The parameter µig determines how much a person i’s income falls

when the rest of the household earns more. This parameter also governs the elasticity of i’s

earnings with respect to the wage Wig. The variable Zig can be anything affecting i’s wage.

The assumption of constant interaction effects implies that the marginal rate of substi-

tution between consumption and leisure is the same both among the members of a given

household and across households. By allowing for heterogeneous interaction effects, we per-

mit the trade-offs to differ along both dimensions. It could be that the labor supply responses

vary between primary and secondary earners in a household. These responses could also vary
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across households based on contextual factors, such as the number of children in the home.

III.A.3. Firm Oligopoly

Lastly, consider a model of oligopolistic competition where firms face heterogeneous, convex

cost curves. Following Bresnahan (1981) and Perry (1982), we consider a general framework

that nests the theories of Bertrand and Cournot oligopoly. This approach assumes that firms

form conjectures about other firms’ decisions that are consistent with equilibrium outcomes.

Each market g contains multiple firms i, each producing output Yig. The price that clears

the market is given by an inverse demand: Pg = ag − bg
∑

i∈Ng
Yig, where ag and bg can vary

across markets g. A firm’s production costs are given by cig(Yig) = (λig0+Z
′
igλig1)Yig+

1
2
δigY

2
ig,

where λig0, λig1, and δig can vary both across firms i and across markets g. Assume that the

vector Zig contains observable cost-shifters that directly influence the firm’s productivity.

We suppose that every firm i has some reference output Y 0
ig, which is common knowledge

in the market. The firm conjectures that increasing its own output Yig relative to Y 0
ig causes

the other firms to adjust their total output by θig, believing that
∑

j ̸=i Yjg equals
∑

j ̸=i Y
0
jg +

θig(Yig−Y 0
ig). Given these conjectures, each firm i in market g maximizes its profit by solving:

max
Yig

Πig(Yig|Zig, {Y 0
jg}j ̸=i) = PgYig − cig(Yig), s.t.

Pg = ag − bg
∑
i∈Ng

Yig∑
j ̸=i

Yjg =
∑
j ̸=i

Y 0
jg + θig(Yig − Y 0

ig)

cig(Yig) = (λig0 + Z ′
igλig1)Yig +

1

2
δigY

2
ig.

In equilibrium, the output Yig equals the reference output Y
0
ig. So, an equilibrium is given by:

Yig =
1

δig + bg(2 + θig)

[
ag − λig0 − bg

∑
j ̸=i

Yjg − Z ′
igλig1

]
= αig︸︷︷︸

ag−λig0
δig+bg(2+θig)

+
βig

|Ng| − 1︸ ︷︷ ︸
− bg

δig+bg(2+θig)

∑
j ̸=i

Yjg + Z ′
ig γig︸︷︷︸

−
λig1

δig+bg(2+θig)

, for i ∈ Ng.

In this model, θig is the conjectural variation, which measures firm i’s perceived influence

in market g. Three special cases are particularly notable. First, if θig = 0 for all i, then the

model corresponds to Cournot oligopoly. In this case, firms do not internalize the effect of

their own output decisions on the behavior of other firms. Second, if θig = −1 for all i, then

the model is one of Bertrand competition. Here, firms expect that their actions have no effect

on total market output. Third, if θig = |Ng|−1 for all i, then the market is monopolistic. In

this setting, each firm acts as if it fully controls the market, which leads to perfect collusion.
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Given this range of possibilities, it seems natural to permit θig to be between −1 and |Ng|−1.

An equilibrium in this model produces the linear-in-means model as an estimating equa-

tion. The interaction effect βig equals − bg(|Ng |−1)

δig+bg(2+θig)
, which represents a firm-specific conduct

parameter as defined by Weyl & Fabinger (2013). This quantity measures how a firm i’s

output responds to the output of other firms in the market. Note that βig depends on the

elasticity of consumer demand bg, the slope δig of the marginal cost curve, and the conjectural

variation θig. So, the constant effects assumption implies: (1) consumer demand is equally

elastic in all markets, (2) firms’ marginal costs have the same curvature, and (3) all firms

have the same beliefs about market competition. The linear-in-means model with heteroge-

neous interaction effects allows each of these factors to vary within and across markets.

III.B. Characterization of an Equilibrium

To analyze the equilibrium behavior of the linear-in-means model with heterogeneous inter-

action effects, we first derive the necessary and sufficient conditions for there to be a unique

solution to the system of equations (1). The condition that we derive will significantly relax

Assumption C.3. Specifically, rather than placing bounds on the signs and magnitudes of

the endogenous interaction effects, our condition only rules out a single equality constraint.

Assumption II (Unique Solution).
∑

i∈Ng
(1−βig)

∏
j∈Ng\i(|Ng| − 1+βjg) ̸= 0 for any group g.

Assumption II is a rank condition. It ensures that I −Bg is invertible, where I denotes the

identity matrix and Bg is the adjacency matrix specifying the interaction effects in group g:

Bg =
1

|Ng| − 1


0 β1g · · · β1g
β2g 0 · · · β2g
...

...
. . .

...

β|Ng |g β|Ng |g · · · 0

 . (7)

This assumption rules out cases where the outcome equations (1) correspond to parallel lines.

If these lines are parallel to each other, then they either never intersect or they overlap. In the

first case, the model has no solution. In the second case, it has infinitely-many solutions.14

By eliminating these two cases, Assumption II ensures that the equilibrium is well-defined.

We now present a closed form representation of the equilibrium, showing how the out-

comes {Yig}i∈Ng depend on the variables {Zig}i∈Ng after accounting for spillover effects. In

general, spillovers have the potential amplify or suppress the impacts of {Zig}i∈Ng on agents’

outcomes. These distortions are driven by the interaction effects {βig}i∈Ng , which can be

positive or negative in our framework. Moreover, as we allow the interaction effects to vary

14Tamer (2003) discusses issues of incoherency and incompleteness of simultaneous equation models. When
a model is incoherent, it has no solution. When a model is incomplete, it has multiple solutions. In our setting,
nonintersecting lines makes the model incoherent, and overlapping lines makes the model incomplete. In the
Appendix, we provide a graphical illustration of these two cases, discussing why they are both problematic.
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among agents, the nature of these distortions becomes more complex as the group size |Ng|
grows larger. The following proposition gives a general characterization of the equilibrium.

Proposition 1. A unique solution to system (1) exists if and only if Assumption II holds.

In equilibrium, the outcomes {Yig}i∈Ng in group g satisfy Yig = αig+βigȲg,−i+Z
′
igγig, where:

Ȳg =

∑
j∈Ng

[∏
ℓ∈Ng\j

(
1 +

βℓg

|Ng |−1

)]
× (αjg + Z ′

jgγjg)

|Ng| × det(I −Bg)
, and:

Ȳg,−i =

∑
j∈Ng

νijg ×
[

βjg

|Ng |−1
(αig + Z ′

igγig) + (αjg + Z ′
jgγjg)

]
(|Ng| − 1)× det(I −Bg)

, for i ∈ Ng.

Here, we define νijg = 1 for |Ng| = 2 and νijg =
∏

ℓ∈Ng\{i,j}

(
1 +

βℓg

|Ng |−1

)
for |Ng| > 2. The

determinant of I −Bg also has a closed-form expression, which is provided in the Appendix.

While prior work derives similar formulas for two- or three-agent special cases (e.g., Mas-

ten, 2017), our equilibrium formulas apply to groups of any size. Given this generality, our

analysis extends to a wide range of settings with varying group size and composition, such

as peer effects in Kenyan primary schools and competition among traders in Sierra Leone.

Remark 1. Moment Determinacy.

Although Assumption II rules out models with parallel lines, it does not eliminate models

with nearly parallel lines, in which det(I −Bg) is close to zero with high probability. This

distinction becomes important when we consider mean-based identification strategies, since

the moments of the reduced form coefficients may not exist if det(I−Bg) is very close to zero.

For the reduced form moments to be well-defined, we need a slightly stronger assumption.

One sufficient condition for moment determinacy is that the vector of outcomes Yg has a

bounded support. Moreover, as Masten (2017) shows, the reduced form moments can exist

even when Yg takes full support if the tails of the outcome distributions are sufficiently thin.

By reformulating Assumption A6 in Masten (2017) for our framework, we arrive at the fol-

lowing sufficient condition, which is expressed as a restriction on the structural parameters.15

Assumptions III (Sufficient Conditions for Moment Determinacy).

III.1. P
(∣∣∣∑i∈Ng

(1− βig)
∏

j∈Ng\i(|Ng| − 1 + βjg)
∣∣∣ ≥ τ

)
= 1 for some scalar τ > 0.

III.2. The marginal distributions of {αig}i,g and {γig}i,g have subexponential tails.

Remark 2. Preservation of Order.

Although not necessary for identification, it is often helpful for interpreting economic quan-

tities if the structural coefficients {γig}i,g have the same signs (respectively) as the reduced

15For more discussion, as well as necessary conditions for moment determinacy, we refer to Masten (2017).
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form effects {∆Yig/∆Zig}i,g. That is, if Zig has a positive direct effect on the outcome Yig,

when does Zig have a positive effect on Yig in equilibrium? Consider the following condition.

Assumption IV (Bounded Interactions). 1− |Ng| < βig < 1 for all agents i and groups g.

By ensuring that γig and ∆Yig/∆Zig share the same sign, Assumption IV rules out equilib-

rium behaviors that might seem illogical. For example, in a peer effects model, a student’s

achievement would not fall when the marginal utility of effort rises. In a household labor

supply model, a person’s income would not decrease after receiving a raise. In an oligopoly

model, a firm’s output would not fall as a consequence of becoming more productive.16

III.C. Definition and Interpretation of Economic Quantities under Heterogeneous Effects

We now define and interpret the economic quantities in Table 1 under heterogeneous effects.

As before, we ease notation by removing group subscripts and treating Zi as one-dimensional.

Total Individual Effect

The first quantity that we reexamine is the total effect of Zi on Yi in equilibrium. By Proposi-

tion 1, we can decompose this quantity to distinguish between direct and indirect effects of Zi.

∆Yi
∆Zi

= γi + βi
∆Ȳ−i

∆Zi︸ ︷︷ ︸
Indirect Effect

, where
∆Ȳ−i

∆Zi

=

∑
j ̸=i

[
βj
∏

ℓ/∈{i,j}

(
1 + βℓ

N−1

)]
(N − 1)2 × det(I −B)

× γi. (8)

The indirect effect accounts for network distortions. It depends on the cycles in the network,

which specify how an agent’s behavior is reflected back onto itself via interactions with oth-

ers. This feedback loop may either reinforce or undermine the direct effect of the variable Zi.

To interpret the indirect effect of Zi on Yi, we first need to determine how Zi affects Ȳ−i.

If Assumption IV holds, then the sign of ∆Ȳ−i/∆Zi is determined by the product of γi and:

ψi =
1

N − 1

∑
j ̸=i

[
βj
∏

ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)]
. (9)

The term ψi specifies how agent i’s action Yi affects the average outcome Ȳ−i in the rest of the

group. If ψi > 0, e.g., in a peer effects model with positive social interactions, then increasing

agent i’s action will raise the average outcome of others. If ψi < 0, e.g., in a household la-

bor supply model or a model of oligopolistic competition, then increasing Yi will decrease Ȳ−i.

16Assumption IV is a special case of Assumption II. Thus, it also ensures that there is a unique equilibrium.
In addition, it implies that det(I−Bg) > 0 with probability 1 (see the Appendix for a proof). In a household
labor supply model, Assumption IV holds if all people value consumption: µig ̸= 1 for all i. In an oligopoly
model, it rules out Bertrand competition for firms with constant marginal costs: (θig, δig) ̸= (−1, 0) for all i.
Such models do not possess an interior solution, since firms would always seek to undercut one another until
they are all left with zero profit. This phenomenon is known as the Bertrand paradox (Edgeworth, 1925).
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To understand when network spillovers would amplify or suppress the impact Zi on Yi,

we must examine the product of βi and ψi. This product represents an indirect interaction

effect that the agent has with herself, as understood by evaluating all the cycles in the

network that start and end with agent i. If βi × ψi is positive, e.g., in a peer effects model

with positive spillovers, a household labor supply model, and an oligopoly model, then agent

i’s behavior is self-reinforcing. In this case, the interaction effects would magnify the impact

of an exogenous shock: |∆Yi/∆Zi| > |γi|. Conversely, if βi × ψi is negative, then agent i’s

actions are self-undermining, which would suppress the impact of a shock: |∆Yi/∆Zi| < |γi|.

Individual Spillover Effect

The second parameter we study is the spillover effect of Zi on Yj. In a peer effects model, this

measures how student j is indirectly affected by factors that alter student i’s achievement.

For household labor supply, it captures how j’s income is affected by the wage of family

member i. For an oligopoly, it specifies how the output at firm j responds to the productivity

at another firm i. By Proposition 1, we write down the spillover effect of Zi on Yj as follows:

∆Yj
∆Zi

=
βj
∏

ℓ/∈{i,j}

(
1 + βℓ

N−1

)
(N − 1)× det(I −B)

× γi. (10)

Under Assumption IV, this effect always has the same sign as βj×γi. So, when βj is positive,
a positive shock to agent i’s outcome has a positive spillover effect on agent j’s outcome.

Conversely, when βj is negative, a positive shock to Yi has a negative spillover effect on Yj.

Total Effect on the Average

Next, we reinterpret the equilibrium effect of the variable Zi on the average group outcome Ȳ .

∆Ȳ

∆Zi

=

∏
ℓ̸=i

(
1 + βℓ

N−1

)
N × det(I −B)

× γi. (11)

Under Assumption IV, this quantity always has the same sign as the coefficient γi. Therefore,

in a peer effects model, a policy that improves one student’s performance always increases

the average level of achievement in the group. In a household labor supply model, a wage

boost for one individual always raises the total income of the household. In an oligopoly

model, improving one firm’s productivity always increases the overall output in the market.

Social Multiplier Effects

We now reexamine the social multiplier under heterogeneous effects. We can use this quantity

to measure how externalities distort the effect of exogenous shocks on outcomes. Much of

the literature on social multipliers (e.g., Goldin & Katz, 2002; Glaeser et al., 2003; Becker

& Murphy, 2003) assumes that the interaction effects are positive: βi ≥ 0 for all agents i.

Under this assumption, network spillovers always amplify the impact of a policy shock on

group outcomes. However, this pattern need not hold in settings with negative interaction
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effects. In such cases, network spillovers have a potential to suppress the impact of a policy.

When the endogenous interaction effects are heterogeneous, Glaeser et al.’s (2003) social

multiplier is not well-defined because Z̄ could affect Ȳ in different ways depending on which

of the variables {Zi}Ni=1 is changed. In other words, the total effect of an exogenous shock on

group outcomes depends on which agent(s) in the group are directly exposed to that shock.

For heterogeneous effects, we can define an individual-specific social multiplier for an agent i.

Mheterog.
(i) =

∑N
j=1∆Yj/∆Zi

∆Yi/∆Zi

=
1

1− 1
N−1

∑
j ̸=i

βj

1+βj/(N−1)

. (12)

This quantity is defined as the ratio of the total effect of Zi on
∑N

j=1 Yj to the individual effect

of Zi on Yi. It generalizes the original definition of the social multiplier by accommodating

heterogeneous effects. In a constant effects model, Mheterog.
(i) reduces to M constant for every i.

Additionally, as the size of the group N becomes large,Mheterog.
(i) tends to (1− 1

N−1

∑
j ̸=i βj)

−1.

The notion of an individual-specific social multiplier is particularly intuitive when group

members assume different roles. In the household labor supply example, Mheterog.
(i) measures

how an exogenous change in person i’s wage would affect total household income relative

to i’s individual income Yi. If there is only one primary earner in the household, then it is

likely that these multipliers differ across household members i. For example, in a two-person

household,Mheterog.
(i) equals 1−µj, which captures the second household member j’s trade-off

between consumption and leisure. If member j places high value on leisure (so µj is large),

then j is more willing to work less when i earns more. In this case, the multiplier Mheterog.
(i) is

small since the total impact of raising i’s wage on total household income would be heavily

offset by a reduction in j’s labor supply. Alternatively, if j places high value on consumption,

then his/her labor supply is less responsive to i’s wage, and the multiplierMheterog.
(i) is large.17

Averaging across agents, we can construct an aggregate social multiplier effect Mheterog.,

equal to 1
N

∑N
i=1M

heterog.
(i) . Alternatively, we can take Mheterog. as the ratio of average effects:

Mheterog. =

∑N
i=1∆Ȳ /∆Zi

1
N

∑N
j=1∆Yj/∆Zj

=

1
N

∑N
j=1

(
1 +

βj

N−1

)−1

γj

1
N

∑N
j=1

(
1 +

βj

N−1

)−1 (
1− 1

N−1

∑
k ̸=j

βk

1+βk/(N−1)

)
γj

. (13)

While they have slightly different interpretations, both versions of the aggregate social mul-

tiplier reduce to the original definition under constant effects. Throughout the rest of the

paper, we take the expression in (13) as our definition of the aggregate social multiplier. If

γi is constant across agents i, then M
heterog. tends to

(
1− 1

N

∑N
i=1 βi

)−1
as N grows large.

17Note that the multiplier effects are always less than one in this example, since strategic substitutability

suppresses the impact of exogenous wage shocks on total household income, which ensures thatM
heterog.
(i) < 1.
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Structural Coefficients and Higher Moments

The next three parameters are αi, βi, and γi. Of particular interest to us is the interaction

effect βi. In a peer effects model, this term measures how much social pressure someone faces.

In a model of household behavior, it specifies how one’s income depends on the earnings of

others. In an oligopoly model, it measures the degree of strategic interaction between firms.

Lastly, we also seek to learn about the correlation structure between the different inter-

action effects in a network, i.e., corr(βi, βj) for different agents i and j. These parameters

are novel in the literature, and they can help us to learn about the formation of network ties.

For example, if my peer feels a strong pressure to conform to the group, am I also likely to

feel that pressure? Do people in the same family share similar preferences over leisure and

consumption? The heterogeneous effects framework is well suited to address these questions.

IV. Analysis of OLS and IV Estimands under Heterogeneous Effects

We now analyze what can and cannot be learned from frequently used OLS and IV estimands

for linear-in-means models under heterogeneous effects. We show that, while these estimands

do not lead to point identification, they still carry information about key economic quantities.

As in Section II, we ease notation by setting N = {1, . . . , N}, omitting group subscripts,

and treating Zig as one-dimensional. Also, as before, we assume that Zig is an individual-level

shifter, and that the shifters are not perfectly collinear. To ensure instrument relevance, we

assume that γig ̸= 0 for every i and g, so that Zig has a nonzero effect on observed outcomes.18

IV.A. Empirical Analysis with OLS Estimands

We first analyze the OLS estimands βOLS
Yi

and βOLS
Ȳ

, which are defined in Section II.C.1. To

interpret these estimands for heterogeneous effects, first suppose that βi and γi are heteroge-

neous across groups but homogeneous within groups. In this case, βOLS
Yi

and βOLS
Ȳ

recover av-

erage equilibrium effects E(∆Yi/∆Zi), {E(∆Yi/∆Zj)}j ̸=i, and {E(∆Ȳ /∆Zj)}j across groups.

These quantities provide insight into equilibrium behavior. In a peer effects setting, they

capture average equilibrium effects (across classrooms) of policies that impact student per-

formance. In a household labor supply context, they represent average equilibrium effects

(across families) of wage shocks on household incomes. In the oligopoly example, they quan-

tify average equilibrium effects (across markets) of firm-specific cost shocks on firm output.

If βi and γi are also heterogeneous within groups, then these OLS estimands no longer

recover average equilibrium effects. To see why, note that within-group heterogeneity causes

∆Yi/∆Zj to differ across agents j ̸= i and ∆Ȳ /∆Zj to differ across agents j. Therefore, any

OLS regression that includes averages of Z, while excluding {Zj}Nj=1 as individual regressors,

18This assumption can be relaxed to allow for instruments that affect the outcomes for a subset of agents.
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suffers from omitted variable bias.19 This bias arises even with constant effects across groups.

Indeed, as long as βi and γi differ among agents in a group, these regressions are misspecified.

For the regressions to be correctly specified in the presence of within-group heterogeneity,

it is important to include the shifters {Zj}Nj=1 separately as individual regressors. Specifically,

we define the OLS estimands βOLS
Yi

= E(Z̃Z̃ ′)−1 E(Z̃Yi) and β
OLS
Ȳ

= E(Z̃Z̃ ′)−1 E(Z̃Ȳ ), which

correspond to regressions of Yi and Ȳ , respectively, on the entire vector Z̃ = (1, Z ′)′. Even

with heterogeneous effects within and across groups, these regressions recover an average of

the equilibrium effects E(∆Yi/∆Zi), {E(∆Yi/∆Zj)}j ̸=i, and {E(∆Ȳ /∆Zj)}j across groups.

Proposition 2. In a linear-in-means model with heterogeneous effects, the economic quanti-

ties E(∆Yi/∆Zi), {E(∆Yi/∆Zj)}j ̸=i, and {E(∆Ȳ /∆Zj)}j are recovered from OLS estimands:

βOLS
Yi

= E(Z̃Z̃ ′)−1 E(Z̃Yi) and βOLS
Ȳ = E(Z̃Z̃ ′)−1 E(Z̃Ȳ ), where Z̃ = (1, Z ′)′.

OLS Estimands for Social Multiplier Effects

For constant effects models, the social multiplier M constant = (∆Ȳ /∆Z̄)/(∆Yi/∆Zi) is point

identified from OLS estimands. Specifically, ∆Ȳ /∆Z̄ is recovered from regressing Ȳ on (1, Z̄)

and ∆Yi/∆Zi is recovered from regressing Yi on (1, Zi, Z̄−i). However, in the linear-in-means

model with heterogeneous effects, the social multiplier is no longer point identified from OLS.

To understand why OLS estimands do not recover social multipliers under heterogeneous

effects, first recall thatM constant is not well-defined in the case of within-group heterogeneity.

Instead, we define individual-specific multipliersMheterog.
(i) and aggregate multipliersMheterog.,

which are better suited for settings where agents in a group face different interaction effects.

If the interactions are constant across groups, thenMheterog.
(i) andMheterog. are both identified

from correctly specified OLS regressions, following the previous discussion. However, if the

interaction effects vary across groups, then these regressions instead recover the estimands:

MOLS
(i) =

∑N
j=1 E(∆Yj/∆Zi)

E(∆Yi/∆Zi)
and MOLS =

∑N
i=1 E(∆Ȳ /∆Zi)

1
N

∑N
j=1 E(∆Yj/∆Zj)

.

These estimands represent ratios of average equilibrium effects across groups. Yet, they do

not correspond to the economic quantities of interest in Table 1. As we show in Section V,

we may still be able to use OLS to place informative bounds on the social multiplier effects.

IV.B. Empirical Analysis with IV Estimands

We now reexamine the IV estimand, which is defined in equation (4). Under heterogeneous

effects, IV does not lead to point identification of βi. This negative result motivates our sub-

sequent analysis, examining: When is the IV estimand informative about interaction effects?

19If {Zj}Nj=1 are all uncorrelated, then the coefficient on Zi in a regression of Yi on (1, Zi, Z̄−i) would still
recover the average total individual effect E(∆Yi/∆Zi). Yet, the other coefficients are biased by construction.
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We establish conditions under which the IV estimand βIV
i (zi) will be a positively-weighted

average of βi, which is a minimal requirement for it to be informative about social interaction

effects. A standard condition for this property, which is widely used in the treatment effects

literature, is proposed by Imbens & Angrist (1994). It requires that the endogenous variable

Ȳ−i is affected uniformly by any change in the instrument Z̃−i. If we take Z̃−i to be Z−i (or

if Z̃−i is a one-to-one function of Z−i) then this condition has the following characterization.

Assumption IAM (Imbens-Angrist Monotonicity). For any vectors (z−i, zi) and (z′−i, zi) in

the support of Z, either P
(
Ȳ−i(z−i, zi) ≥ Ȳ−i(z

′
−i, zi)

)
= 1 or P

(
Ȳ−i(z−i, zi) ≤ Ȳ−i(z

′
−i, zi)

)
= 1.

We argue that this condition is plausible in settings where the interactions take place between

two agents, but we demonstrate that it is unlikely to hold with groups of three or more agents.

Pairs of Agents (N = 2)

We consider a special case of the model where the interactions take place between two agents.

Y1 = α1 + β1Y2 + γ1Z1 (14)

Y2 = α2 + β2Y1 + γ2Z2. (15)

This special case allows us to study peer effects between pairs of students, joint labor supply

decisions in two-person households, and the strategic interactions among firms in duopolies.

For any j ̸= i, the IV estimand equals βIV
i (zi) = Cov(Yi, Zj|Zi = zi)/Cov(Yj, Zj|Zi = zi).

This estimand can be expressed as a weighted average of all the potential realizations of βi.

βIV
i (zi) =

∫
supp(βi)

bi × ω(bi)dbi, where ω(bi) =
E(∆Yj/∆Zj|βi = bi)fβi

(bi)

E(∆Yj/∆Zj)
. (16)

Observe that larger weights ω(bi) are placed on values of βi in groups where the outcome Yj
is more responsive to the instrument Zj. For the weights to be non-negative, we can impose

IAM monotonicity, which requires that Yj is uniformly affected in the same direction by Zj.

This condition holds if and only if the coefficient γj retains the same sign across all networks:

P(γj ≥ 0) = 1 or P(γj ≤ 0) = 1. (17)

This condition does not impose restrictions on the interaction effects (β1, β2) in the model.20

Example (Peer Effects). Consider a model of peer effects with two students: i and j. Let

Zj indicate whether student j receives a scholarship, and assume that this scholarship always

raises student achievement, such that P(γj ≥ 0) = 1. In this case, IV recovers the average

peer effect βi in groups where student j’s achievement is most impacted by the scholarship.

Example (Household Labor Supply). Suppose that each household has two members, i

20An alternative sufficient condition is: γj ⊥ (β1, β2). However, this condition does not extend to N > 2.
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and j, and let Zj be a policy that increases person j’s wage. Then, IV measures the average

second earner effect µi in households where j’s income is particularly affected by the policy.

Example (Duopoly). Consider a duopoly, and let Zj be a technological shock that always

raises the productivity of firm j, i.e., P(λj1 ≤ 0) = 1. In this case, IV would estimate the

average conduct parameter for firm i in the markets where j is most responsive to the shock.

Groups of Three Agents (N = 3)

For peer groups of more than two agents, the IAM assumption is more restrictive with respect

to the interaction effects. To unpack these restrictions, we will examine the three-agent case.

Y1 = α1 + β1

(Y2 + Y3
2

)
+ γ1Z1 (18)

Y2 = α2 + β2

(Y1 + Y3
2

)
+ γ2Z2 (19)

Y3 = α3 + β3

(Y1 + Y2
2

)
+ γ3Z2. (20)

For distinct agents i, j, k ∈ {1, 2, 3}, the endogenous variable in agent i’s outcome equation is

Ȳ−i =
1
2
(Yj + Yk). A researcher can use either Zj or Zk as a valid instrument for Ȳ−i. In this

example, we focus on an IV strategy that uses both instruments jointly, i.e., Z̃−i = (Zj, Zk).

As in the two-agent case, we can interpret βIV
i (zi) as a weighted average of interaction effects,

where larger weights are given to values of βi in groups where Ȳ−i is more affected by Z−i.

If we impose IAM, then βIV
i (zi) will be a positively-weighted average of βi’s. However,

as shown in Figure 1, IAM places strong conditions on the reduced form effects ∆Ȳ−i/∆Zj

and ∆Ȳ−i/∆Zk.
21 For binary instruments, it requires that these effects have the same signs

in all networks and that one of these effects is always larger in magnitude than the other one.

For continuous instruments, it requires that the ratio of ∆Ȳ−i/∆Zj to ∆Ȳ−i/∆Zk is constant.

The restrictions on the reduced form also impose restrictions on the interaction effects.

Lemma 3. When N = 3 and (Zj, Zk) are binary, Assumption IAM holds if and only if:

(i) P(γℓ ≥ 0) = 1 or P(γℓ ≤ 0) = 1, for ℓ ∈ {j, k}.

(ii) P
(

1+ 1
2
βj

1+ 1
2
βk

≥
∣∣∣ γjγk ∣∣∣) = 1 or P

(
1+ 1

2
βj

1+ 1
2
βk

≤
∣∣∣ γjγk ∣∣∣) = 1.

Example (Peer Effects). Suppose that Zj and Zk are binary variables indicating whether

students j and k, respectively, receive a scholarship. For simplicity, assume that γj and γk
are uniform within and across peer groups. Then, IAM requires that one student always has

a larger interaction effect than the other student: either P(βj ≥ βk) = 1 or P(βj ≤ βk) = 1.22

21Specifically, the IAM assumption imposes a total order on a vector space, requiring that the relation ⪰,
where z−i ⪰ z′−i if and only if P

(
Ȳ−i(z−i, zi) ≥ Ȳ−i(z

′
−i, zi)

)
= 1, is a total order on the support of Z−i.

22If the indices j and k are chosen arbitrarily, then one could overcome this restriction by defining j to be
the member of the peer group who experiences the most social pressure. However, if j and k take on specific

25



Example (Household Labor Supply). Suppose that Zj and Zk are binary factors influenc-

ing the wages of household members j and k, respectively. In this case, IAM requires that one

person always values leisure more than the other: either P(µj ≥ µk) = 1 or P(µj ≤ µk) = 1.

Example (Oligopoly). Suppose that Zj and Zk are binary productivity shocks to firms j

and k, respectively. If the coefficients λj1 and λk1 are constant within and across markets,

then IAM implies that δj + bθj is always greater than (or always less than) δk + bθk. To

interpret this statement, recall that δj and δk are the slopes of firms’ marginal cost curves,

and bθj and bθk are the (conjectured) indirect effects of firms’ actions on the market price.

Unless the indices j and k are chosen to satisfy this restriction, it is hard to justify in practice.

Figure 1. Illustration of IAM Conditions for Two Instruments

Case 1. Binary Instruments (Zj , Zk) Case 2. Continuous Instruments (Zj , Zk)

Notes. These plots display feasible regions of the vector (∆Ȳ−i/∆Zj ,∆Ȳ−i/∆Zk) under Assumption IAM.

If the instruments Zj and Zk are continuous, then IAM imposes even stronger restrictions.

Lemma 4. When N = 3 and (Zj, Zk) are continuous, Assumption IAM holds if and only if:

(i) P(γℓ ≥ 0) = 1 or P(γℓ ≤ 0) = 1, for ℓ ∈ {j, k}.

(ii) P
(

1+ 1
2
βj

1+ 1
2
βk

≥
∣∣∣ γjγk ∣∣∣) = 1 or P

(
1+ 1

2
βj

1+ 1
2
βk

≤
∣∣∣ γjγk ∣∣∣) = 1.

Examples. For the peer effects example where γj = γk, Assumption IAM requires that βj
is a deterministic linear function of βk, such that βj = 2(a−1)+aβk for a ∈ R. For a house-

hold labor supply model where the wages (Wj,Wk) are used as instruments, this assumption

requires that household member j and k’s preferences over leisure and consumption are de-

terministic functions of one another, where
2−µj

1−µj
= a× 2−µk

1−µk
. Finally, for an oligopoly model

with λj1 = λk1, it implies that (δj + bθj) = a × (δk + bθk) + 1.5b(a − 1). We are not aware

roles, such as “teacher and student” or “parent and child”, then this relabeling approach will not be feasible.
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of any meaningful justification for these restrictions. So, for any model with heterogeneous

effects and two continuous instruments, IAM would be particularly difficult to rationalize.23

Alternative Conditions for Positive Weights

In order to overcome the economic restrictions implied by Imbens-Angrist monotonicity, we

propose an alternative assumption, which is sufficient for the IV estimand to be a positively-

weighted average of interaction effects. Specifically, under a testable condition on the instru-

ment correlation structure, we can relax IAM by imposing a weaker form of monotonicity.

Assumption PM (Partial Monotonicity). For any j ̸= i and any (zj, z−j) and (z′j, z−j) in the

support of Z, either P
(
Ȳ−i(zj , z−j) ≥ Ȳ−i(z

′
j , z−j)

)
= 1 or P

(
Ȳ−i(zj , z−j) ≤ Ȳ−i(z

′
j , z−j)

)
= 1.

This form of monotonicity is studied by Mogstad et al. (2021) as an alternative to the

Imbens-Angrist condition. It requires that monotonicity holds separately for each instrument

instead of for the entire instrument vector. If there is only one instrument, then both

assumptions are the same. If there are multiple instruments, then PM is weaker than IAM.

To see what PM implies about the structural parameters, consider the following lemma.

Lemma 5. Assumption PM holds if and only if P(γj ≥ 0) = 1 or P(γj ≤ 0) = 1 for all j ̸= i.

This result is perhaps surprising given the complex nature of the model. It reveals that PM

imposes no restrictions on the interaction effects. Instead, it only requires that the random

coefficient γj on each instrument Zj, where j ̸= i, retains the same sign across all groups.

We now introduce a testable condition that restricts the correlation structure of Z. This

condition places a bound the covariances of the instruments {Zj}j ̸=i in relation to the average

reduced form effects {E(∆Ȳ−i/∆Zj)}j ̸=i, which are point identified from OLS regressions.

Assumption NNW (No Negative Weights). Fix some zi ∈ supp(Zi). For any j, k ∈ N \ i:

Cov(Zj , Zk|zi) /∈

(
−
∑

ℓ/∈{i,j}

E(∆Ȳ−i/∆Zℓ)

E(∆Ȳ−i/∆Zj)
Cov(Zℓ, Zk|zi),−

∑
ℓ/∈{i,k}

E(∆Ȳ−i/∆Zℓ)

E(∆Ȳ−i/∆Zk)
Cov(Zℓ, Zj |zi)

)
.

This assumption holds if all the instruments Z−i are uncorrelated. Also, if the components

of γ−i share the same sign, then it holds when no two instruments are negatively correlated.

Lemma 6. Assumption NNW is satisfied if either: (1) Cov(Zj, Zk|zi) = 0 for all j, k ∈ N \ i
or if (2) both Cov(Zj, Zk|zi) ≥ 0 for all j, k ∈ N \ i and P(γ−i ≥ 0) = 1 or P(γ−i ≤ 0) = 1.

Note that NNW can be tested empirically as the terms in this condition are identified in the

data. So, one can assess whether this restriction holds without making economic arguments.

23Even if the instrument Z̃−i is a non-invertible function of (Zj , Zk), Assumption IAM is often still highly

restrictive. For example, in the case where Z̃−i is a linear combination of Zj and Zk, the restrictions implied
by Lemmas 3 and 4 are similar, if not unchanged. Moreover, even if we were to use only one instrument,
setting Z̃−i = Zj , the restrictions on the interaction effects do not go away unless Zj and Zk are uncorrelated.
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Suppose that we use a combination of the variables in Z−i as our excluded instrument.

Then PM and NNW ensure that the estimand βIV
i (zi) is a positively-weighted average of βi’s.

Proposition 3. Choose Z̃−i ⊆ Z−i, and suppose that Assumptions PM and NNW both hold.

Then the IV estimand is a positively-weighted average of instrument-specific IV estimands:

βIVi (zi) =
∑
j ̸=i

ωj ×
Cov(Yi, Zj |zi)
Cov(Ȳ−i, Zj |zi)

, where:
∑
j ̸=i

wj = 1 and wj ≥ 0, ∀j ̸= i.

Additionally, the IV estimand represents a positively-weighted average of interaction effects:

βIVi (zi) =

∫
supp(βi)

βi × ω(βi|zi)dβi, where:
∫
ω(βi|zi)dβi = 1 and ω(βi|zi) ≥ 0, ∀βi.

From this proposition, we also derive a corollary that applies for any type of instrument Z̃−i.

Corollary 1. For any choice of Z̃−i, the IV estimand is a positively-weighted average of βi if:

(i) P(γ−i ≥ 0) = 1 or P(γ−i ≤ 0) = 1.

(ii) corr(Zj, Zk|zi) ≥ 0, for any j, k ̸= i.

To interpret these results, we now reconsider the special case of the model with three agents.

Groups of Three Agents (N = 3)

When there are three agents i, j, k ∈ {1, 2, 3}, Assumption PM requires that γj and γk retain

the same signs across all peer groups, and Assumption NNW simplifies in the following way:

Cov(Zj, Zk|zi) /∈

(
− E(∆Ȳ−i/∆Zj)

E(∆Ȳ−i/∆Zk)
Var(Zj|zi),−

E(∆Ȳ−i/∆Zk)

E(∆Ȳ−i/∆Zj)
Var(Zk|zi)

)
. (21)

Example (Peer Effects). First, consider a peer effects model where Zj and Zk are factors

that raise the achievement of students j and k, respectively. If these factors are not negatively

correlated, then the IV estimand βIV
i (zi) is a causal parameter. It measures the average peer

effect βi in groups where the mean performance of students j and k is most affected by Z̃−i.

Example (Household Labor Supply). Suppose that Zj and Zk are the wages of household

members j and k, respectively. If these wages are not negatively correlated, then βIV
i (zi)

represents the average value of µi in households where the earnings of j and k are most

improved by Z̃−i, i.e., where j and k are least inclined to reduce their labor when wages rise.

Example (Oligopoly). Suppose that Zj and Zk are positive productivity shocks that are

experienced by firms j and k, respectively. As long as these two shocks are not negatively cor-

related, the parameter βIV
i (zi) is causal. It measures the average conduct parameter of firm

i in markets where the mean output of firms j and k is most responsive to the instrument Z̃−i.
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Conditional IV Estimation Using One Instrument

In cases where Assumptions NNW and PM fail to hold, an alternative IV specification may

still recover a positively-weighted average of interaction effects. Consider the IV estimand:

βIV
i (z−j) =

Cov(Yi, Zj|Z−j = z−j)

Cov(Ȳ−i, Zj|Z−j = z−j)
(22)

This estimand uses only one instrument Zj, while controlling for all other instruments Z−j.

To interpret this estimand as a positively-weighted average of the interaction effects, we only

require that ∆Ȳ−i/∆Zj has the same sign across all networks. This monotonicity condition

imposes the same parametric restriction as in the N = 2 case. In particular, βIV
i (z−j) equals

a positively-weighted average of βi-values if and only if P(γj ≥ 0) = 1 or P(γj ≤ 0) = 1.24

Higher weights are put on βi-values in groups where Ȳ−i is more affected by the instrument Zj.

V. Learning about Peer Effects and Multipliers under Heterogeneous Effects

In this section, we show how to use OLS and IV regressions to learn about endogenous inter-

action effects and social multipliers in the linear-in-means model with heterogeneous effects.

V.A. Using IV to Bound Average Peer Effects

First, we show how the IV estimand compares to an unweighted average of interaction effects.

The following proposition demonstrates that this relationship is governed by the parameter

ψi, which is defined in equation (9). This parameter has an important economic interpre-

tation: it determines how an agent i’s outcome Yi affects the average outcome Ȳ−i of i’s peers.

Proposition 4. Let βIV
i (zi) be a positively-weighted average of βi and E(βi|β−i, γ−i) = E(βi).

(i) If ψi > 0 with probability 1, then βIV
i (zi) > E(βi).

(ii) If ψi < 0 with probability 1, then βIV
i (zi) < E(βi).

There are notable examples where the sign of ψi can be easily determined. Specifically, under

Assumption IV, ψi > 0 when βj > 0 for all j ̸= i and ψi < 0 when βj < 0 for all j ̸= i.25

Examples. Suppose that all the interaction effects share the same sign. Then the IV

estimand overstates the magnitude of E(βi) for any agent i. Namely, for a peer effects

model with positive social interactions, IV would overestimate the average peer effect. For a

household labor supply model, it would overestimate the average added earner effect. Finally,

for an oligopoly model, it would overestimate the average conduct parameter in the market.

Remark. While these examples may suggest that IV generally overestimates the magni-

tude of E(βi), there are also notable exceptions. For example, consider a peer effects model

24Averaging over Z−j , we can also define the following IV estimand βIV
i =

∫
βIV
i (z−j)fZ−j (z−j)dz−j .

25In the Appendix, we show how this result extends to cases where βi and β−i are statistically dependent.

29



where βi < 0 and βj > 0 for every j ̸= i. In this setting, everyone seeks to conform to the

average action in the group, except for person i, who wishes to deviate. Since ψi is less than

zero in this case, Proposition 4 shows that βIV
i (zi) would understate the magnitude of E(βi).

Pairs of Agents (N = 2)

For two-agent groups, we draw comparisons to the mean with the following decomposition.

βIV
i (zi) = E(βi) +

Cov[βi, γj/(1− β1β2)]

E[γj/(1− β1β2)]
. (23)

If βi is mean independent of (βj, γj), then the relationship between βIV
i (zi) and E(βi) is fully

governed by agent j’s interaction effect βj. In particular, (i) and (ii) in Proposition 4 become:

(i) If βj > 0 with probability 1, then βIV
i (zi) > E(βi).

(ii) If βj < 0 with probability 1, then βIV
i (zi) < E(βi).

One implication of Proposition 4 is that, if β1 and β2 have the same sign within and across

groups, then IV necessarily overstates the magnitudes of E(β1) and E(β2). Alternatively, if

β1 and β2 always have opposite signs, then IV understates the magnitudes of E(β1) and E(β2).

Figure 2. Cases Where βIV
i (zi) > E(βi) for Three-Agent Groups

Notes. This figure depicts values of (βj , βk) where the IV estimand overstates the average interaction effect.

Groups of Three Agents (N = 3)

Suppose that each group contains three agents. Then, (i) and (ii) in Theorem 2 reduce to:

(i) If βj + βk + βjβk > 0 with probability 1, then βIV
i (zi) > E(βi).

(ii) If βj + βk + βjβk < 0 with probability 1, then βIV
i (zi) < E(βi).
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In Figure 2, we plot the settings where the sum βj+βk+βjβk is positive. If βj and βk share the

same sign, then the relationship between βIV
i (zi) and E(βi) is unambiguous. Alternatively, if

these interaction effects have different signs, then it is harder to compare βIV
i (zi) with E(βi).

V.B. Using OLS to Test for Peer Effects and Multipliers

We now demonstrate how to use OLS regressions to test for the presence of social multipliers

and endogenous interaction effects, as well as to learn about the signs and magnitudes of these

interaction effects under heterogeneous effects. Our tests will utilize the average equilibrium

quantities {E(∆Yj/∆Zi)}i,j, {E(∆Ȳ /∆Zi)}i, and {E(∆Ȳ−i/∆Zi)}i, all of which are are point

identified from correctly specified OLS regressions, following the discussion in Section IV.A.

Before presenting our tests, we first establish the following proposition, which shows how

endogenous interaction effects and social multipliers relate to various reduced form quantities.

Proposition 5. Suppose γi > 0. Then, under Assumptions I-IV, the following results hold:

(a) Mheterog.
(i) − 1 has the same sign as ∆Ȳ−i/∆Zi.

(b) Mheterog. − 1 has the same sign as
∑N

i=1∆Ȳ−i/∆Zi.

(c) βj has the same sign as ∆Yj/∆Zi.

(d) If βj, βk ≥ 0 or βj, βk ≤ 0, then βj − βk has the same sign as ∆Yj/∆Zi −∆Yk/∆Zi.

We will draw on the results presented in Proposition 5 throughout our subsequent analysis.

Testing for Social Multipliers

We begin by showing how to use OLS estimands to draw inference about individual-specific

social multipliers Mheterog.
(i) and aggregate social multipliers Mheterog., which are both defined

in Table 1. If these multipliers are greater (less) than one, then it would suggest that spillover

effects amplify (suppress) the impact of individual shocks on the average outcome in a group.

To learn about the social multipliers, we analyze the equilibrium effects Y−i/∆Zi, which

represent spillover effects of Zi on agent i’s peers. By Proposition 5, we can assess whether

social multipliers are greater (less) than one by evaluating the signs of these reduced form

quantities. Although we are unable to compute {∆Ȳ−i/∆Zi}Ji=1 within every group, we can

estimate the average reduced form effects {E(∆Ȳ−i/∆Zi)}Ji=1 using OLS regressions. With

these estimates, we can test whether social multipliers are greater than or less than one for

a subset of groups in the population, providing insight into the role of network spillovers.

For example, a rejection of the null H0 : E(∆Ȳ−i/∆Zi) ≤ 0 implies that P(Mheterog.
(i) > 1) > 0.

Testing for Positive Interaction Effects

Next, we show how to test for positive (or negative) interaction effects among agents in the

population. Recall that positive interaction effects indicate strategic complementarity, which
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is consistent with classical peer effects, but is inconsistent with household labor supply and

oligopoly. In contrast, negative interaction effects indicate strategic substitutability, which

is consistent with household labor supply and oligopoly, but not with classical peer effects.

By Proposition 5, the sign of the interaction effect βj can be inferred from the individual

spillover effect ∆Yj/∆Zi, provided the sign of γi is known. Specifically, for two agents i and

j where γi > 0, the interaction effect βj of agent i always shares the same sign as ∆Yj/∆Zi.

By this property, we can construct a test for the existence of positive interaction effects

from OLS regressions. In particular, if we assume that P(γj ≥ 0) = 1, then we can assess

whether βi > 0 with positive probability by testing the null hypothesisH0 : E(∆Yi/∆Zj) ≤ 0.

In some cases, it may not be feasible to regress the outcomes Yi on the entire vector Z.

Moreover, if the interaction effects are heterogeneous within groups, then using an alternative

regression based on averages of {Zj}j introduces omitted variable bias. This bias confounds

our ability to recover the average individual spillover effects E(∆Yi/∆Zj), which prevents us

from conducting the tests outlined above. Fortunately, we can still test for the presence of

endogenous interaction effects even when running a correctly specified regression is infeasible.

Lemma 7. Define βOLS
Yi,Z̄−i

to be the coefficient on Z̄−i in an OLS regression of Yi on (1, Zi, Z̄−i).

If this estimand is nonzero, then the interaction effect βi is nonzero with positive probability.

Lemma 7 provides a way to test for endogenous interaction effects, even in the presence of

heterogeneous effects, using an OLS regression of Yi on (1, Zi, Z̄−i). However, it is important

to note that this regression does not allow us to determine the sign of the interaction effects.

Testing for the Relative Strengths of Interaction Effects

We can also use OLS to test for the relative strengths of interaction effects. Specifically, for

two distinct agents j and k in the group, we may want to empirically assess whether βj ≥ βk.

For example, do female or male students face more social pressure? Do husbands or wives

exhibit higher second earner effects? What types of firms have larger conduct parameters?

To conduct this test, we draw on Proposition 5. If βj and βk share the same sign and

if γi > 0, then difference between agents’ interaction effects, βj − βk, always has the same

sign as the difference in individual spillover effects, ∆Yj/∆Zi−∆Yk/∆Zi for any third agent

i /∈ {j, k}. Under a monotonicity assumption, P(γi ≥ 0) = 1, we can assess whether βi > βj
with positive probability by testing the null hypothesis H0 : E(∆Yi/∆Zk) ≤ E(∆Yj/∆Zk).

Testing for Bounded Spillovers

Using OLS regressions, we can also test Assumption IV, which states that βi ∈ (1−N, 1) for
every agent i. One consequence of this assumption is that ∆Ȳ /∆Zi has the same sign as γi.

Using this property, we can test P(1−N < βi < 1) = 1 through the nullH0 : E(∆Ȳ /∆Zi) > 0

as long as we maintain a monotonicity assumption that P(γi ≥ 0) = 1. Rejecting this test

means that the spillovers are unbounded, which suggests that the model is likely misspecified.
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VI. Reanalyzing the Empirical Applications under Heterogeneous Effects

We now apply our results to the two applications, analyzing peer effects in Kenyan primary

schools and competition among cocoa traders in Sierra Leone under heterogeneous effects.

VI.A. Classroom Peer Effects in Kenya

We reanalyze the peer effects application (Duflo et al., 2011) under the linear-in-means model

with heterogeneous effects. To do so, we make two observations about the empirical setting.

First, it is plausible that P(γi ≥ 0) = 1 for all i, given that students’ baseline test scores are

likely to have a positive impact on their endline test scores. This suggests that Assumption

PM is satisfied in this setting. Second, under the experimental protocols, students’ baseline

scores {Zj}Nj=1 are uncorrelated with one another after controlling for the school that students

attend. Therefore, it is also plausible that Assumption NNW is satisfied in this setting.

Analyzing OLS Estimates

In the first three columns of Table 2, Panel A, we provide estimates from an OLS regression

of Yi on (1, Zi, Z̄−i) with school fixed effects. Under heterogeneous effects, the coefficient on

Zi in these regressions represents the average total individual effect E(∆Yi/∆Zi) of students’

own baseline test scores Zi on their own endline test scores Yi. We estimate that, on average,

scoring 1 point higher on the baseline test leads students to score 0.5 points higher on the

endline test. This estimate accounts for spillover effects that take place within the classroom.

In this OLS regression, the coefficient on peers’ mean baseline score Z̄−i is estimated to

be positive and significant. By Lemma 7, this result allows us to infer that peer effects do

exist in at least some of the classrooms in the study. Note that, under heterogeneous effects,

we cannot use this estimate to infer the sign of these peer effects, even while they do exist.26

Analyzing IV Estimates

In the first three columns of Panel B, we present estimates from the main IV specification in

Duflo et al. (2011). We estimate a significant, positive IV coefficient of approximately 0.45.

Under homogeneous effects, this estimate corresponds to the constant peer effect β. However,

in the presence of heterogeneous effects, it gives a weighted average of βi across students.

Since Assumptions PM and NNW are both plausible in this setting, Proposition 3 tells

us that the IV estimand is a causal parameter, representing a positively-weighted average of

peer effects among students.27 Moreover, if we also assume that no students exhibit negative

peer effects, i.e., if P(βi ≥ 0) = 1 for all i, then Proposition 4 tells us that this IV estimand

26In this application, it is infeasible to regress the outcomes Y on the entire vector Z̃ = (1, Z ′)′ as it requires
labeling each student i in a way that is consistent across classrooms. This task may be straightforward in
certain applications, e.g., when studying labor supply in two-person households where there is always one
primary earner. However, it is impractical in other cases where the number and composition of agents in a
group varies. Also, when N is large, there could be more parameters to estimate than there are observations.

27Specifically, this IV estimand places larger weights on students for which Ȳ−i is more responsive to Z̄−i.
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represents an upper bound on the average peer effect E(βi) among students. We estimate

that, on average, a 1 point increase in the average test score of one’s peers does not directly

influence a student’s own test score by more than 0.45 points. As this upper bound is large,

this would also suggest that peer effects may have a significant influence on student behavior.

Testing for Social Multipliers

In the peer effects application, we find evidence that social multipliers are greater than one.

The last three columns of Table 2, Panel A, present estimates from OLS regressions of peers’

mean endline score Ȳ−i on own baseline score Zi and peers’ mean baseline score Z̄−i. The

coefficient on Zi in these regressions corresponds to E(∆Ȳ−i/∆Zi), representing the average

equilibrium effect of Zi on Ȳ−i in the population.28 We find that this coefficient is positive and

statistically significant at the 5% level. This finding would indicate that factors influencing

individual student achievement are amplified within a classroom through social interactions.

VI.B. Strategic Pricing Decisions in Sierra Leone

We now reanalyze competition among cocoa traders in Sierra Leone (Casaburi & Reed, 2022)

under the linear-in-means model with heterogeneous effects. In order to interpret the results,

we make two observations. First, in this application the coefficient γi is proportional to the

subsidy s, which is uniform across traders within and across markets. So, partial monotonic-

ity (PM) is plausible in this case. Second, the experimental design ensures that treatment

statuses {Zj}Nj=1 are mutually uncorrelated. Thus, Assumption NNW is expected to apply.

Analyzing OLS Estimates

In the first two columns of Table 3, Panel A, we provide estimates from OLS regressions of

Qi on (1, Zi,
∑

j ̸=i Zj) with and without trader controls. Under heterogeneous effects, the co-

efficient on Zi in these regressions represents the average total individual effect E(∆Qi/∆Zi)

of receiving a subsidy on a trader’s purchases. We estimate that, on average, a subsidy leads

a trader to buy about 400 more pounds cocoa from farmers, after accounting for spillovers.

In this OLS regression, the coefficient on the number of treated competitors
∑

j ̸=i Zj is

estimated to be negative and significant. By Lemma 7, this result allows us to conclude that

the conduct parameters θi/2κi are nonzero with positive probability. Therefore, at least some

traders exhibit strategic interactions, which implies that markets are imperfectly competitive.

Analyzing IV Estimates

In the first two columns in Panel B, we provide estimates from the IV regressions of Qi on∑
j ̸=iQj, instrumented by

∑
j ̸=i Zj. After including trader controls, we estimate a significant,

negative IV estimand of -0.02. Under homogeneous effects, this estimand would correspond

28Under heterogeneous effects within classrooms, this regression is misspecified, as shown in Section IV.A.
Nevertheless, our interpretation of the estimand is unchanged as long as students’ baseline scores {Zj}Nj=1 are
mutually uncorrelated after controlling for schools. This condition is valid under the experimental protocols.
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to the constant conduct parameter θ/2κ exhibited by traders. However, under heterogeneous

interaction effects, it represents a weighted average of conduct parameters among traders.

Since Assumptions PM and NNW are plausible in this environment, we conclude from

Proposition 3 that the IV estimand is a causal parameter, representing a positively-weighted

average of conduct parameters.29 Moreover, as the conduct parameters θi/2κi are positive

by construction, the IV estimand gives an upper bound on the average conduct parameter

E(θi/2κi) among traders. We find that, on average, raising a competitors’ cocoa purchases

by 1 pound does not directly reduce a trader’s own purchases by more than 0.02 pounds.

This upper bound is small, implying that strategic interactions are limited in this setting.

Testing for Social Multipliers

In this application, we find no strong evidence of multiplier effects. The last two columns in

Table 3, Panel A, show OLS estimates from regressing competitors’ total quantity
∑

j ̸=iQj

on own treatment status Zi and total number of treated competitors
∑

j ̸=i Zj. The coefficient

on Zi corresponds to E
(
∆
(∑

j ̸=iQj

)
/∆Zi

)
, which measures the average equilibrium effect

of one trader i’s treatment status on the total quantity of his or her competitors.30 This

coefficient estimate is small and statistically insignificant, indicating that there is no social

multiplier in this setting. We therefore conclude that the strategic interactions have little to

no material impact on how changes in traders’ demand or costs affect overall market output.

VII. Conclusion

We analyzed a general class of linear simultaneous equations models where agents are influ-

enced by the average outcome of their peers. Our framework nests the classical linear-in-

means model (Manski, 1993). Moreover, we extended the model to allow for both positive

and negative interaction effects that differ within and across groups. We showed that the

assumption of uniform interaction effects significantly limits the scope of economic behavior,

making the model unsuitable for many real-world applications. By allowing for heteroge-

neous effects, we demonstrated that the model can be applied more broadly to study a

wide range of network settings, such as joint labor supply decisions within households and

strategic interactions between firms. Using the heterogeneous effects framework, we exam-

ined what insights are gained from linear peer effects estimators. We found that linear OLS

and IV regressions can be used to draw informative inferences about endogenous interaction

effects and social multipliers, even while these methods do not yield point identification. We

applied our results to two applications from Duflo et al. (2011) and Casaburi & Reed (2022).

29Larger weights placed on traders whose competitors’ purchases are more responsive to receiving subsidies.
30As in the first application, this interpretation requires that {Zj}Nj=1 are uncorrelated with one another.

This condition is ensured by the experimental protocols, as a trader’s treatment status is randomly assigned.
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Appendix
Proof of Proposition 1

Consider a group with N agents, where agents’ outcomes are defined by the system (1).31 To
prove Proposition 1, we begin by defining the reduced form system using matrix notation.

Y = det(I −B)−1A[α+ diag(γ)Z],

where A = adj(I −B) is the adjugate of I −B, and det(I −B) is the determinant of I −B.
By definition, A is equal to the transpose of the matrix of cofactors of I −B. In particular,
the individual entries {Aij}i,j of the matrix A are defined so that:

Aij = (−1)i+j × det([I −B]−j,−i),

where [I −B]−j,−i is a submatrix formed by removing the jth row and ith column of I −B.

We want to derive alternate expressions for {Aij}i,j that are not in matrix form. To do so,
we write Aij = (−1)i+j ×det

(
C(i, j)− (N −1)−1β−j1

′
(N−1)×1

)
, where C(i, j) ∈ R(N−1)×(N−1)

is a matrix that is given by C(i, j) = I−j,−i(1(N−1)×1 + (N − 1)−1β−j). This matrix satisfies:

det
(
C(i, j)

)
= 1{i = j} ×

∏
ℓ̸=j

(
1 +

βℓ
N − 1

)

adj
(
C(i, j)

)
=


diag

({ ∏
ℓ/∈{k,j}

(
1 +

βℓ
N − 1

)}
k ̸=j

)
if i = j[

(−1)i+j−1 ×
∏

ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)]
[ej]−i[ei]

′
−j if i ̸= j

Then, by the matrix determinant lemma, the diagonal entries {Ajj}Nj=1 of A are equal to:

Ajj = det
(
C(j, j)

)
− 1

N − 1
1′(N−1)×1 adj

(
C(j, j)

)
β−j

=
∏
ℓ̸=j

(
1 +

βℓ
N − 1

)
− 1

N − 1
1′(N−1)×1 diag

({ ∏
ℓ/∈{k,j}

(
1 +

βℓ
N − 1

)}
k ̸=j

)
β−j

=
∏
ℓ̸=j

(
1 +

βℓ
N − 1

)
−
∑
k ̸=j

[
βk

N − 1

∏
ℓ/∈{k,j}

(
1 +

βℓ
N − 1

)]
31To simplify the notation, we will omit group subscripts and treat Zi as a one-dimensional variable.
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Moreover, by the exact same reasoning, the off-diagonal entries {Aij}i ̸=j of A are equal to:

Aij = (−1)i+j ×
[
det
(
C(i, j)

)
− 1

N − 1
1′(N−1)×1 adj

(
C(i, j)

)
β−j

]
= (−1)i+j ×

[
0− 1

N − 1
1′(N−1)×1

[
(−1)i+j−1 ×

∏
ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)]
[ej ]−i[ei]

′
−jβ−j

]

=
1

N − 1
1′(N−1)×1

∏
ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)
[ej ]−i[ei]

′
−jβ−j

=
βi

N − 1

∏
ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)

Now that we have derived these expressions for {Aij}i,j, our next step is to re-write the
determinant of I −B so that it is not in matrix form. To do so, we take the following steps:

det(I −B) = det
[
I +

1

N − 1
diag(β)− 1

N − 1
β1′N×1

]
= det

[
I +

1

N − 1
diag(β)

](
1− 1

N − 1
1′N×1

[
I +

1

N − 1
diag(β)

]−1
β

)
For any agent i ∈ {1, . . . , N}, this determinant can be reformulated as:

det(I −B) =
N∏
ℓ=1

(
1 +

βℓ
N − 1

)
×
[
1−

N∑
j=1

βj
N − 1

(
1 +

βj
N − 1

)−1
]

=
∏
ℓ ̸=i

(
1 +

βℓ
N − 1

)
×
[
1−

(
1 +

βi
N − 1

)∑
j ̸=i

βj
N − 1

(
1 +

βj
N − 1

)−1
]

= Aii −
βi

N − 1

∑
j ̸=i

[
βj

N − 1

∏
ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)]

By plugging in our expressions for {Aij}i,j and det(I − B), we are now able to write
down the ith reduced form equation for any agent i ∈ {1, . . . , N}. This equation is given by:

Yi =
1

det(I −B)

[
Aii(αi + γiZi) +

∑
j ̸=i

Aij(αj + γjZj)
]

= αi + γiZi +

∑
j ̸=i ζij ×

[
βj

N−1(αi + γiZi) + (αj + γjZj)
]

det(I −B)

where ζij = βi

N−1

∏
ℓ/∈{i,j}

(
1 + βℓ

N−1

)
. Next, for any i ∈ {1, . . . , N}, consider the average

outcome Ȳ−i among everyone excluding agent i. To derive an expression for Ȳ−i, we write:

Ȳ−i =
1

(N − 1)× det(I −B)
× (1N×1 − ei)

′A[α+ diag(γ)Z]

=
1

(N − 1)× det(I −B)
×

N∑
j=1

[∑
k ̸=i

Akj

]
︸ ︷︷ ︸

cij

(αj + γjZj),
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where the coefficient cii =
∑

k ̸=iAki is defined to be:

cii =
∑
k ̸=i

[
βk

N − 1

∏
ℓ/∈{k,i}

(
1 +

βℓ
N − 1

)]
,

and where each of the coefficients cij =
∑

k ̸=iAkj, for j ̸= i, is defined to be:

cij = Ajj +
∑

k/∈{i,j}

Akj

=
∏
ℓ̸=j

(
1 +

βk
N − 1

)
−
∑
k ̸=j

[
βk

N − 1

∏
ℓ/∈{k,j}

(
1 +

βℓ
N − 1

)]
+
∑

k/∈{i,j}

[
βk

N − 1

∏
ℓ/∈{k,j}

(
1 +

βℓ
N − 1

)]

=
∏
ℓ̸=j

(
1 +

βk
N − 1

)
− βi
N − 1

∏
ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)
=
(
1 +

βi
N − 1

− βi
N − 1

) ∏
ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)
=

∏
ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)
After plugging in these expressions for {cij}Nj=1, we arrive at the following equation:

Ȳ−i =

∑
j ̸=i cij ×

[
βj

N−1(αi + γiZi) + (αj + γjZj)
]

(N − 1)× det(I −B)

By taking similar steps, we can derive an analogous expression for the the mean outcome Ȳ :

Ȳ =

∑N
j=1 cj × (αj + γjZj)

N × det(I −B)
, where cj =

∏
ℓ̸=j

(
1 +

βℓ
N − 1

)
for j ∈ {1, . . . , N}

Necessary and Sufficient Conditions for a Unique Equilibrium

A unique equilibrium exists if and only if the determinant of I −B is nonzero. We write:

det(I −B) =

N∏
j=1

(
1 +

βj
N − 1

)
×
[
1−

N∑
i=1

βi
N − 1

(
1 +

βi
N − 1

)−1
]

=
N∑
i=1

[
1

N

N∏
j=1

(
1 +

βj
N − 1

)
− βi
N − 1

∏
j ̸=i

(
1 +

βj
N − 1

)]

=
(N − 1

N

) N∑
i=1

(1− βi)
∏
j ̸=i

(N − 1 + βj)

So, for anyN ≥ 2, a unique equilibrium exists if and only if
∑N

i=1(1−βi)
∏

j ̸=i(N−1+βj) ̸= 0.

41



Proof of Lemma 3

Let Zj and Zk be binary variables so that (Zj, Zk) takes values in {(0, 0), (0, 1), (1, 0), (1, 1)}.
Given this set of feasible values, Assumption IAM consists of four separate restrictions:

(1) P
(

∆Ȳ−i

∆Zj
≥ 0
)
= 1 or P

(
∆Ȳ−i

∆Zj
≤ 0
)
= 1

(2) P
(

∆Ȳ−i

∆Zk
≥ 0
)
= 1 or P

(
∆Ȳ−i

∆Zk
≤ 0
)
= 1

(3) P
(

∆Ȳ−i

∆Zj
+ ∆Ȳ−i

∆Zk
≥ 0
)
= 1 or P

(
∆Ȳ−i

∆Zj
+ ∆Ȳ−i

∆Zk
≤ 0
)
= 1

(4) P
(

∆Ȳ−i

∆Zj
− ∆Ȳ−i

∆Zk
≥ 0
)
= 1 or P

(
∆Ȳ−i

∆Zj
− ∆Ȳ−i

∆Zk
≤ 0
)
= 1

As long as βi, βj, βk ∈ (−1, 1), the partial effects ∆Ȳ−i/∆Zj and ∆Ȳ−i/∆Zk have the same
signs (respectively) as γj and γk. For this reason, restrictions (1) and (2) are equivalent to:

(1’) P(γj ≥ 0) = 1 or P(γj ≤ 0) = 1

(2’) P(γk ≥ 0) = 1 or P(γk ≤ 0) = 1

When combined with (1) and (2), the restrictions (3) and (4) can be reformulated as a single
condition: either P(|∆Ȳ−i/∆Zj| ≥ |∆Ȳ−i/∆Zk|) = 1 or P(|∆Ȳ−i/∆Zj| ≤ |∆Ȳ−i/∆Zk|) = 1.
We can re-interpret this condition as a statement about the random coefficients by writing:

(3’) P
(

1+ 1
2
βj

1+ 1
2
βk

≥
∣∣∣ γjγk ∣∣∣) = 1 or P

(
1+ 1

2
βj

1+ 1
2
βk

≤
∣∣∣ γjγk ∣∣∣) = 1

Proof of Lemma 4

Let Zj and Zk be continuous variables, and consider any two vectors (zj, zk) and (z′j, z
′
k)

taken from the support of (Zj, Zk). The difference in Ȳ−i when evaluated at these vectors is:

Ȳ−i(zj , zk)− Ȳ−i(z
′
j , z

′
k) =

[
Ȳ−i(zj , zk)− Ȳ−i(z

′
j , zk)

]
+
[
Ȳ−i(z

′
j , zk)− Ȳ−i(z

′
j , z

′
k)
]

=
∆Ȳ−i

∆Zj
× (zj − z′j) +

∆Ȳ−i

∆Zk
× (zk − z′k)

Assumption IAM requires that Ȳ g1
−i (zj, zk) − Ȳ g1

−i (z
′
j, z

′
k) and Ȳ g2

−i (zj, zk) − Ȳ g2
−i (z

′
j, z

′
k) share

the same sign for any two groups g1 and g2. We show that the condition holds if and only if:

(1) P
(

∆Ȳ−i

∆Zj
≥ 0
)
= 1 or P

(
∆Ȳ−i

∆Zj
≤ 0
)
= 1

(2) P
(

∆Ȳ−i

∆Zk
≥ 0
)
= 1 or P

(
∆Ȳ−i

∆Zk
≤ 0
)
= 1

(3) P
(

∆Ȳ−i/∆Zj

∆Ȳ−i/∆Zk
= a
)
= 1 for some a ∈ R

(“⇐”) Suppose Assumption IAM holds. Then, (1) and (2) apply for the same reason
that they do in the binary case. To justify (3), take (zj, zk) to be any vector that lies within
the interior of the support of (Zj, Zk). Then, for groups g1 and g2, define the quantities:

z′j = zj −
[
∆Ȳ g1

−i

∆Zk
+

∆Ȳ g2
−i

∆Zk

]
× ϵ and z′k = zk +

[
∆Ȳ g1

−i

∆Zj
+

∆Ȳ g2
−i

∆Zj

]
× ϵ,

42



where ϵ > 0 is chosen to be sufficiently small so that (z′j, z
′
k) lies inside the support of (Zj, Zk).

In this case, the differences Ȳ g1
−i (zj, zk)− Ȳ

g1
−i (z

′
j, z

′
k) and Ȳ

g2
−i (zj, zk)− Ȳ

g2
−i (z

′
j, z

′
k) are equal to:

Ȳ g1
−i (zj , zk)− Ȳ g1

−i (z
′
j , z

′
k) =

(
∆Ȳ g1

−i

∆Zj
×

∆Ȳ g2
−i

∆Zk

)
ϵ−

(
∆Ȳ g1

−i

∆Zk
×

∆Ȳ g2
−i

∆Zj

)
ϵ

Ȳ g2
−i (zj , zk)− Ȳ g2

−i (z
′
j , z

′
k) =

(
∆Ȳ g1

−i

∆Zk
×

∆Ȳ g2
−i

∆Zj

)
ϵ−

(
∆Ȳ g1

−i

∆Zj
×

∆Ȳ g2
−i

∆Zk

)
ϵ

Observe that the first equation is equal to the negative of the second equation. So, these
differences can only share the same sign when they both equal zero. Specifically, we require:

∆Ȳ g1
−i

∆Zj
×

∆Ȳ g2
−i

∆Zk
=

∆Ȳ g1
−i

∆Zk
×

∆Ȳ g2
−i

∆Zj
⇐⇒

∆Ȳ g1
−i/∆Zj

∆Ȳ g1
−i/∆Zk

=
∆Ȳ g2

−i/∆Zj

∆Ȳ g2
−i/∆Zk

This equation holds for any two groups g1 and g2. So, P
(

∆Ȳ−i/∆Zj

∆Ȳ−i/∆Zk
= a
)
= 1 for some a ∈ R.

(“⇒”) Suppose that conditions (1), (2), and (3) apply. Then, for some constant a ∈ R:

Ȳ−i(zj , zk)− Ȳ−i(z
′
j , z

′
k) =

∆Ȳ−i

∆Zk
×
[
a× (zj − z′j) + (zk − z′k)

]
,

where ∆Ȳ−i/∆Zk retains the same sign across groups. Thus, Assumption IAM must apply.
Note that we can re-write the conditions (1), (2), and (3) in terms of the random coefficients:

(1’) P(γj ≥ 0) = 1 or P(γj ≤ 0) = 1

(2’) P(γk ≥ 0) = 1 or P(γk ≤ 0) = 1

(3’) P
(

1+ 1
2
βj

1+ 1
2
βk

= a× γj
γk

)
= 1 for some a ∈ R

Proof of Lemma 5

For any j ̸= i, consider any two vectors (zj, {zk}k/∈{i,j}) and (z′j, {zk}k/∈{i,j}) in the support of
Z−i. By Lemma 1, the difference between the values of Ȳ−i evaluated at these vectors is:

Ȳ−i(zj , {zk}k/∈{i,j})− Ȳ−i(z
′
j , {zk}k/∈{i,j}) =

∏
ℓ/∈{i,j}

(
1 + βℓ

N−1

)
× γj(zj − z′j)

(N − 1)× det(I −B)

As det(I−B) > 0 and
∏

ℓ/∈{i,j}
(
1+ βℓ

N−1

)
> 0 with probability 1, the PM condition requires:

P
(
γj(zj − z′j) ≥ 0

)
= 1 or P

(
γj(zj − z′j) ≤ 0

)
= 1,

which occurs if and only if P(γj ≥ 0) = 1 or P(γj ≤ 0) = 1. This condition applies for all j.

Proof of Lemma 6

This result immediately follows from the observation that, under Assumption IV, the spillover
effect ∆Ȳ−i/∆Zj of Zj on Ȳ−i always shares the same sign as γj for every j ∈ {1, . . . , N} \ i.
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Proof of Proposition 3

In this model, Ȳ−i is a linear function of Z. Therefore, we can write Ȳ−i = π0+
∑N

j=1 πjZj for

some parameters π0 and {πj}Nj=1 that depend on the random coefficient vector (α, β, γ,N ).
Because the random coefficients are independent of Z, the conditional expectation of Ȳ−i

given Z is equal to E(Ȳ−i|Z) = E(π0)+
∑N

j=1 E(πj)Zj. Given these properties, we can write:

β̂TSLS
i (zi)

p→ Cov(Yi,L(Ȳ−i|Z−i)|Zi = zi)

Cov(Ȳ−i,L(Ȳ−i|Z−i)|Zi = zi)
=

Cov(Yi,E(Ȳ−i|Z)|Zi = zi)

Cov(Ȳ−i,E(Ȳ−i|Z)|Zi = zi)

=
∑
j ̸=i

E(πj)×
Cov(Yi, Zj |Zi = zi)

Cov(Ȳ−i,E(Ȳ−i|Z−i)|Zi = zi)

=
∑
j ̸=i

E(πj)×
Cov(Yi, Zj |Zi = zi)∑

k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

=
∑
j ̸=i

E(πj)× Cov(Ȳ−i, Zj |Zi = zi)∑
k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)︸ ︷︷ ︸

ωj

× Cov(Yi, Zj |Zi = zi)

Cov(Ȳ−i, Zj |Zi = zi)

By construction, the weights {ωj}j ̸=i sum to one. In addition, we prove the following claim.

Claim 1. Suppose that Assumption NNW holds. Then ωj will be non-negative for all j ̸= i.

Proof. For j ̸= i, the weight ωj is non-negative if and only if its numerator and denomina-
tor have the same sign. So, {ωj}j ̸=i are non-negative if and only if E(πj)×Cov(Ȳ−i, Zj|Zi = zi)
has the same sign as

∑
k ̸=i E(πk) × Cov(Ȳ−i, Zk|Zi = zi) for all j ̸= i. Note that this state-

ment is equivalent to the requirement that E(πj) × Cov(Ȳ−i, Zj|Zi = zi) retains the same
sign across all j ̸= i. Therefore, for any j, k ∈ {1, . . . , N} \ i, we rule out the case where:

0 > E(πj)× Cov(Ȳ−i, Zj |Zi = zi)

= E(πj) E(πk) Cov(Zj , Zk|Zi = zi) +
∑

ℓ/∈{i,k}

E(πj) E(πℓ) Cov(Zℓ, Zj |Zi = zi)

0 < E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

= E(πj) E(πk) Cov(Zj , Zk|Zi = zi) +
∑

ℓ/∈{i,j}

E(πk) E(πℓ) Cov(Zℓ, Zk|Zi = zi)

These inequalities can be reformulated in terms of bounds on the covariance of Zj and Zk.
32

−
∑

ℓ/∈{i,j}

E(πℓ)

E(πj)
Cov(Zℓ, Zk|Zi = zi) < Cov(Zj , Zk|Zi = zi) < −

∑
ℓ/∈{i,k}

E(πℓ)

E(πk)
Cov(Zℓ, Zj |Zi = zi)

Therefore, the requirement that all the weights {ωj}j ̸=i are non-negative is equivalent to the
condition that Cov(Zj, Zk|Zi = zi) does not satisfy the inequalities above for any j, k ̸= i.

32To see how, divide both inequalities by E(πj) E(πk), which we assume is positive without loss of generality.
If E(πj) E(πk) is negative, then the inequalities flip, and the claim still holds as j and k are chosen arbitrarily.
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Having proven this claim, the next step is to write down an expression for the TSLS
estimand as a weighted average of individual βi’s. Consider the following decomposition:

β̂TSLS
i (zi)

p→
∑

j ̸=i E(πj)× Cov(Yi, Zj |Zi = zi)∑
k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

=

∑
j ̸=i E(πj)×

(∑
ℓ ̸=i E(βiπℓ)× Cov(Zℓ, Zj |Zi = zi)

)
∑

k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

=

∑
ℓ̸=i E(βiπℓ)×

(∑
j ̸=i E(πj)× Cov(Zℓ, Zj |Zi = zi)

)
∑

k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

=

∑
ℓ̸=i E(βiπℓ)× Cov(Ȳ−i, Zℓ|Zi = zi)∑
k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

= E

(
βi ×

∑
ℓ̸=i πℓ × Cov(Ȳ−i, Zℓ|Zi = zi)∑

k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

)
To obtain the second equation above, we switch the order of summation in the numerator.
The final equation holds by linearity of expectation. In integral form, the TSLS estimand is:

βTSLS
i (zi) =

∫
supp(βi)

βi × ω(βi|zi)dβi,

where: ω(βi|zi) =
∑

ℓ̸=i E(πℓ|βi)× Cov(Ȳ−i, Zℓ|Zi = zi)∑
k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

fβi
(βi)

The last step of this proof will be to demonstrate that the weights ω(βi|zi) are all non-
negative as long as Assumptions PM and NNW are satisfied. We justify this claim below.

Claim 2. If Assumptions PM and NNW hold, then ω(βi|zi) is non-negative for every βi.

Proof. Using Lemma 1, we can write the coefficient πj, for any j ̸= i, to be:

πj =

γj ×
∏

ℓ/∈{i,j}
(
1 + βℓ

|N |−1

)
(|N | − 1)× det(I −B)

if j ∈ N

0 if j /∈ N

Here,
∏

ℓ/∈{i,j}
(
1 + βℓ

|N |−1

)
> 0 and det(I −B) > 0 with probability one. Moreover, by PM,

either γj ≥ 0 with probability one or γj ≤ 0 with probability one. Without loss of generality,
assume that γj ≥ 0 with probability one. Then P(πj ≥ 0) = 1, which ensures that:

E(πj) =

∫ ∞

−∞
πjfπj (πj)dπj =

∫ ∞

0
πjfπj (πj)dπj ≥ 0

E(πj |βi)fβi
(βi) =

∫ ∞

−∞
πjfπj |βi

(πj |βi)fβi
(βi)dπj =

∫ ∞

0
πjfπj ,βi

(πj , βi)dπj ≥ 0

These inequalities imply that E(πj) Cov(Ȳ−i, Zj|Zi = zi) and E(πj|βi) Cov(Ȳ−i, Zj|Zi =
zi)fβi

(βi) are either both non-negative or both non-positive across all βi ∈ supp(βi). More-
over, as the index j was chosen arbitrarily, this relationship applies for all j ∈ {1, . . . , N}\ i.

Assumption NNW ensures that E(πj) Cov(Ȳ−i, Zj|Zi = zi) has the same sign across all
j ̸= i. Since these terms also share the same sign as E(πj|βi) Cov(Ȳ−i, Zj|Zi = zi)fβi

(βi), for
all βi ∈ supp(βi) and j ̸= i, we conclude that all the weights ω(βi|zi) would be non-negative.
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Proof of Proposition 4

As a first step, we decompose the TSLS estimand to isolate the mean interaction effect.

βTSLS
i (zi) =

∑
j ̸=i E(βiπj)× Cov(Ȳ−i, Zj |Zi = zi)∑
k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

= E(βi) +

∑
j ̸=iCov(βi, πj)× Cov(Ȳ−i, Zj |Zi = zi)∑

k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)︸ ︷︷ ︸
(∗)

Under Assumption NNW, the product E(πj)×Cov(Ȳ−i, Zj|Zi = zi) has the same sign across
all j ̸= i. So, whenever Cov(βi, πj) has the same sign as E(πj) for all j ̸= i, the term (∗) will
be positive. Alternatively, if Cov(βi, πj) and E(πj) have opposite signs for all j ̸= i, then the
term (∗) will be negative. This reasoning leads us to the second step of the proof, where we
show that the parameter ψi determines the sign of Cov(βi, πj) relative to E(πj) for j ̸= i.

Pick any j, where j ̸= i. By the PM condition, either P(γj ≥ 0) = 1 or P(γj ≤ 0) = 1.
Without loss of generality, assume P(γj ≥ 0) = 1. Then, as shown in the proof of Theorem
2, the mean of πj must be positive. Also, the Law of Total Covariance guarantees that:

Cov(βi, πj) = E
(
Cov(βi, πj |γj , β−i,N )

)
+Cov

(
E(βi|γj , β−i,N ),E(πj |γj , β−i,N )

)︸ ︷︷ ︸
=0

Note that the second term on the right-hand-side is zero because E(βi|γj, β−i,N ) = E(βi).
Following the proof of Lemma 1, the coefficient πj can be expressed in terms of ψi by writing:

πj = 1{j ∈ N} ×
γj ×

∏
ℓ/∈{i,j}

(
1 + βℓ

|N |−1

)
(|N | − 1)× det(I −B)

= 1{j ∈ N} ×
γj ×

∏
ℓ/∈{i,j}

(
1 + βℓ

|N |−1

)
(|N | − 1)×

[
Aii − βi × ψi/(|N | − 1)2

]
where Aii depends only on β−i and N . To simplify notation, define the following parameters:

δij = 1{j ∈ N} × (|N | − 1)×
∏

ℓ/∈{i,j}

(
1 +

βℓ
|N | − 1

)
ξi = (|N | − 1)2 ×Aii

These terms δij and ξi depend only on β−i and N . Also, δij is positive with probability one.
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Using this new notation, we can write covariance between βi and πj to be:

Cov(βi, πj) = E

(
Cov

(
βi,

γj × δij
ξi − βi × ψi

∣∣∣γj , β−i,N
))

= E

(
E

([
βi − E(βi)

]
×
[ γj × δij
ξi − βi × ψi

− E
( γj × δij
ξi − βi × ψi

∣∣∣γj , β−i,N
)]∣∣∣∣γj , β−i,N

))
= E

(
E

([
βi − E(βi)

]
×
[ γj × δij
ξi − βi × ψi

− γj × δij
ξi − E(βi)× ψi

]∣∣∣∣γj , β−i,N
))

+ E

(
E

([
βi − E(βi)

]
×
[ γj × δij
ξi − E(βi)× ψi

− E
( γj × δij
ξi − βi × ψi

∣∣∣γj , β−i,N
)]∣∣∣∣γj , β−i,N

))
= E

([
βi − E(βi)

]
×
[ γj × δij
ξi − βi × ψi

− γj × δij
ξi − E(βi)× ψi

])
= E

(
ψi ×

γj × δij ×
[
βi − E(βi)

]2
(ξi − E(βi)× ψi)(ξi − βi × ψi)︸ ︷︷ ︸

≥ 0 almost surely and ̸=0 with positive probability

)

If ψi > 0 with probability one, then Cov(βi, πj) > 0. Alternatively, if ψi < 0 with probability
one, then Cov(βi, πj) < 0. Therefore, we conclude that Cov(βi, πj) has the same (different)
sign as E(πj) whenever ψi is positive (negative) with probability one. Since j is chosen
arbitrarily, this relationship holds for all j ̸= i. By the arguments above, this property
ensures that the term (∗) is positive if P(ψi > 0) = 1 and that (∗) is negative if P(ψi < 0) = 1.

Derivation of Social Multipliers

We now derive a closed-form expression for the individual-specific social multiplier Mheterog.
(i) .

Mheterog.
(i) =

∑N
j=1∆Yj/∆Zi

∆Yi/∆Zi
=

γiνi
det(I−B)

γi +
βiγi( 1

N−1

∑
j ̸=i βjνij)

(N−1) det(I−B)

=

(
1 + βℓ

N−1

)−1

1−
∑N

j=1
βj

N−1

(
1 +

βj

N−1

)−1
+ βi

N−1

(
1 + βi

N−1

)−1
(∑

j ̸=i
βj

N−1

(
1 +

βj

N−1

)−1
)

=

(
1 + βℓ

N−1

)−1

1− βi

N−1

(
1 + βi

N−1

)−1
+

[
βi

N−1

(
1 + βi

N−1

)−1
− 1

](∑
j ̸=i

βj

N−1

(
1 +

βj

N−1

)−1
)

=

(
1 + βi

N−1

)−1

(
1 + βi

N−1

)−1
[
1−

(∑
j ̸=i

βj

N−1

(
1 +

βj

N−1

)−1
)]

=
1

1−
(∑

j ̸=i
βj

N−1

(
1 +

βj

N−1

)−1
)

Note that the derivation of the expression for the aggregate multiplierMheterog. is analogous.
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