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Abstract

We study peer effects in linear-in-means models with heterogeneous interaction ef-

fects. The classical linear-in-means model imposes strict homogeneity on the inter-

action effects, yielding testable implications that can be readily examined in data.

We relax these restrictions to allow for both positive and negative interaction effects

that vary within and across groups. This extension makes the linear-in-means model

suited to study a wide range of economic behaviors in addition to peer effects, includ-

ing joint labor supply decisions within households and strategic interactions among

firms. We analyze what can and cannot be learned from frequently used OLS and IV

estimands for linear-in-means models under heterogeneous interaction effects. While

these estimands do not lead to point identification, they can still be used to draw

inferences about key economic quantities. We apply these results to two economic

applications: classroom peer effects in Kenyan primary schools and strategic pricing

decisions among cocoa traders in Sierra Leone. In each application, we reject homoge-

nous interaction effects. Yet, we still draw meaningful inferences about endogenous

interactions and social multipliers while allowing for heterogeneous interaction effects.

1 Introduction

Peer effects models are widely used in economics to study how individuals’ actions are shaped

by those around them, with applications ranging from education and health to labor markets

and beyond. The classical linear-in-means model (Manski, 1993) remains the most commonly

used framework for empirically analyzing these interactions.1 This model typically assumes

strict homogeneity in the endogenous interaction effects, requiring that all individuals, within

*We thank Lancelot Henry de Frahan for valuable comments. All errors are our own.
�Department of Economics, University of Chicago, Statistics Norway, and NBER.
�Department of Economics, University of Chicago.
§Department of Economics, University of Chicago.

1Applications of the linear-in-means framework include Sacerdote (2001), Guryan et al. (2009), Patacchini
& Zenou (2009), Duflo et al. (2011), Dahl et al. (2014), and Casaburi & Reed (2022), among others. Blume
et al. (2015) and Boucher et al. (2024) study the microfoundations and economic properties of these models.
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and across peer groups, are influenced in exactly the same way by the average outcome of

their peers. Identification and estimation is well-studied under this homogeneity assumption,

with researchers typically relying on linear OLS and IV estimators to recover economic

quantities of interest (Kline & Tamer, 2020). However, the identification arguments behind

these estimators do not readily transfer to settings with heterogeneous interaction effects.

The goal of our paper is to study peer effects in linear-in-means models with heterogeneity

in endogenous interaction effects. Our main contribution is to analyze what can and cannot

be learned from frequently used OLS and IV estimands for linear-in-means models. Although

these estimands do not generally lead to point identification under heterogeneous effects, we

show that they still offer valuable insights into key economic quantities—even in cases where

the available instruments are binary or have limited support. This stands in contrast to the

existing work on identification under heterogeneous effects, such as in Masten (2017), which

place strong demands on the available instruments and can often be difficult to implement.

We consider a setting with two or more groups, where each group g consists of a set of

agents Ng. Each agent i in group g has an outcome Yig, which is influenced by the outcomes

of other agents in the same group. This interdependence is characterized by a linear system:

Yig = αig +
βig

|Ng| − 1

∑
j ̸=i

Yjg + Z ′
igγig, for i ∈ Ng.

In these equations, {αig}i∈Ng , {βig}i∈Ng , and {γig}i∈Ng are all unknown structural parameters.

Additionally, {Zig}i∈Ng is a set of observed variables, which could include individual-level

shifters, if Zig ̸= Zjg for i ̸= j, as well as group-level covariates, if Zig = Zjg for all i, j ∈ Ng.

In this model, the parameter βig represents the individual interaction effect, indicating

how each agent i in group g is influenced by the average outcome in the rest of the group.

Whereas the classical linear-in-means model maintains that βig is constant across individuals

i and groups g, we allow the interaction effects to differ along both these dimensions. Also,

unlike previous work, we do not restrict the sign or magnitude of βig. Therefore, agents may

be positively or negatively affected, however intensely, by their peers. The parameters αig

and γig specify how the variables Zig would determine an agent i’s outcome Yig in absence of

spillover effects. We allow these terms to vary freely among agents within and across groups.

We also do not restrict the size or composition of each group, as characterized by the set Ng.

In Section II, we begin by reviewing the economic quantities commonly studied in models

with constant effects, along with the identification strategies used to recover these quantities.

To guide and interpret our results, we draw on three examples: classroom peer effects, house-

hold labor supply decisions, and competition among firms in oligopolies. In each example,

we show that assuming constant effects imposes strong restrictions on individual preferences

or technology, whereas allowing for heterogeneous effects relaxes these restrictions and allows

us to study a richer set of economic questions. We also show that the constant effects model
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yields testable implications in the form of over-identification tests and restrictions on OLS

estimands, which can be used to assess whether agents have homogeneous interaction effects.

Motivated by this analysis, we consider, in Section III, the heterogeneous effects model,

which allows αig, βig, and γig to vary freely among agents within and across groups. Under

this more general framework, we derive new expressions for the equilibrium outcomes in terms

of the individual interaction effects. We use these expressions to characterize equilibrium

behavior in the presence of heterogeneity, revealing how different configurations of interaction

effects distort group-level outcomes. We find that, with heterogeneous effects, the equilibrium

impact of an exogenous shock on group-level outcomes depends on which agents in the group

are directly exposed to that shock. These equilibrium effects may also differ across groups.

We then investigate what features of the model are recovered from OLS and IV estimation

under heterogeneous effects. We start by analyzing a class of OLS estimands obtained by

regressing the outcomes Y on exogenous variables Z (or linear combinations of Z). We show

that correctly specified OLS regressions can recover the average equilibrium effects of Z on Y

across groups, even when interaction effects are heterogeneous. These regressions also shed

light on social multiplier effects, which measure how network spillovers distort the impact of

individual-level shocks on group-level outcomes (Glaeser et al., 2003). Under heterogeneous

effects, OLS does not lead to point identification of social multipliers. Yet, we show that OLS

can still be used to test for positive (or negative) multipliers, allowing us to learn whether

spillovers tend to amplify (or suppress) the impacts of targeted policies. Moreover, we show

that OLS can be used to test for the presence of positive (or negative) interaction effects.

Next, we analyze what economic quantities are recovered from IV estimation. We study

a large class of IV estimands that use exclusion restrictions to recover the interaction ef-

fects βig. We show that, with heterogeneous effects, the IV estimand represents a particular

weighted average of interaction effects, which places higher weight on groups where aggregate

outcomes are more responsive to the instruments. We then derive necessary and sufficient

conditions for these weights to be non-negative, which we view as a minimal requirement for

the IV estimand to be informative about interaction effects. We also show how the IV esti-

mand compares to an unweighted average of interaction effects. In general, this relationship

depends on the signs of the interactions, whether they are positive or negative. We prove

that in many common network settings, such as classical peer effects, oligopoly models, and

public goods games, the IV estimand will necessarily overstate the average interaction effect.

In Section IV, we apply our analysis to data for two economic applications that employ

the linear-in-means model with constant effects: peer effects in Kenyan grade schools (Duflo

et al., 2011) and competition between cocoa traders in Sierra Leone (Casaburi & Reed, 2022).

In both instances, we find strong evidence to reject homogeneous interaction effects. In the

first application, we find that peer effects differ across classrooms. In the second application,

we conclude that traders respond strategically in different ways to their competitors’ actions.
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Given these findings, we then re-analyze our two empirical applications under the linear-

in-means model with heterogeneous interaction effects. In the Kenyan primary school setting,

we find that peer effects are positive for a large share of students. Our estimate of the upper

bound on the average peer effect implies that a 1 point increase in peers’ average test scores

raises a student’s own test score by no more than 0.45 points, on average. We also find strong

evidence of positive social multiplier effects, indicating that in some classrooms, the impact

of policies targeting individual achievement is amplified through peer interactions. In the

analysis of competition between cocoa traders in Sierra Leone, we find evidence of strategic

interactions and imperfect competition in price setting. Our estimated upper bound on the

average conduct parameter implies that increasing competitors’ cocoa purchases by 1 pound

reduces a trader’s own purchases by no more than 0.02 pounds, on average. We find no evi-

dence of social multiplier effects in this setting, suggesting that strategic interactions do not

substantially alter how trader-specific changes in demand or costs affect total market output.

Our paper contributes to two literatures. First, we contribute to a literature on the

empirical analysis of social interactions; see Paula (2017) and Kline & Tamer (2020) for

recent surveys.2 Within this literature, there is increasing recognition of the importance of

accounting for individual heterogeneity in endogenous interaction effects.3 While economic

theory is well-studied in these cases (Jackson & Zenou, 2015), there is less work addressing the

identification of models with heterogeneous interaction effects. One key exception is Masten

(2017), who studies identification for a linear peer effects model with random coefficients.4

He proves that the marginal distributions of the coefficients are point identified if there is

an instrument with continuous variation over a large support. However, he also shows that

instruments are insufficient for recovering the full joint distribution of random coefficients.

These results raise questions about what can be learned about other economic quantities,

such as equilibrium effects and social multipliers, in the presence of heterogeneity. Our paper

addresses this question by analyzing how to interpret and learn from OLS and IV estimation

in contexts with heterogeneous interaction effects. We view our results as constructive. While

point identification might not be achievable, we find that meaningful inferences can still be

made from frequently used OLS and IV estimators. Our approach is broadly applicable for a

variety of settings where access to a continuous instrument with large support is not feasible.

The second literature to which we contribute is concerned with the interpretation of

linear OLS and IV estimands in settings with unobserved heterogeneity in treatment effects.

Mogstad & Torgovitsky (2024) give a recent survey of this work. In a seminal paper, Imbens

& Angrist (1994) pioneer a framework for interpreting linear IV estimands as weighted aver-

2See Blume et al. (2011) for more discussion. Also, Sacerdote (2011) surveys the literature on peer effects
in education, and Browning et al. (2014) discusses the use of social interaction models for household behavior.

3Sacerdote (2011) highlights the importance of allowing for heterogeneity in interaction effects. Using a
discrete choice model, Volpe (2025) finds robust evidence that these effects differ across demographic groups.

4Hurwicz (1950), Kelejian (1974), and Hahn (2001) also examine simultaneous equations with random
coefficients. Hurwicz (1950) does not give explicit identification results. In addition, as Masten (2017) points
out, Kelejian (1974) and Hahn (2001) conduct analyses that are based on self-contradictory assumptions.

4



ages of local average treatment effects, and Angrist et al. (2000) extend these interpretations

to supply and demand models consisting of two simultaneous equations. The system of linear

simultaneous equations for peer effects differs in two important ways from the linear supply

and demand system studied by Angrist et al. (2000). First, the supply and demand system

is restricted to a network of two agents: a representative firm and a representative consumer

in each market. Second, the supply and demand system focuses on specific interaction ef-

fects where the sign is known, i.e., upward-sloping supply and downward-sloping demand. In

contrast, the system of linear simultaneous equations we consider does not place restrictions

on the signs of the interaction effects, which means that agents’ outcomes could be strategic

substitutes and/or complements. Therefore, we can apply our model to a wide range of set-

tings that involve substitutabilities and/or complementarities in decision-making, including

peer effects, household labor supply decisions, and competition among firms in an oligopoly.

Our paper contributes to this literature by demonstrating how to interpret linear OLS

and IV estimands for linear peer effects models with heterogeneous interaction effects. Our

analysis finds that many of the existing tools for interpreting these estimands do not easily

transfer to peer effects models. For example, with peer groups larger than two, the standard

monotonicity conditions for IV to have a causal interpretation (Imbens & Angrist, 1994) place

strong restrictions on the peer effects, which are unlikely to apply in many practical settings.

We propose alternative, weaker conditions under which IV retains a causal interpretation. We

then demonstrate how this causal parameter allows us to learn about economic quantities of

interest. Overall, our analysis gives an accessible framework for learning about heterogeneous

interaction effects and social multipliers from frequently used linear OLS and IV estimands.

2 The Linear-in-Means Model

In this section, we present the linear-in-means model, provide economic interpretations, and

define a set of target parameters. We then explain how each of these parameters is recovered

from the data under the assumption that the endogenous interaction effects are homogeneous.

2.1 Econometric Model

In its general form, the linear-in-means model with heterogeneous interactions is given by:

Yig = αig +
βig

|Ng| − 1

∑
j ̸=i

Yjg + Z ′
igγig, for i ∈ Ng. (1)

To interpret the flexibility of this model, it is useful to contrast it with the classical linear-in-

means model, which assumes that all the interaction effects are homogeneous. Specifically,

the classical model imposes that βig = βjg for any two agents i and j, which means that all

agents in a group are affected in the exact same way by their peers. Additionally, it requires

that βig = βi for all i and g, implying that every group exhibits identical interaction effects.
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One notable implication of these homogeneity restrictions is that all interaction effects must

have the same sign. For instance, it is generally assumed that βig ≥ 0 for every agent i and

group g. This assumption imposes uniform strategic complementarities, where everyone in

the population seeks to conform to the mean outcome of their peers. Situations where some

agents prefer to conform while others prefer to deviate are hence ruled out by construction.

In addition to these homogeneity restrictions, the classical linear-in-means model gener-

ally assumes that |βig| < 1 for all i and g, which ensures that the interaction effects are small

in magnitude. Also, while there are many variants of this model, many papers maintain that

the coefficient γig is homogeneous, which means that the direct effect of Zig on Yig in absence

of spillovers is fixed in the population. We summarize these restrictions below for reference.

Classical Linear-in-Means Assumptions

C.1 (Homogeneous Interactions within Groups). βig = βjg for any two agents i, j ∈ Ng.

C.2 (Homogeneous Interactions across Groups). βig = βi for all agents i and groups g.

C.3 (Bounded Interaction Effects). |βig| < 1 for all agents i and groups g.

C.4 (Homogeneous Incidence of Z). γig = γ for all agents i and groups g.

2.2 Economic Interpretations of the Model

We now illustrate how the linear-in-means model can be derived as the estimating equation

for three economic decision problems: peer effects in schools, joint labor supply decisions in

households, and strategic interactions among firms in oligopolistic markets. In each example,

strong restrictions on the preferences or technology are needed in order to justify the classical

linear-in-means assumptions. Relaxing these assumptions therefore makes the model better

suited for studying economic behavior in these different settings. Throughout the remainder

of the paper, we will continue to draw on these examples to guide and interpret our analysis.

2.2.1 Peer Effects

Consider a peer group g, where each individual i makes a choice Yig from an action space R.
When making their choices, individuals either seek to conform to or deviate from the average

behavior of their peers. These social pressures directly enter into each agent’s utility function.

Uig(Yig|Zig, Ȳ−ig) =
(
αig + Z ′

igγig
)
Yig −

βig
2
(Yig − Ȳ−ig)

2 − 1− βig
2

Y 2
ig.

This utility specification is commonly used in the education literature to study peer effects;

see Blume et al. (2015) and Kline & Tamer (2020). The first component of utility captures

the non-social determinants of an agent’s choice. The second term represents social pressure,

penalizing the squared deviations between an agent’s own choice and the average choice of

her peers. The third term is a convex cost of action. In this framework, the social interaction

effect βig determines the extent to which the agent seeks to conform to or diverge from peer
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behavior. In equilibrium, agents’ optimal decisions {Yig}i∈Ng will satisfy the equations (1).5

The classical linear-in-means assumptions would imply that all individuals experience the

same amount of social pressure, leading to identical marginal rates of substitution between

private and social utility. By relaxing these assumptions, we allow individuals to face different

types of social pressure. For example, it could be that certain agents seek to deviate from,

rather than conform to, their peers; or, it could be that all agents wish to conform but some

do so more than others. Our extension allows for such nuances in the study of peer effects.

2.2.2 Household Labor Supply

Consider a non-unitary model of household labor supply, as discussed in the survey by Donni

& Chiappori (2011). Each member of a household allocates a fixed time endowment T be-

tween labor and leisure. Let hig be the number of hours that member i of household g chooses

to work, and letWig be the wage. The resulting labor income for individual i is Yig = Wighig.

Members of each household pool their incomes. These incomes are then redistributed so

that each member i receives a fraction κig ∈ [0, 1] to spend on personal consumption. The

total value of household consumption, denoted by Cg, cannot exceed total household income.

In addition to consuming κigCg, each individual i can also consume non-transferable goods.

These goods may come in the form of workplace amenities or social assistance benefits, such

as healthcare services that only i can access. The value of these goods to individual i is aig.

Each individual maximizes welfare through leisure and consumption. The return on each

input is marginally decreasing, as represented by the following log-additive utility function.

max
hig

Uig(hig|Wig, Cg) = µig log(T −hig)+(1−µig) log(aig+κigCg), s.t. Cg =
∑
j∈Ng

Wjghjg.

The parameter µig ∈ [0, 1] reflects individual i’s relative preference for leisure over consump-

tion. As long as everyone spends some time working, hig ∈ (0, T ), an interior solution exists.

Yig = −µigaig
κig

− µig

∑
j ̸=i

Yjg + (1− µig)TWig

= αig︸︷︷︸
−

µigaig
κig

+
βig

|Ng| − 1︸ ︷︷ ︸
−µig

∑
j ̸=i

Yjg + γig︸︷︷︸
(1−µig)T

Wig, for i ∈ Ng.

These equilibrium equations satisfy the linear-in-means model (1) where the interaction effect

βig equals −µig(|Ng|− 1). This interaction effect governs how much an individual i’s income

falls when the other household members more. It also determines the elasticity of i’s earnings

with respect to the wage rateWig. The variable Zig can be anything that influences i’s wage.

5An alternative utility specification, used by Epple & Romano (1998) and Calvó-Armengol et al. (2009), is
Uig(Yig|Zig, Ȳ−ig) =

(
αig +Z

′
igγig

)
Yig +βigȲ−igYi− 1

2Y
2
ig, which also rationalizes the linear-in-means model.
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The classical linear-in-means assumptions require that the marginal rate of substitution

between consumption and leisure is the same across all individuals, both within and between

households. By allowing for heterogeneous interaction effects, we permit individuals to make

different consumption-leisure trade-offs. For example, we allow labor supply responses to dif-

fer between the primary and secondary earners in a household. These responses might also

vary across households due to contextual factors such as the number of children in the home.

2.2.3 Firm Oligopoly

Finally, consider a model of oligopolistic competition where firms face heterogeneous, convex

cost curves. Following Bresnahan (1981) and Perry (1982), we examine a framework that

nests both Bertrand and Cournot competition. This framework assumes that firms form con-

jectures about their competitors’ actions, which are consistent with equilibrium outcomes.

Each market g contains multiple firms i, each producing output Yig. The price that clears

the market is given by an inverse demand: Pg = ag − bg
∑

i∈Ng
Yig, where ag and bg can vary

across markets g. A firm’s production costs are given by cig(Yig) = (λig0+Z
′
igλig1)Yig+

1
2
δigY

2
ig,

where λig0, λig1, and δig can vary both across firms i and across markets g. Assume that the

vector Zig contains observable cost-shifters, which directly influence the firm’s productivity.

We suppose that every firm i has some reference output Y 0
ig, which is common knowledge

in the market. The firm conjectures that increasing its own output Yig relative to Y 0
ig causes

the other firms to adjust their total output by θig, believing that
∑

j ̸=i Yjg equals
∑

j ̸=i Y
0
jg +

θig(Yig−Y 0
ig). Given these conjectures, each firm i in market g maximizes its profit by solving:

max
Yig

Πig(Yig|Zig, {Y 0
jg}j ̸=i) = PgYig − cig(Yig), s.t.

Pg = ag − bg
∑
i∈Ng

Yig∑
j ̸=i

Yjg =
∑
j ̸=i

Y 0
jg + θig(Yig − Y 0

ig)

cig(Yig) = (λig0 + Z ′
igλig1)Yig +

1

2
δigY

2
ig.

In this model, θig represents the conjectural variation, measuring a firm i’s perceived influ-

ence in market g. Three special cases are particularly notable. First, if θig = 0 for all i, then

the model corresponds to Cournot oligopoly. In this case, firms do not internalize the effect of

their own output decisions on the behavior of other firms. Second, if θig = −1 for all i, then

the model is one of Bertrand competition. Here, firms expect that their actions have no effect

on total market output. Third, if θig = |Ng|−1 for all i, then the market is monopolistic. In

this setting, each firm acts as if it fully controls the market, which leads to perfect collusion.

Given this range of possibilities, it seems natural to permit θig to be between −1 and |Ng|−1.

In equilibrium, each firm’s output Yig must equal its reference output Y 0
ig. The resulting
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equilibrium condition will generate the linear-in-means model (1) as an estimating equation.

Yig =
1

δig + bg(2 + θig)

[
ag − λig0 − bg

∑
j ̸=i

Yjg − Z ′
igλig1

]
= αig︸︷︷︸

ag−λig0
δig+bg(2+θig)

+
βig

|Ng| − 1︸ ︷︷ ︸
− bg

δig+bg(2+θig)

∑
j ̸=i

Yjg + Z ′
ig γig︸︷︷︸

−
λig1

δig+bg(2+θig)

, for i ∈ Ng.

To understand how the classical linear-in-means assumptions restrict firm behavior, consider

the interaction effect βig = − bg(|Ng |−1)

δig+bg(2+θig)
, which represents a firm-specific conduct parameter,

as defined by Weyl & Fabinger (2013). This quantity measures how a firm’s output responds

to the output of its competitors, and it depends on three factors: the elasticity of consumer

demand bg, the slope δig of the marginal cost curve, and the conjectural variation θig. By

assuming constant interaction effects, the classical linear-in-means model implicitly requires

that: (1) consumer demand is equally elastic in every market, (2) firms’ marginal costs have

the same curvature, and (3) all firms share the same beliefs about competition. By extending

the model to allow for heterogeneous interaction effects, we relax each of these restrictions.

2.3 Economic Quantities of Interest

Depending on the empirical context, researchers may be interested in learning about a range

of reduced form and structural parameters in the model. In Table 1, we list several economic

quantities that are commonly studied in the classical linear-in-means model. For each one, we

give a definition and derive its expression in terms of the model’s structural parameters. To

ease notation, we suppress group subscripts and set N = {1, . . . , N}, while noting that the

group size can freely vary. Also, for expositional purposes, we assume Zig is one-dimensional,

although including a vector of shifters/covariates does not meaningfully impact our analysis.

For now, we analyze the economic quantities under the classical linear-in-means model,

as presented in Column 2 of Table 1, and defer the more general analysis with heterogeneous

effects (Column 3 of Table 1) to Section III. Under Assumption C.3, the system of equations

(1) exhibits a unique solution, which allows us to derive the following reduced form equations:

Yi =

(
1 + βi

1

N − 1

∑
j ̸=i

ψji

)
(αi + γiZi) +

∑
j ̸=i

ψij(αj + γjZj), for i ∈ {1, . . . , N}, (2)

These equations characterize how Z affects Y in equilibrium, after accounting for spillovers.

The term ψij is a structural parameter representing the equilibrium effect of a unit increase

in agent j’s outcome Yj on agent i’s outcome Yi. In Section III, we derive a general expression

for ψij in terms of the interaction effects {βi}Ni=1. However, under Assumptions C.1 and C.2,
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the interaction effects are homogeneous, in which case ψij reduces to a constant ψ, given by:

ψ =
β

(1− β)(N − 1 + β)
.

Note that ψ has the same sign as β, and it tends to zero as the group size N tends to infinity.

Together with Assumption C.4, the reduced form equations (2) simplify in the following way:

Yi = (1 + βψ)(αi + γZi) + ψ
∑
j ̸=i

(αj + γZj), for i ∈ {1, . . . , N}. (3)

Spillover Effect

The first term in Table 1 is the individual spillover effect of Zj on Yi. In a peer effects model,

this quantity measures how a student i is indirectly influenced by factors that alter another

student j’s achievement. In a model of household labor supply, it measures how a person i’s

income is affected by the wage earned by another family member j. In a model of oligopoly,

it measures how the output of a firm i reacts to a productivity shock within another firm j.

The spillover effect may be decomposed as the product of two terms, γj and ψij, where γj
denotes the direct effect of Zj on Yj, and ψij represents the effect of Yj on Yi in equilibrium.

∆Yi
∆Zj

= γj × ψij. (4)

Under Assumptions C.1-C.4, both γj and ψij are constant across all agent pairs (i, j). Thus,

the classical linear-in-means model assumes that the spillover effect of Zj on Yi is homoge-

neous: it does not depend on who receives the direct shock or who is indirectly affected by it.

Total Individual Effect

The second term in the table is the total individual effect of Zi on Yi, after accounting for

spillovers. We decompose this term to distinguish between direct and indirect effects of Zi.

∆Yi
∆Zi

= γi + βi
∆Ȳ−i

∆Zi︸ ︷︷ ︸
Indirect Effect

, where
∆Ȳ−i

∆Zi

= γi ×
1

N − 1

∑
j ̸=i

ψji. (5)

The indirect effect accounts for network distortions. It depends on the cycles in the network,

which specify how an agent’s behavior is reflected back onto itself via interactions with oth-

ers. This feedback loop may either reinforce or undermine the direct effect of the variable Zi.

To understand when the interaction effects will amplify or suppress the impact Zi on Yi,

we must examine the product of βi and
1

N−1

∑
j ̸=i ψji. This product represents an indirect

interaction effect that agent i has with herself, as measured by evaluating all the cycles in

the network that start and end with agent i. If βi × 1
N−1

∑
j ̸=i ψji is positive, then agent
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i’s behavior is self-reinforcing. In this case, the interaction effects magnify the impact of an

exogenous shock: |∆Yi/∆Zi| > |γi|. Conversely, if βi × 1
N−1

∑
j ̸=i ψji is negative, then agent

i’s actions are self-undermining, thereby suppressing the impact of a shock: |∆Yi/∆Zi| < |γi|.

With Assumptions C.1-C.4, the total individual effect is constant: ∆Yi/∆Zi = γ(1+βψ).

In other words, all agents are affected uniformly by a shock to their own outcome. Moreover,

as the product βi× 1
N−1

∑
j ̸=i ψji = β×ψ is non-negative, the classical linear-in-means model

assumes that the interaction effects always amplify the impact of a shock: |∆Yi/∆Zi| ≥ |γi|.
For example, in a peer effects model, social pressure must amplify the impact of additional

effort on a student’s own academic performance. In a household labor supply model, second

earner effects must amplify the impact of receiving a raise on an individual’s own income. In

a model of firm oligopoly, strategic interactions must amplify the impact of a productivity

shock on a firm’s own output. As we discuss in Section III, this amplification pattern need

not hold under heterogeneous interaction effects. In particular, we show that heterogeneous

interactions can, in certain cases, suppress the impact of a shock on an agent’s own outcome.

Total Effect on the Average

Third, we define the total equilibrium effect of Zi on the average outcome Ȳ in the group.

∆Ȳ

∆Zi

=
1

N

[
∆Yi
∆Zi

+
∑
j ̸=i

∆Yj
∆Zi

]
=

1

N

[
1 +

(
1 +

βi
N − 1

)∑
j ̸=i

ψji

]
× γi. (6)

With Assumptions C.1-C.4, this effect reduces to a constant: ∆Ȳ /∆Zi =
1
N

(
γ

1−β

)
. So, in the

classical linear-in-means model, the total effect of a shock to agent i on the average outcome

Ȳ is the same regardless of which agent i is considered. Moreover, because ∆Ȳ /∆Zi has the

same sign as γ, any increase in one agent’s outcome Yi must also raise the average outcome Ȳ .

Social Multiplier Effect

The fourth parameter we define is the social multiplier effect. We use this quantity to measure

how network externalities distort the effect of exogenous shocks on aggregate outcomes in a

group. Much of the literature on social multipliers (e.g., Goldin & Katz, 2002; Glaeser et al.,

2003; Becker & Murphy, 2003) assumes that the interaction effects are positive: βi ≥ 0 for all

i. Under this assumption, network spillovers always amplify the impact of a policy shock on

group outcomes. However, this pattern need not hold in settings with negative interaction

effects. In such cases, network spillovers have a potential to suppress the impact of a policy.

For the classical linear-in-means model, Glaeser et al. (2003) define the social multiplier

to be the ratio of aggregate coefficients to individual coefficients in the reduced form, given by:

M constant =
∆Ȳ /∆Z̄

∆Yi/∆Zi

=
β +N − 1

β + (1− β)(N − 1)
. (7)

This parameter measures how the equilibrium impact of Z on Y changes at different levels of
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aggregation. As the size of the group N grows large, the multiplier effect tends to (1−β)−1.

Table 1: Economic Quantities of Interest

Economic Quantity Structural Interpretation

Constant Effects Heterogeneous Effects

Reduced Form Quantities

Spillover Effect (∆Yi/∆Zj)
βγ

(1−β)(N−1+β)

βiγjνij
(N−1) det(I−B)

Total Individual Effect (∆Yi/∆Zi) γ + β2γ
(1−β)(N−1+β)

γi +
βiγi( 1

N−1

∑
j ̸=i βjνij)

(N−1) det(I−B)

Total Effect on the Average (∆Ȳ /∆Zi)
1
N
× γ

(1−β)
1
N
× γiνi

det(I−B)

Individual Social Multiplier
(∑N

j=1 ∆Yj/∆Zi

∆Yi/∆Zi

)
β+N−1

β+(1−β)(N−1)
νi

νi− 1
N−1

∑
j ̸=i βjνij

Aggregate Social Multiplier
( ∑N

i=1 ∆Ȳ /∆Zi
1
N

∑N
j=1 ∆Yj/∆Zj

)
β+N−1

β+(1−β)(N−1)

1
N

∑N
i=1 νiγi

1
N

∑N
j=1(νj− 1

N−1

∑
k ̸=j βkνjk)γj

Structural Quantities

No Interference Outcome (Yi|(Ȳ−i, Zi) = 0) αi αi

No Interference Effect (∆Yi/∆Zi|Ȳ−i) γ γi

Interaction Effect (∆Yi/∆Ȳ−i) β βi

Interaction Effect Correlation
(
corr

(
∆Yi

∆Ȳ−i
,

∆Yj

∆Ȳ−j

))
0 corr(βi, βj)

Notes. The reduced form effects ∆Yi/∆Zj , ∆Yi/∆Zi, and ∆Ȳ /∆Zi are defined by holding {Zj}j ̸=i fixed.

To ease notation in the last column, we let νi =
∏

ℓ ̸=i

(
1+ βℓ

N−1

)
and νij =

∏
ℓ/∈{i,j}

(
1+ βℓ

N−1

)
for any i and j.

Structural Coefficients and Higher Moments

The next three parameters are the structural coefficients αi, βi, and γi. Among these terms,

the interaction effect βi is often the primary target parameter (Sacerdote, 2011). In a peer

effects model, it measures how much social pressure an individual experiences. In a model

of household behavior, it specifies how a person’s income depends on the earnings of others.

In an oligopoly model, it measures the degree of strategic interaction between firms. The

parameters αi and γi also have an economic interpretation, as they indicate how the variable

Zi would impact an agent’s outcome Yi in absence of network interference. In certain settings,

it might be important to distinguish between the direct treatment responses and the indirect

effects of treatments that arise through social interactions; see Manski (1993) for discussion.

Lastly, we may be interested in the correlation structure of interaction effects for agents

in a network—specifically, parameters like corr(βi, βj) for different individuals i and j. These

parameters can offer insights into the formation of network ties. For example, if one individ-

ual feels strong pressure to conform to a group, is it likely that her peers would feel similarly?
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Do members of the same family share similar preferences over leisure and consumption? Do

firms in the same market exhibit similar beliefs about competition? Such questions are unan-

swerable in the classical linear-in-means model, because the interaction effects are assumed

to be homogeneous across all agents. In contrast, the heterogeneous effects framework is well

suited for studying these types of correlations and their implications for economic behavior.

2.4 Standard Constant Effects Estimands

We now review the OLS and IV estimands that are typically used to recover reduced form

and structural parameters in the classical linear-in-means model. In Table 2, we define these

estimands and summarize the economic content that each one delivers, both under the gen-

eral model with heterogeneous interaction effects and in the homogeneous effects special case.

Table 2: Economic Inferences from OLS and IV Estimands

Economic Quantity βOLS(Yi) βOLS(Ȳ ) βOLS(Ȳ−i) βOLS
i (Ȳ )/βOLS

i (Yi) βIV
i

Spillover Effect
Constant Effects Ind. Effect — Ind. Effect — —
Heterogeneous Effects Avg. Effect — — — —

Total Individual Effect
Constant Effects Ind. Effect — — — —
Heterogeneous Effects Avg. Effect — — — —

Total Effect on the Average
Constant Effects — Ind. Effect — — —
Heterogeneous Effects — Avg. Effect — — —

Social Multiplier
Constant Effects Test: ≤ 1 — Test: ≤ 1 Ind. Effect —
Heterogeneous Effects — — Test: ≤ 1 for all g — —

Interaction Effect
Constant Effects Test: ≤ 0 — — — Ind. Effect
Heterogeneous Effects Test: ≤ 0 for all g — — — Weighted Avg.

Notes. In this table, we define a class of OLS estimands βOLS(x) = E(Z̃Z̃ ′)−1 E(Z̃x), where Z̃ = (1, Z ′)′, and

IV estimands βIVi = Cov(Yi,L(Ȳ−i|Z̃−i)|Zi=zi)

Cov(Ȳ−i,L(Ȳ−i|Z̃−i)|Zi=zi)
, where Z̃−i = (1, g(Z−i)) for some monotone function g defined

on supp(Z−i). In Column 2, we maintain Assumptions C.1-C.4. In column 3, we maintain Assumptions I-III.

For now, we analyze these estimands under the classical linear-in-means model, imposing

Assumptions C.1–C.4, and we postpone the analysis under heterogeneous effects to Section 3.

Following the literature, we assume that the vector α is mean independent of the observables

Z and group composition N , so that E(α|Z,N ) = E(α). We also assume that {Zi}i∈N are

individual-level shifters, and we require that these shifters are not perfectly collinear, which

implies that E(ZZ ′) is nonsingular. Finally, we assume that γ ̸= 0, so each Zi has a nonzero

effect on agents’ outcomes. Under these conditions, each Zi is a valid instrument in our setup.

Since this model involves simultaneity, instruments play a central role in identification.

Specifically, they provide exclusion restrictions, which are factors that directly affect a subset
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of the agents in a group, while leaving others unaffected. Examples of exclusions are policy

variables that shift an agent’s marginal cost of action. Alternatively, an exclusion could be a

restriction on the interactions in the network, whereby some agents do not directly influence

certain members of their group. In the Appendix, we show how to extend the linear-in-means

model to reformulate these restrictions as instruments. In doing so, our analysis speaks to a

wide range of identification strategies that use exclusions to recover structural parameters.6

Frequently-Used OLS Estimands

We begin by analyzing OLS estimands obtained by projecting outcomes Y on individual-level

shifters Z. Specifically, we consider three different estimands, βOLS(Yi) = E(Z̃Z̃ ′)−1E(Z̃Yi),
βOLS(Ȳ ) = E(Z̃Z̃ ′)−1E(Z̃Ȳ ), and βOLS(Ȳ−i) = E(Z̃Z̃ ′)−1E(Z̃Ȳ−i), which correspond to linear

regressions of Yi, Ȳ , and Ȳ−i, respectively, on the vector Z̃ = (1, Z ′)′. Under Assumptions

C.1-C.4, these estimands recover the individual spillover effect ∆Yi/∆Zj, the total individual

effect ∆Yi/∆Zi, and the total effect on the average ∆Ȳ /∆Zi. Moreover, the social multiplier

effect is identified from a ratio of OLS coefficients, given by M constant = βOLS
i (Ȳ )/βOLS

i (Yi).

As shown in Table 1, one key implication of assuming constant effects is that the reduced-

form quantities ∆Yi/∆Zj, ∆Yi/∆Zi, and ∆Ȳ /∆Zi are identical across all agent pairs (i, j).

This restriction allows us to derive testable implications of the classical linear-in-means model

using OLS. In Lemma 1, we outline two such tests, which are straightforward to implement.

Lemma 1. Suppose that the linear-in-means model has a well-defined reduced form. Then:

(i) If βj = βk in all groups, then for any i /∈ {j, k}, the coefficient on Zi in an OLS regres-

sion of Yj on (1, Z ′)′ equals the coefficient on Zi in an OLS regression of Yk on (1, Z ′)′.

(ii) If Assumptions C.1 and C.4 hold, then the coefficient on Z̄−i in an OLS regression of Yi
on (1, Zi, Z̄−i)

′ equals the coefficient on Zi in an OLS regression of Ȳ−i on (1, Zi, Z̄−i)
′.

Part (i) of Lemma 1 provides a way to separately test Assumption C.1, which maintains that

the interaction effects are fixed among all agents in the same group. A testable implication

of this assumption is that the reduced form effects ∆Yj/∆Zi and ∆Yk/∆Zi are the same for

any distinct agents i, j, k ∈ N . In fact, for any agents i, j, and k, we show in the Appendix

that βj = βk if and only if ∆Yj/∆Zi = ∆Yk/∆Zi. The intuition behind this property is that,

if two agents j and k are influenced in the same way by a third agent i, then any exogenous

shock to agent i’s outcome would produce identical spillover effects on agent j and agent k.

Using this property, we can test whether βj = βk by running OLS regressions of Yj and Yk on

(1, Z ′)′ and checking whether the coefficient on any Zi with i /∈ {j, k} differs between the two.

Part (ii) of Lemma 1 provides a way to jointly test Assumptions C.1 and C.4. Specifically,

under these assumptions, the reduced-form effects ∆Yi/∆Z̄−i and ∆Ȳ−i/∆Zi must be equal,

since both correspond to the same homogeneous spillover effect, ∆Yi/∆Zj. This equivalence

6See Kline & Tamer (2020) for a review. Bramoullé et al. (2009) formalize how to use network exclu-
sions—where not all agents interact with one another—for identification of classical linear-in-means models.
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imposes a testable restriction: in the population, the coefficient on Z̄−i in a regression of Yi
on (1, Zi, Z̄−i)

′ must equal the coefficient on Zi in a regression of Ȳ−i on (1, Zi, Z̄−i)
′. A differ-

ence between these coefficients would indicate that at least one of the assumptions is violated.

Frequently-Used IV Estimands

We now shift attention to a large class of IV estimands that use instruments to recover the

interaction effect β. This quantity is often the main target parameter in constant effects mod-

els, and our framework nests a wide variety of existing approaches that are used to recover it.

We define an IV estimand for β that uses Z̃−i as the excluded instrument for Ȳ−i in an

agent i’s outcome equation. We allow Z̃−i to be any monotonic transformation of the vector

Z−i. In particular, we define Z̃−i = g(Z−i), where g is a monotone mapping taking values in

the support of Z−i.
7 Our specification encompasses a wide array of IV strategies, including:

(1) using one instrument individually, (2) using multiple instruments jointly, and (3) using

an increasing transformation of multiple instruments, e.g., a group-level average of {Zj}j ̸=i.

For any realization of zi in the support of Zi, we can write down an IV estimand as follows:

βIV
i (zi) =

Cov(Yi,L(Ȳ−i|Z̃−i)|Zi = zi)

Cov(Ȳ−i,L(Ȳ−i|Z̃−i)|Zi = zi)
, (8)

where L(Ȳ−i|Z̃−i) represents the population fitted values from a regression of Ȳ−i on (1, Z̃−i).

Under constant effects, the interaction effect βi is point-identified from this IV estimand.

In fact, even if the interaction effects vary within a group, the estimand would still recover

βi, provided that this interaction effect remains constant across groups. This result is well-

established in the literature, and it is reviewed in textbooks tracing back to Fisher (1966).

Lemma 2. Suppose that the linear-in-means model has a well-defined reduced form. Then,

if Assumption C.2 is satisfied, the IV estimand βIV
i (zi) will recover the interaction effect βi.

This lemma provides us with a testable restriction for Assumption C.2. Specifically, under

these assumptions, the IV estimand βIV
i (zi) always recovers the same parameter, regardless

of which excluded instruments Z̃−i are used in the regression. Therefore, we can validate the

classical linear-in-means assumptions by conducting an over-identification test. For N > 2,

there may be multiple valid instruments {Zj}j ̸=i for the endogenous variable Ȳ−i in an agent

i’s outcome equation. We can leverage this over-identification to construct two IV estimands

βIV,1
i and βIV,2

i for βi using two distinct instruments Z̃−i,1 and Z̃−i,2, respectively. We can

then empirically assess whether Assumptions C.2 holds by testing the null H0 : β
IV,1
i = βIV,2

i .

7Formally, we restrict g to the set of functions G = {g : supp(Z−i) → Rn|g(z′−i) ≥ g(z−i) for z
′
−i ≥ z−i}.

For Z̃−i to be a relevant instrument, we require that g is strictly increases in at least one component of Z−i.
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3 Econometric Analysis under Heterogeneous Effects

We now relax Assumptions C.1-C.4 to allow agents to exhibit interaction effects of different

signs and magnitudes, which vary both within and between groups. We treat αg = [αig]i∈Ng ,

βg = [βig]i∈Ng , and γg = [γ′ig]i∈Ng as random vectors jointly distributed according to a density

f . We impose no parametric structure on f and allow for arbitrary dependence among the

coefficients. For example, an agent i’s interaction effect βig could be shaped by the interaction

effects of i’s peers, as well as by the interaction effects that are realized in the other groups.

Moreover, since we permit the coefficients γig to be heterogeneous, we allow for the possibility

that the incidence of Zig varies and may even depend on the characteristics of other agents.8

3.1 Characterization of an Equilibrium

To analyze the equilibrium behavior of the linear-in-means model with heterogeneous inter-

action effects, we first derive the necessary and sufficient conditions for there to be a unique

solution to the system of equations (1). The condition that we derive will significantly relax

Assumption C.3. Specifically, rather than placing bounds on the signs and magnitudes of

the endogenous interaction effects, our condition only rules out a single equality constraint.

Assumption I (Unique Solution).
∑

i∈Ng
(1− βig)

∏
j∈Ng\i(|Ng| − 1 + βjg) ̸= 0 for any group g.

Assumption I is a rank condition. It ensures that I −Bg is invertible, where I denotes the

identity matrix and Bg is the adjacency matrix specifying the interaction effects in group g:

Bg =
1

|Ng| − 1


0 β1g · · · β1g
β2g 0 · · · β2g
...

...
. . .

...

β|Ng |g β|Ng |g · · · 0

 . (9)

This assumption rules out cases where the outcome equations (1) correspond to parallel lines.

If these lines are parallel to each other, then they either never intersect or they overlap. In

the first case, the model has no solution. In the second case, it has infinitely-many solutions.9

By eliminating these two cases, Assumption I ensures that the equilibrium is well-defined.

We now present a closed form representation of the equilibrium, showing how the out-

comes {Yig}i∈Ng depend on the variables {Zig}i∈Ng after accounting for spillover effects. In

8We allow αg, βg, and γg to be correlated with the group size and composition, as characterized by the set
Ng. This correlation could be economically meaningful. For example, the social pressures that individuals
experience might depend on the number or types of peers within the group. Moreover, this correlation ties
our hands by preventing us from using group size variation as a source of identification. Both Lee (2007)
and Davezies et al. (2009) study how variation in group sizes can be used for identification of peer effects.

9Tamer (2003) discusses issues of incoherency and incompleteness of simultaneous equation models. When
a model is incoherent, it has no solution. When a model is incomplete, it has multiple solutions. In our setting,
nonintersecting lines makes the model incoherent, and overlapping lines makes the model incomplete. In the
Appendix, we provide a graphical illustration of these two cases, discussing why they are both problematic.
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general, spillovers have the potential amplify or suppress the impacts of {Zig}i∈Ng on agents’

outcomes. These distortions are driven by the interaction effects {βig}i∈Ng , which can be

positive or negative in our framework. Moreover, as we allow the interaction effects to vary

among agents, the nature of these distortions becomes more complex as the group size |Ng|
grows larger. The following proposition gives a general characterization of the equilibrium.

Proposition 1. A unique solution to system (1) exists if and only if Assumption I holds. In

equilibrium, the outcomes {Yig}i∈Ng in group g satisfy Yig = αig + βigȲg,−i + Z ′
igγig, where:

Ȳg =

∑
j∈Ng

[∏
ℓ∈Ng\j

(
1 +

βℓg

|Ng |−1

)]
× (αjg + Z ′

jgγjg)

|Ng| × det(I −Bg)
, and:

Ȳg,−i =

∑
j∈Ng

νijg ×
[

βjg

|Ng |−1
(αig + Z ′

igγig) + (αjg + Z ′
jgγjg)

]
(|Ng| − 1)× det(I −Bg)

, for i ∈ Ng.

Here, we define νijg = 1 for |Ng| = 2 and νijg =
∏

ℓ∈Ng\{i,j}

(
1 +

βℓg

|Ng |−1

)
for |Ng| > 2. The

determinant of I −Bg also has a closed-form expression, which is provided in the Appendix.

While prior work derives similar formulas for two- or three-agent special cases (e.g.,

Masten, 2017), our equilibrium formulas apply to groups of any size. Given this general-

ity, our analysis extends to a wide range of settings with varying group size and composition.

Remark 1. Moment Determinacy.

Although Assumption I rules out models with parallel lines, it does not eliminate models

with nearly parallel lines, in which det(I −Bg) is close to zero with high probability. This

distinction becomes important when we consider mean-based identification strategies, since

the moments of the reduced form coefficients may not exist if det(I−Bg) is very close to zero.

For the reduced form moments to be well-defined, we need a slightly stronger assumption.

One sufficient condition for moment determinacy is that the vector of outcomes Yg has a

bounded support. Moreover, as Masten (2017) shows, the reduced form moments can exist

even when Yg takes full support if the tails of the outcome distributions are sufficiently thin.

By reformulating Assumption A6 in Masten (2017) for our framework, we arrive at the fol-

lowing sufficient condition, which is expressed as a restriction on the structural parameters.10

Assumptions II (Sufficient Conditions for Moment Determinacy).

II.1. P
(∣∣∣∑i∈Ng

(1− βig)
∏

j∈Ng\i(|Ng| − 1 + βjg)
∣∣∣ ≥ τ

)
= 1 for some scalar τ > 0.

II.2. The marginal distributions of {αig}i,g and {γig}i,g have subexponential tails.

Remark 2. Preservation of Order.

Although not necessary for identification, it is often helpful for interpreting economic quan-

10For more discussion, as well as necessary conditions for moment determinacy, we refer to Masten (2017).
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tities if the structural coefficients {γig}i,g have the same signs (respectively) as the reduced

form effects {∆Yig/∆Zig}i,g. That is, if Zig has a positive direct effect on the outcome Yig,

when does Zig have a positive effect on Yig in equilibrium? Consider the following condition.

Assumption III (Bounded Interactions). 1− |Ng| < βig < 1 for all agents i and groups g.

By ensuring that γig and ∆Yig/∆Zig share the same sign, Assumption III rules out equilib-

rium behaviors that might seem illogical. For example, in a peer effects model, a student’s

achievement would not fall when the marginal utility of effort rises. In a household labor

supply model, a person’s income would not decrease after receiving a raise. In an oligopoly

model, a firm’s output would not fall as a consequence of becoming more productive.11

3.2 Defining Economic Quantities under Heterogeneous Effects

Next, we define and interpret the economic quantities in Table 1 under heterogeneous effects.

As before, we ease notation by removing group subscripts and treating Zi as one-dimensional.

Reduced Form Parameters

We first reexamine the reduced form parameters ∆Yi/∆Zj, ∆Yi/∆Zi, and ∆Ȳ /∆Zi, defined

in equations (4)–(6). To aid in our analysis, we state the following corollary to Proposition 1.

Corollary 1. In equilibrium, the total effect of a unit increase in Yj on Yi, for i ̸= j, equals:

ψij = βi ×

∏
ℓ/∈{i,j}

(
1 + βℓ

N−1

)
(N − 1)× det(I −B)

.

Additionally, if Assumption III holds, then ψij has the same sign as the interaction effect βi.

This corollary expresses ψij in terms of the individual interaction effects, providing a

foundation for reinterpreting the reduced form parameters under heterogeneous effects. For

example, the individual spillover effect is defined in equation (4) to be: ∆Yi/∆Zj = γj ×ψij.

Under Assumption III, this effect has the same sign as γj × βi. Therefore, in equilibrium, a

positive shock to Yj would increase Yi when βi is positive and reduce Yi when βi is negative.

The total individual effect is defined in equation (5) as: ∆Yi/∆Zi = γi×
(
1+ βi

N−1

∑
j ̸=i ψji

)
.

This effect exceeds γi in magnitude whenever βi

N−1

∑
j ̸=i ψji is positive, which, by Corollary

1, occurs when all the interaction effects {βi}Ni=1 share the same sign. In such cases—whether

the interaction effects are all positive (as in classical peer effects) or are all negative (as in

11Assumption III is a special case of Assumption I. Thus, it also ensures that there is a unique equilibrium.
In addition, it implies that det(I−Bg) > 0 with probability 1 (see the Appendix for a proof). In a household
labor supply model, Assumption III holds if all people value consumption: µig ̸= 1 for all i. In an oligopoly
model, it rules out Bertrand competition for firms with constant marginal costs: (θig, δig) ̸= (−1, 0) for all i.
Such models do not possess an interior solution, since firms would always seek to undercut one another until
they are all left with zero profit. This phenomenon is known as the Bertrand paradox (Edgeworth, 1925).
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the household labor supply model or the model of firm oligopoly)—agents’ actions are self-

reinforcing, and spillovers amplify the impact of an exogenous shock on individual outcomes.

By Corollary 1, the total effect on the average, which is defined in equation (6), becomes:

∆Ȳ

∆Zi

=

∏
ℓ̸=i

(
1 + βℓ

N−1

)
N × det(I −B)

× γi. (10)

Under Assumption III, this quantity always has the same sign as the coefficient γi. Therefore,

in a peer effects model, a policy that improves one student’s performance always increases

the average achievement level in the group. Similarly, in a household labor supply model, a

wage boost for one individual always raises the total income of the household. In a model

of firm oligopoly, improving one firm’s productivity always increases overall market output.

Social Multiplier Effects

When the endogenous interaction effects are heterogeneous, Glaeser et al.’s (2003) social

multiplier is not well-defined because Z̄ could affect Ȳ in different ways depending on which

of the variables {Zi}Ni=1 is changed. In other words, the total effect of an exogenous shock on

group outcomes depends on which agent(s) in the group are directly exposed to that shock.

For heterogeneous effects, we can define an individual-specific social multiplier for an agent i.

Mheterog.
(i) =

∑N
j=1∆Yj/∆Zi

∆Yi/∆Zi

=
1

1− 1
N−1

∑
j ̸=i

βj

1+βj/(N−1)

. (11)

This quantity is defined as the ratio of the total effect of Zi on
∑N

j=1 Yj to the individual effect

of Zi on Yi. It generalizes the original definition of the social multiplier by accommodating

heterogeneous effects. In a constant effects model, Mheterog.
(i) reduces to M constant for every i.

Additionally, as the size of the group N becomes large,Mheterog.
(i) tends to (1− 1

N−1

∑
j ̸=i βj)

−1.

The notion of an individual-specific social multiplier is particularly intuitive when group

members assume different roles. In the household labor supply example, Mheterog.
(i) measures

how an exogenous change in person i’s wage would affect total household income relative

to i’s individual income Yi. If there is only one primary earner in the household, then it is

likely that these multipliers differ across household members i. For example, in a two-person

household,Mheterog.
(i) equals 1−µj, which captures the second household member j’s trade-off

between consumption and leisure. If member j places high value on leisure (so µj is large),

then j is more willing to work less when i earns more. In this case, the multiplier Mheterog.
(i) is

small since the total impact of raising i’s wage on total household income would be heavily

offset by a reduction in j’s labor supply. Alternatively, if j places high value on consumption,

then his/her labor supply is less responsive to i’s wage, and the multiplierMheterog.
(i) is large.12

12Note that the multiplier effects are always less than one in this example, since strategic substitutability

suppresses the impact of exogenous wage shocks on total household income, which ensures thatMheterog.
(i) < 1.
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Averaging across agents, we can construct an aggregate social multiplier effect Mheterog.,

equal to 1
N

∑N
i=1M

heterog.
(i) . Alternatively, we can take Mheterog. as the ratio of average effects:

Mheterog. =

∑N
i=1∆Ȳ /∆Zi

1
N

∑N
j=1∆Yj/∆Zj

=

1
N

∑N
j=1

(
1 +

βj

N−1

)−1

γj

1
N

∑N
j=1

(
1 +

βj

N−1

)−1 (
1− 1

N−1

∑
k ̸=j

βk

1+βk/(N−1)

)
γj

. (12)

While they have slightly different interpretations, both versions of the aggregate social mul-

tiplier reduce to the original definition under constant effects. Throughout the rest of the

paper, we take the expression in (12) as our definition of the aggregate social multiplier. If

γi is constant across agents i, then M
heterog. tends to

(
1− 1

N

∑N
i=1 βi

)−1
as N grows large.

3.3 Analysis of OLS and IV under Heterogeneous Effects

We now analyze what can and cannot be learned from frequently used OLS and IV estimands

for linear-in-means models under heterogeneous effects. We show that, while these estimands

do not lead to point identification, they still carry information about key economic quantities.

To accommodate heterogeneous effects, we replace the instrument exogeneity condition

with the assumption that Zg ⊥ (αg, βg, γg,Ng). This assumption is standard in the literature

on random coefficients. It ensures that the unobserved parameters are statistically indepen-

dent of the vector of observables Zg.
13 As in Section II, we ease notation by omitting group

subscripts and treating Zig as one-dimensional. We also assume that Zig is an individual-level

shifter, and that the shifters are not perfectly collinear. To ensure instrument relevance, we

assume that γig ̸= 0 for every i and g, so that Zig has a nonzero effect on observed outcomes.14

3.3.1 Empirical Analysis of OLS Estimands

We first analyze the OLS estimands βOLS(Yi) and β
OLS(Ȳ ) that are defined in Table 2. Under

heterogeneous effects, these estimands recover the average reduced form effects across groups.

Proposition 2. In a linear-in-means model with heterogeneous effects, βOLS(Yi) and β
OLS(Ȳ )

recover the average reduced form effects E(∆Yi/∆Zi), {E(∆Yi/∆Zj)}j ̸=i, and {E(∆Ȳ /∆Zj)}j.

This proposition reveals that, even under heterogeneous effects, the OLS estimands βOLS(Yi)

and βOLS(Ȳ ) offer insight into how individual-level shocks affect equilibrium outcomes. In a

peer effects setting, they capture average equilibrium responses (across classrooms) of student

achievement to policy interventions. In a household labor supply context, they reflect average

responses (across families) of earnings to individual wage shocks. In an oligopoly setting,

they measure average responses (across markets) of firm output to firm-specific cost shocks.

13If Zg includes covariates, then we can relax Assumption I to allow for independence of individual-level
shifters conditional on covariates: Zs

g ⊥ (αg, βg, γg,Ng)|Zc
g , where Z

s
g are shifters and Zc

g are covariates. In
addition, if the set of agents Ng in a group is observed, then we can relax it by writing Zg ⊥ (αg, βg, γg)|Ng.

14This assumption can be relaxed to allow for instruments that affect the outcomes for a subset of agents.

20



For the OLS estimands to be well-specified in the presence of within-group heterogeneity,

it is essential to include all individual shifters {Zj}Nj=1 as separate regressors. A researcher

might be tempted to simplify these regressions by instead computing the following estimands:

β̌OLS(Yi) = E(ŽiŽ
′
i)

−1 E(ŽiYi) and β̌OLS(Ȳ ) = E(ŽŽ ′)−1 E(ŽȲ ),

corresponding to OLS regressions of Yi on Ži = (1, Zi, Z̄−i) and of Ȳ on Ž = (1, Z̄). These

estimands successfully recover average reduced form effects under Assumptions C.1 and C.4,

where βi and γi are homogeneous within each group. However, when βi and γi vary among

agents in a group, these simplified regressions are no longer valid. The reason is that within-

group heterogeneity causes ∆Yi/∆Zj and ∆Ȳ /∆Zj to vary across agents j. Therefore, any

OLS regression that includes averages of Z, while excluding {Zj}Nj=1 as individual regressors,

suffers from omitted variable bias.15 This bias arises even with constant effects across groups.

Indeed, as long as βi and γi differ within a group, the simplified regressions are misspecified.

OLS Estimands for Social Multiplier Effects

For constant effects models, the social multiplier M constant = (∆Ȳ /∆Z̄)/(∆Yi/∆Zi) is point

identified from OLS estimands. Specifically, ∆Ȳ /∆Z̄ is recovered from regressing Ȳ on (1, Z̄)

and ∆Yi/∆Zi is recovered from regressing Yi on (1, Zi, Z̄−i). However, in the linear-in-means

model with heterogeneous effects, the social multiplier is no longer point identified from OLS.

To understand why OLS estimands do not recover social multipliers under heterogeneous

effects, first recall thatM constant is not well-defined in the case of within-group heterogeneity.

Instead, we define individual-specific multipliersMheterog.
(i) and aggregate multipliersMheterog.,

which are better suited for settings where agents in a group face different interaction effects.

If the interactions are constant across groups, thenMheterog.
(i) andMheterog. are both identified

from correctly specified OLS regressions, following the previous discussion. However, if the

interaction effects vary across groups, then these regressions instead recover the estimands:

MOLS
(i) =

∑N
j=1 E(∆Yj/∆Zi)

E(∆Yi/∆Zi)
and MOLS =

∑N
i=1 E(∆Ȳ /∆Zi)

1
N

∑N
j=1 E(∆Yj/∆Zj)

.

These estimands represent ratios of average equilibrium effects across groups. Yet, they do

not correspond to the economic quantities of interest in Table 1. As we show in Section V,

we may still be able to use OLS to place informative bounds on the social multiplier effects.

3.3.2 Empirical Analysis of IV Estimands

We now reexamine the IV estimand, which is defined in equation (8). Under heterogeneous

effects, IV does not lead to point identification of βi. This negative result motivates our sub-

sequent analysis, examining: When is the IV estimand informative about interaction effects?

15If {Zj}Nj=1 are all uncorrelated, then the coefficient on Zi in a regression of Yi on (1, Zi, Z̄−i) would still
recover the average total individual effect E(∆Yi/∆Zi). Yet, the other coefficients are biased by construction.
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We establish conditions under which the IV estimand βIV
i (zi) will be a positively-weighted

average of βi, which is a minimal requirement for it to be informative about social interaction

effects. A standard condition for this property, which is widely used in the treatment effects

literature, is proposed by Imbens & Angrist (1994). It requires that the endogenous variable

Ȳ−i is affected uniformly by any change in the instrument Z̃−i. If we take Z̃−i to be Z−i (or

if Z̃−i is a one-to-one function of Z−i) then this condition has the following characterization.

Assumption IAM (Imbens-Angrist Monotonicity). For any vectors (z−i, zi) and (z′−i, zi) in

the support of Z, either P
(
Ȳ−i(z−i, zi) ≥ Ȳ−i(z

′
−i, zi)

)
= 1 or P

(
Ȳ−i(z−i, zi) ≤ Ȳ−i(z

′
−i, zi)

)
= 1.

We argue that this condition is plausible in settings where the interactions take place between

two agents, but we demonstrate that it is unlikely to hold with groups of three or more agents.

Pairs of Agents (N = 2)

We consider a special case of the model where the interactions take place between two agents.

Y1 = α1 + β1Y2 + γ1Z1 (13)

Y2 = α2 + β2Y1 + γ2Z2. (14)

This special case allows us to study peer effects between pairs of students, joint labor supply

decisions in two-person households, and the strategic interactions among firms in duopolies.

For any j ̸= i, the IV estimand equals βIV
i (zi) = Cov(Yi, Zj|Zi = zi)/Cov(Yj, Zj|Zi = zi).

This estimand can be expressed as a weighted average of all the potential realizations of βi.

βIV
i (zi) =

∫
supp(βi)

bi × ω(bi)dbi, where ω(bi) =
E(∆Yj/∆Zj|βi = bi)fβi

(bi)

E(∆Yj/∆Zj)
. (15)

Observe that larger weights ω(bi) are placed on values of βi in groups where the outcome Yj
is more responsive to the instrument Zj. For the weights to be non-negative, we can impose

IAM monotonicity, which requires that Yj is uniformly affected in the same direction by Zj.

This condition holds if and only if the coefficient γj retains the same sign across all networks:

P(γj ≥ 0) = 1 or P(γj ≤ 0) = 1. (16)

This condition does not impose restrictions on the interaction effects (β1, β2) in the model.16

Example (Peer Effects). Consider a model of peer effects with two students: i and j. Let

Zj indicate whether student j receives a scholarship, and assume that this scholarship always

raises student achievement, such that P(γj ≥ 0) = 1. In this case, IV recovers the average

peer effect βi in groups where student j’s achievement is most impacted by the scholarship.

Example (Household Labor Supply). Suppose that each household has two members, i

16An alternative sufficient condition is: γj ⊥ (β1, β2). However, this condition does not extend to N > 2.
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and j, and let Zj be a policy that increases person j’s wage. Then, IV measures the average

second earner effect µi in households where j’s income is particularly affected by the policy.

Example (Duopoly). Consider a duopoly, and let Zj be a technological shock that always

raises the productivity of firm j, i.e., P(λj1 ≤ 0) = 1. In this case, IV would estimate the

average conduct parameter for firm i in the markets where j is most responsive to the shock.

Groups of Three Agents (N = 3)

For peer groups of more than two agents, the IAM assumption is more restrictive with respect

to the interaction effects. To unpack these restrictions, we will examine the three-agent case.

Y1 = α1 + β1

(Y2 + Y3
2

)
+ γ1Z1 (17)

Y2 = α2 + β2

(Y1 + Y3
2

)
+ γ2Z2 (18)

Y3 = α3 + β3

(Y1 + Y2
2

)
+ γ3Z2. (19)

For distinct agents i, j, k ∈ {1, 2, 3}, the endogenous variable in agent i’s outcome equation is

Ȳ−i =
1
2
(Yj + Yk). A researcher can use either Zj or Zk as a valid instrument for Ȳ−i. In this

example, we focus on an IV strategy that uses both instruments jointly, i.e., Z̃−i = (Zj, Zk).

As in the two-agent case, we can interpret βIV
i (zi) as a weighted average of interaction effects,

where larger weights are given to values of βi in groups where Ȳ−i is more affected by Z−i.

If we impose IAM, then βIV
i (zi) will be a positively-weighted average of βi’s. However,

as shown in Figure 1, IAM places strong conditions on the reduced form effects ∆Ȳ−i/∆Zj

and ∆Ȳ−i/∆Zk.
17 For binary instruments, it requires that these effects have the same signs

in all networks and that one of these effects is always larger in magnitude than the other one.

For continuous instruments, it requires that the ratio of ∆Ȳ−i/∆Zj to ∆Ȳ−i/∆Zk is constant.

The restrictions on the reduced form also impose restrictions on the interaction effects.

Lemma 3. When N = 3 and (Zj, Zk) are binary, Assumption IAM holds if and only if:

(i) P(γℓ ≥ 0) = 1 or P(γℓ ≤ 0) = 1, for ℓ ∈ {j, k}.

(ii) P
(

1+ 1
2
βj

1+ 1
2
βk

≥
∣∣∣ γjγk ∣∣∣) = 1 or P

(
1+ 1

2
βj

1+ 1
2
βk

≤
∣∣∣ γjγk ∣∣∣) = 1.

Example (Peer Effects). Suppose that Zj and Zk are binary variables indicating whether

students j and k, respectively, receive a scholarship. For simplicity, assume that γj and γk
are uniform within and across peer groups. Then, IAM requires that one student always has

a larger interaction effect than the other student: either P(βj ≥ βk) = 1 or P(βj ≤ βk) = 1.18

17Specifically, the IAM assumption imposes a total order on a vector space, requiring that the relation ⪰,
where z−i ⪰ z′−i if and only if P

(
Ȳ−i(z−i, zi) ≥ Ȳ−i(z

′
−i, zi)

)
= 1, is a total order on the support of Z−i.

18If the indices j and k are chosen arbitrarily, then one could overcome this restriction by defining j to be
the member of the peer group who experiences the most social pressure. However, if j and k take on specific
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Example (Household Labor Supply). Suppose that Zj and Zk are binary factors influenc-

ing the wages of household members j and k, respectively. In this case, IAM requires that one

person always values leisure more than the other: either P(µj ≥ µk) = 1 or P(µj ≤ µk) = 1.

Example (Oligopoly). Suppose that Zj and Zk are binary productivity shocks to firms j

and k, respectively. If the coefficients λj1 and λk1 are constant within and across markets,

then IAM implies that δj + bθj is always greater than (or always less than) δk + bθk. To

interpret this statement, recall that δj and δk are the slopes of firms’ marginal cost curves,

and bθj and bθk are the (conjectured) indirect effects of firms’ actions on the market price.

Unless the indices j and k are chosen to satisfy this restriction, it is hard to justify in practice.

Figure 1. Illustration of IAM Conditions for Two Instruments

Case 1. Binary Instruments (Zj , Zk) Case 2. Continuous Instruments (Zj , Zk)

Notes. These plots display feasible regions of the vector (∆Ȳ−i/∆Zj ,∆Ȳ−i/∆Zk) under Assumption IAM.

If the instruments Zj and Zk are continuous, then IAM imposes even stronger restrictions.

Lemma 4. When N = 3 and (Zj, Zk) are continuous, Assumption IAM holds if and only if:

(i) P(γℓ ≥ 0) = 1 or P(γℓ ≤ 0) = 1, for ℓ ∈ {j, k}.

(ii) P
(

1+ 1
2
βj

1+ 1
2
βk

≥
∣∣∣ γjγk ∣∣∣) = 1 or P

(
1+ 1

2
βj

1+ 1
2
βk

≤
∣∣∣ γjγk ∣∣∣) = 1.

Examples. For the peer effects example where γj = γk, Assumption IAM requires that βj
is a deterministic linear function of βk, such that βj = 2(a−1)+aβk for a ∈ R. For a house-

hold labor supply model where the wages (Wj,Wk) are used as instruments, this assumption

requires that household member j and k’s preferences over leisure and consumption are de-

terministic functions of one another, where
2−µj

1−µj
= a× 2−µk

1−µk
. Finally, for an oligopoly model

with λj1 = λk1, it implies that (δj + bθj) = a × (δk + bθk) + 1.5b(a − 1). We are not aware

roles, such as “teacher and student” or “parent and child”, then this relabeling approach will not be feasible.
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of any meaningful justification for these restrictions. So, for any model with heterogeneous

effects and two continuous instruments, IAM would be particularly difficult to rationalize.19

Alternative Conditions for Positive Weights

In order to overcome the economic restrictions implied by Imbens-Angrist monotonicity, we

propose an alternative assumption, which is sufficient for the IV estimand to be a positively-

weighted average of interaction effects. Specifically, under a testable condition on the instru-

ment correlation structure, we can relax IAM by imposing a weaker form of monotonicity.

Assumption PM (Partial Monotonicity). For any j ̸= i and any (zj, z−j) and (z′j, z−j) in the

support of Z, either P
(
Ȳ−i(zj , z−j) ≥ Ȳ−i(z

′
j , z−j)

)
= 1 or P

(
Ȳ−i(zj , z−j) ≤ Ȳ−i(z

′
j , z−j)

)
= 1.

This form of monotonicity is studied by Mogstad et al. (2021) as an alternative to the

Imbens-Angrist condition. It requires that monotonicity holds separately for each instrument

instead of for the entire instrument vector. If there is only one instrument, then both

assumptions are the same. If there are multiple instruments, then PM is weaker than IAM.

To see what PM implies about the structural parameters, consider the following lemma.

Lemma 5. Assumption PM holds if and only if P(γj ≥ 0) = 1 or P(γj ≤ 0) = 1 for all j ̸= i.

This result is perhaps surprising given the complex nature of the model. It reveals that PM

imposes no restrictions on the interaction effects. Instead, it only requires that the random

coefficient γj on each instrument Zj, where j ̸= i, retains the same sign across all groups.

We now introduce a testable condition that restricts the correlation structure of Z. This

condition places a bound the covariances of the instruments {Zj}j ̸=i in relation to the average

reduced form effects {E(∆Ȳ−i/∆Zj)}j ̸=i, which are point identified from OLS regressions.

Assumption NNW (No Negative Weights). Fix some zi ∈ supp(Zi). For any j, k ∈ N \ i:

Cov(Zj , Zk|zi) /∈

(
−
∑

ℓ/∈{i,j}

E(∆Ȳ−i/∆Zℓ)

E(∆Ȳ−i/∆Zj)
Cov(Zℓ, Zk|zi),−

∑
ℓ/∈{i,k}

E(∆Ȳ−i/∆Zℓ)

E(∆Ȳ−i/∆Zk)
Cov(Zℓ, Zj |zi)

)
.

This assumption holds if all the instruments Z−i are uncorrelated. Also, if the components

of γ−i share the same sign, then it holds when no two instruments are negatively correlated.

Lemma 6. Assumption NNW is satisfied if either: (1) Cov(Zj, Zk|zi) = 0 for all j, k ∈ N \ i
or if (2) both Cov(Zj, Zk|zi) ≥ 0 for all j, k ∈ N \ i and P(γ−i ≥ 0) = 1 or P(γ−i ≤ 0) = 1.

Note that NNW can be tested empirically as the terms in this condition are identified in the

data. So, one can assess whether this restriction holds without making economic arguments.

19Even if the instrument Z̃−i is a non-invertible function of (Zj , Zk), Assumption IAM is often still highly

restrictive. For example, in the case where Z̃−i is a linear combination of Zj and Zk, the restrictions implied
by Lemmas 3 and 4 are similar, if not unchanged. Moreover, even if we were to use only one instrument,
setting Z̃−i = Zj , the restrictions on the interaction effects do not go away unless Zj and Zk are uncorrelated.
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Suppose that we use a combination of the variables in Z−i as our excluded instrument.

Then PM and NNW ensure that the estimand βIV
i (zi) is a positively-weighted average of βi’s.

Proposition 3. Choose Z̃−i ⊆ Z−i, and suppose that Assumptions PM and NNW both hold.

Then the IV estimand is a positively-weighted average of instrument-specific IV estimands:

βIVi (zi) =
∑
j ̸=i

ωj ×
Cov(Yi, Zj |zi)
Cov(Ȳ−i, Zj |zi)

, where:
∑
j ̸=i

wj = 1 and wj ≥ 0, ∀j ̸= i.

Additionally, the IV estimand represents a positively-weighted average of interaction effects:

βIVi (zi) =

∫
supp(βi)

βi × ω(βi|zi)dβi, where:
∫
ω(βi|zi)dβi = 1 and ω(βi|zi) ≥ 0, ∀βi.

From this proposition, we also derive a corollary that applies for any type of instrument Z̃−i.

Corollary 2. For any choice of Z̃−i, the IV estimand is a positively-weighted average of βi if:

(i) P(γ−i ≥ 0) = 1 or P(γ−i ≤ 0) = 1.

(ii) corr(Zj, Zk|zi) ≥ 0, for any j, k ̸= i.

To interpret these results, we now reconsider the special case of the model with three agents.

Groups of Three Agents (N = 3)

When there are three agents i, j, k ∈ {1, 2, 3}, Assumption PM requires that γj and γk retain

the same signs across all peer groups, and Assumption NNW simplifies in the following way:

Cov(Zj, Zk|zi) /∈

(
− E(∆Ȳ−i/∆Zj)

E(∆Ȳ−i/∆Zk)
Var(Zj|zi),−

E(∆Ȳ−i/∆Zk)

E(∆Ȳ−i/∆Zj)
Var(Zk|zi)

)
. (20)

Example (Peer Effects). First, consider a peer effects model where Zj and Zk are factors

that raise the achievement of students j and k, respectively. If these factors are not negatively

correlated, then the IV estimand βIV
i (zi) is a causal parameter. It measures the average peer

effect βi in groups where the mean performance of students j and k is most affected by Z̃−i.

Example (Household Labor Supply). Suppose that Zj and Zk are the wages of household

members j and k, respectively. If these wages are not negatively correlated, then βIV
i (zi)

represents the average value of µi in households where the earnings of j and k are most

improved by Z̃−i, i.e., where j and k are least inclined to reduce their labor when wages rise.

Example (Oligopoly). Suppose that Zj and Zk are positive productivity shocks that are

experienced by firms j and k, respectively. As long as these two shocks are not negatively cor-

related, the parameter βIV
i (zi) is causal. It measures the average conduct parameter of firm

i in markets where the mean output of firms j and k is most responsive to the instrument Z̃−i.
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Conditional IV Estimation Using One Instrument

In cases where Assumptions NNW and PM fail to hold, an alternative IV specification may

still recover a positively-weighted average of interaction effects. Consider the IV estimand:

βIV
i (z−j) =

Cov(Yi, Zj|Z−j = z−j)

Cov(Ȳ−i, Zj|Z−j = z−j)
(21)

This estimand uses only one instrument Zj, while controlling for all other instruments Z−j.

To interpret this estimand as a positively-weighted average of the interaction effects, we only

require that ∆Ȳ−i/∆Zj has the same sign across all networks. This monotonicity condition

imposes the same parametric restriction as in the N = 2 case. In particular, βIV
i (z−j) equals

a positively-weighted average of βi-values if and only if P(γj ≥ 0) = 1 or P(γj ≤ 0) = 1.20

Higher weights are put on βi-values in groups where Ȳ−i is more affected by the instrument Zj.

3.4 Learning about Interaction Effects and Multipliers under Het-

erogeneous Effects

In this section, we show how to use OLS and IV regressions to learn about endogenous inter-

action effects and social multipliers in the linear-in-means model with heterogeneous effects.

3.4.1 Using IV to Bound Average Interaction Effects

First, we show how the IV estimand compares to an unweighted average of interaction effects.

The following proposition demonstrates that this relationship is governed by 1
N−1

∑
j ̸=i ψji,

which is defined in Corollary 1. This parameter has an important economic interpretation:

it determines how an individual i’s outcome Yi affects the average outcome Ȳ−i of i’s peers.

Proposition 4. Let βIV
i (zi) be a positively-weighted average of βi and E(βi|β−i, γ−i) = E(βi).

(i) If 1
N−1

∑
j ̸=i ψji > 0 with probability 1, then βIV

i (zi) > E(βi).

(ii) If 1
N−1

∑
j ̸=i ψji < 0 with probability 1, then βIV

i (zi) < E(βi).

There are notable examples where the sign of 1
N−1

∑
j ̸=i ψji can be easily determined. Under

Assumption III, 1
N−1

∑
j ̸=i ψji is positive if βj > 0 for all j and negative if βj < 0 for all j.21

Examples. Suppose that all the interaction effects share the same sign. Then the IV

estimand overstates the magnitude of E(βi) for any agent i. Namely, for a peer effects

model with positive social interactions, IV would overestimate the average peer effect. For a

household labor supply model, it would overestimate the average added earner effect. Finally,

for an oligopoly model, it would overestimate the average conduct parameter in the market.

20Averaging over Z−j , we can also define the following IV estimand βIV
i =

∫
βIV
i (z−j)fZ−j

(z−j)dz−j .
21In the Appendix, we show how this result extends to cases where βi and β−i are statistically dependent.
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Remark. While these examples may suggest that IV generally overestimates the magni-

tude of E(βi), there are also notable exceptions. For example, consider a peer effects model

where βi < 0 and βj > 0 for every j ̸= i. In this setting, everyone seeks to conform to the

average action in the group, except for person i, who wishes to deviate. Since 1
N−1

∑
j ̸=i ψji

is below zero in this case, the IV estimand βIV
i (zi) would understate the magnitude of E(βi).

Pairs of Agents (N = 2)

For two-agent groups, we draw comparisons to the mean with the following decomposition.

βIV
i (zi) = E(βi) +

Cov[βi, γj/(1− β1β2)]

E[γj/(1− β1β2)]
. (22)

If βi is mean independent of (βj, γj), then the relationship between βIV
i (zi) and E(βi) is fully

governed by agent j’s interaction effect βj. In particular, (i) and (ii) in Proposition 4 become:

(i) If βj > 0 with probability 1, then βIV
i (zi) > E(βi).

(ii) If βj < 0 with probability 1, then βIV
i (zi) < E(βi).

One implication of Proposition 4 is that, if β1 and β2 have the same sign within and across

groups, then IV necessarily overstates the magnitudes of E(β1) and E(β2). Alternatively, if

β1 and β2 always have opposite signs, then IV understates the magnitudes of E(β1) and E(β2).

Figure 2. Cases Where βIV
i (zi) > E(βi) for Three-Agent Groups

Notes. This figure depicts values of (βj , βk) where the IV estimand overstates the average interaction effect.

Groups of Three Agents (N = 3)

Suppose that each group contains three agents. Then, (i) and (ii) in Theorem 2 reduce to:
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(i) If βj + βk + βjβk > 0 with probability 1, then βIV
i (zi) > E(βi).

(ii) If βj + βk + βjβk < 0 with probability 1, then βIV
i (zi) < E(βi).

In Figure 2, we plot the settings where the sum βj+βk+βjβk is positive. If βj and βk share the

same sign, then the relationship between βIV
i (zi) and E(βi) is unambiguous. Alternatively, if

these interaction effects have different signs, then it is harder to compare βIV
i (zi) with E(βi).

3.4.2 Using OLS to Test for Endogenous Interaction Effects and Multipliers

We now demonstrate how to use OLS regressions to test for the presence of social multipliers

and endogenous interaction effects, as well as to learn about the signs and magnitudes of these

interaction effects under heterogeneous effects. Our tests will utilize the average equilibrium

quantities {E(∆Yj/∆Zi)}i,j, {E(∆Ȳ /∆Zi)}i, and {E(∆Ȳ−i/∆Zi)}i, all of which are are point

identified from correctly specified OLS regressions, following the discussion in Section IV.A.

Before presenting our tests, we first establish the following proposition, which shows how

endogenous interaction effects and social multipliers relate to various reduced form quantities.

Proposition 5. Let γi > 0 for all i. Then, under Assumptions I, II, and III, it follows that:

(a) Mheterog.
(i) − 1 has the same sign as ∆Ȳ−i/∆Zi.

(b) Mheterog. − 1 has the same sign as
∑N

i=1∆Ȳ−i/∆Zi.

(c) βj has the same sign as ∆Yj/∆Zi.

(d) If βj, βk ≥ 0 or βj, βk ≤ 0, then βj − βk has the same sign as ∆Yj/∆Zi −∆Yk/∆Zi.

We will draw on the results presented in Proposition 5 throughout our subsequent analysis.

Testing for Social Multipliers

We begin by showing how to use OLS estimands to draw inference about individual-specific

social multipliers Mheterog.
(i) and aggregate social multipliers Mheterog., which are both defined

in Table 1. If these multipliers are greater (less) than one, then it would suggest that spillover

effects amplify (suppress) the impact of individual shocks on the average outcome in a group.

To learn about the social multipliers, we analyze the equilibrium effects Y−i/∆Zi, which

represent spillover effects of Zi on agent i’s peers. By Proposition 5, we can assess whether

social multipliers are greater (less) than one by evaluating the signs of these reduced form

quantities. Although we are unable to compute {∆Ȳ−i/∆Zi}Ji=1 within every group, we can

estimate the average reduced form effects {E(∆Ȳ−i/∆Zi)}Ji=1 using OLS regressions. With

these estimates, we can test whether social multipliers are greater than or less than one for

a subset of groups in the population, providing insight into the role of network spillovers.

For example, a rejection of the null H0 : E(∆Ȳ−i/∆Zi) ≤ 0 implies that P(Mheterog.
(i) > 1) > 0.
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Testing for Positive Interaction Effects

Next, we show how to test for positive (or negative) interaction effects among agents in the

population. Recall that positive interaction effects indicate strategic complementarity, which

is consistent with classical peer effects, but is inconsistent with household labor supply and

oligopoly. In contrast, negative interaction effects indicate strategic substitutability, which

is consistent with household labor supply and oligopoly, but not with classical peer effects.

By Proposition 5, the sign of the interaction effect βj can be inferred from the individual

spillover effect ∆Yj/∆Zi, provided the sign of γi is known. Specifically, for two agents i and

j where γi > 0, the interaction effect βj of agent i always shares the same sign as ∆Yj/∆Zi.

By this property, we can construct a test for the existence of positive interaction effects

from OLS regressions. In particular, if we assume that P(γj ≥ 0) = 1, then we can assess

whether βi > 0 with positive probability by testing the null hypothesisH0 : E(∆Yi/∆Zj) ≤ 0.

In some cases, it may not be feasible to regress the outcomes Yi on the entire vector Z.

Moreover, if the interaction effects are heterogeneous within groups, then using an alternative

regression based on averages of {Zj}j introduces omitted variable bias. This bias confounds

our ability to recover the average individual spillover effects E(∆Yi/∆Zj), which prevents us

from conducting the tests outlined above. Fortunately, we can still test for the presence of

endogenous interaction effects even when running a correctly specified regression is infeasible.

Lemma 7. Define βOLS
Yi,Z̄−i

to be the coefficient on Z̄−i in an OLS regression of Yi on (1, Zi, Z̄−i).

If this estimand is nonzero, then the interaction effect βi is nonzero with positive probability.

Lemma 7 provides a way to test for endogenous interaction effects, even in the presence of

heterogeneous effects, using an OLS regression of Yi on (1, Zi, Z̄−i). However, it is important

to note that this regression does not allow us to determine the sign of the interaction effects.

Testing for the Relative Strengths of Interaction Effects

We can also use OLS to test for the relative strengths of interaction effects. Specifically, for

two distinct agents j and k in the group, we may want to empirically assess whether βj ≥ βk.

For example, do female or male students face more social pressure? Do husbands or wives

exhibit higher second earner effects? What types of firms have larger conduct parameters?

To conduct this test, we draw on Proposition 5. If βj and βk share the same sign and

if γi > 0, then difference between agents’ interaction effects, βj − βk, always has the same

sign as the difference in individual spillover effects, ∆Yj/∆Zi−∆Yk/∆Zi for any third agent

i /∈ {j, k}. Under a monotonicity assumption, P(γi ≥ 0) = 1, we can assess whether βi > βj
with positive probability by testing the null hypothesis H0 : E(∆Yi/∆Zk) ≤ E(∆Yj/∆Zk).

Testing for Bounded Spillovers

Using OLS regressions, we can also test Assumption III, which states that βi ∈ (1−N, 1) for

30



every agent i. One consequence of this assumption is that ∆Ȳ /∆Zi has the same sign as γi.

Using this property, we can test P(1−N < βi < 1) = 1 through the nullH0 : E(∆Ȳ /∆Zi) > 0

as long as we maintain a monotonicity assumption that P(γi ≥ 0) = 1. Rejecting this test

means that the spillovers are unbounded, which suggests that the model is likely misspecified.

4 Empirical Applications

We now examine two applications: peer effects in Kenyan primary schools (Duflo et al., 2011)

and strategic pricing decisions of cocoa traders in Sierra Leone (Casaburi & Reed, 2022).

Both studies adopt a linear-in-means model with constant interaction effects. In each case,

the model is over-identified, as individual-level shifters affect the outcomes of multiple agents

in a group. We exploit this over-identification to test for constant interaction effects, finding

that these tests are rejected in both applications.22 We then reanalyze the estimates under

heterogeneous effects, drawing insights about endogenous interactions and social multipliers.

4.1 Classroom Peer Effects in Kenya

Our first application comes from Duflo et al. (2011), who study peer effects and the impact of

ability tracking in primary schools in Kenya. The study includes 121 schools, each assigning

students to one of two classrooms. Students in treatment schools are assigned to classrooms

based on ability, as measured by their baseline test score, while students in control schools are

randomly assigned. Following Duflo et al. (2011), we restrict the sample to the control group.

This sample is composed of 2,849 students over 61 schools, each split into two rooms.23

To measure peer effects in classrooms, Duflo et al. (2011) consider the following model:

Yi = βȲ−i + Z ′
iγ + νs + εi, (23)

where Yi is the endline test score of a student i, Ȳ−i is the average endline test score of i’s

classmates, Zi is a vector of controls that includes i’s own baseline score, and νs is a school

fixed effect. The authors use the average baseline score of i’s classmates Z̄−i as an instrument

for Ȳ−i. As outcome variables, they consider math, reading, and total endline test scores.24

4.1.1 OLS/IV Estimates and Over-identification Tests

Table 3 presents results from our implementation of linear peer effects estimators. The first

three columns of Panel A give OLS estimates from regressing Yi on Zi and Z̄−i with school

fixed effects, the same specification used in Duflo et al. (2011). In the classical linear-in-means

22As usual, we need to maintain the assumption of instrument exogeneity for the over-identifying restric-
tions to be a test of homogeneous interaction effects. Otherwise, it is a test of multiple model assumptions.

23After removing missing data, we retain 2,190 students over 48 schools.
24Equation (23) corresponds to (E4) in the original paper, with the notation adjusted to align with ours.
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model with equal class sizes, these OLS regressions recover two key economic quantities: the

spillover effect, ∆Yi/∆Zj, j ̸= i, of peer j’s baseline score on student i’s endline score and

the total individual effect, ∆Yi/∆Zi, of student i’s own baseline score on her endline score.

The last three columns of Panel A give estimates from OLS regressions of Ȳ−i on Zi and

Z̄−i, again with school fixed effects. Under Assumptions C.1 and C.4, Lemma 1 tells us that

the coefficient on Zi in these regressions should equal the coefficient on Z̄−i in the first set of

regressions. However, we find strong evidence that these coefficients differ, suggesting that

Assumption C.1 and/or C.4 is violated and that the peer effects may differ within classrooms.

Table 3: Classroom Peer Effects—Primary Schools in Kenya

Own Endline Score Peers’ Mean Endline Score

Total Math Literature Total Math Literature
(1) (2) (3) (4) (5) (6)

Panel A. Reduced Form
Own Baseline Score 0.507*** 0.496*** 0.413*** 0.007** 0.006* 0.007**

(0.026) (0.022) (0.030) (0.003) (0.003) (0.003)
Peers’ Mean Baseline Score 0.345** 0.324** 0.291** 0.788*** 0.697*** 0.704***

(0.150) (0.160) (0.131) (0.157) (0.174) (0.134)

Observations 2,188 2,188 2,189 2,188 2,188 2,189

One Instrument Spec. Multiple Instrument Spec.

Total Math Literature Total Math Literature

Panel B. Instrumental Variables
Peers’ Mean Endline Score 0.444*** 0.469*** 0.422*** 0.424*** 0.488*** 0.487***

(0.117) (0.124) (0.120) (0.094) (0.103) (0.117)

First-Stage F-Stat 371.8 371.6 1970 293.4 463.4 590.9
Sargan-Hansen Testa 15.12 12.53 12.76

(0.004) (0.014) (0.013)

Observations 2,188 2,188 2,189 2,188 2,188 2,188

Notes. Data comes from Duflo et al. (2011). Following the authors’ specifications, we include school fixed
effects and controls for gender, age, and being assigned to the contract teacher. Columns (1)-(3) in
Panel B use peers’ mean baseline score as an excluded instrument. Columns (4)-(6) in Panel B use
as excluded instruments: peers’ mean baseline score, peers’ minimum and maximum baseline scores,
and mean baseline scores of male and female peers. Standard errors clustered at the school level.

aWe report the Sargan-Hansen χ2
4 test statistic with the corresponding p-value in parentheses below.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

The first three columns of Panel B report estimates for the main IV specification. For a

classical linear-in-means model, these regressions would recover the constant peer effect β.

The last three columns of Table 3, Panel B, report estimates from alternate IV specifications

that use multiple excluded instruments. In addition to Z̄−i, we include four more instrumen-
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tal variables: (1) minimum baseline score of peers, (2) maximum baseline score of peers, (3)

average baseline score among female peers, and (4) average baseline score among male peers.

If the peer effects are constant across classrooms, then by Lemma 2, any combination of

instruments should yield the same IV estimand. However, if the peer effects vary, then the

IV estimand will depend on the particular choice of instruments used. To test for constant

effects in the model, we conduct a Sargan–Hansen test for over-identifying restrictions using

all five excluded instruments. This test allows us to determine the validity of over-identifying

restrictions using any linear combination of the excluded instruments. We find that this test

is rejected at the significance level 0.05, implying that peer effects differ between classrooms.

4.1.2 Reanalysis under Heterogeneous Interaction Effects

Motivated by these findings, we re-analyze the estimates in Table 3 under the linear-in-means

model with heterogeneous interaction effects. Our analysis leverages two observations about

the empirical setting. First, Assumption PM is likely to hold because students’ baseline test

scores are expected to have a nonnegative impact on their endline scores, making it plausible

that P(γi ≥ 0) = 1 for all i. Second, Assumption NNW is likely to hold, as the experimental

design ensures that baseline scores {Zj}Nj=1 are uncorrelated after conditioning on the school.

Learning from OLS Estimates

Consider the OLS estimates reported in the first three columns of Table 3, Panel A. Under

heterogeneous interaction effects, the coefficient on Zi represents the average total individual

effect E(∆Yi/∆Zi)—that is, the effect of a student’s baseline test score on his/her own endline

test score, after accounting for spillovers. We estimate that, on average, scoring 1 point higher

on the baseline test would lead a student to score about 0.5 points on the endline test.

In these OLS regressions, the coefficient on peers’ mean baseline score Z̄−i is estimated to

be positive and statistically significant. By Lemma 7, this result allows us to infer that peer

effects are present in at least some classrooms. Nevertheless, under heterogeneous effects, we

cannot use this estimate to infer the sign of these peer effects, even though they do exist.25

Learning from IV Estimates

Consider the IV estimates in the first three columns of Table 3, Panel B, where we estimate

positive and statistically significant IV estimands of approximately 0.45. Under heteroge-

neous effects, these estimands represent weighted averages of peer effects βi across students.

Given that Assumptions PM and NNW hold, Proposition 3 implies that the IV estimand

25In this application, it is infeasible to regress the outcomes Y on the entire vector Z̃ = (1, Z ′)′ as it requires
labeling each student i in a way that is consistent across classrooms. This task may be straightforward in
certain applications, e.g., when studying labor supply in two-person households where there is always one
primary earner. However, it is impractical in other cases where the number and composition of agents in a
group varies. Also, when N is large, there could be more parameters to estimate than there are observations.
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is a causal parameter, representing a positively weighted average of peer effects.26 Moreover,

if we further assume that all peer effects are nonnegative, such that P(βi ≥ 0) = 1 for all i,

then Proposition 4 implies that the IV estimands serve as upper bounds on the average peer

effect E(βi). We thus conclude that a 1 point increase in peers’ average test scores would not

raise a student’s own score by more than about 0.45 points on average. This upper bound is

high, which suggests that peer effects could have a substantial impact on student outcomes.

Testing for Social Multipliers

In the last three columns of Table 3, Panel A, we estimate a statistically significant, positive

regression coefficient on a student’s own baseline test score Zi, corresponding to the average

equilibrium effect E(∆Ȳ−i/∆Zi).
27 By Proposition 5, this result tells us that social multi-

pliers must exceed one in at least some classrooms. In such settings, factors that boost one

student’s achievement are amplified through social interactions, raising overall performance.

4.2 Strategic Pricing Decisions in Sierra Leone

Our second application builds on the analysis conducted by Casaburi & Reed (2022), who

study the strategic behavior of traders purchasing cocoa from farmers in Sierra Leone. During

an experiment conducted from October to December 2011, half of the 80 traders in the sample

were randomly assigned a subsidy of 150 leones per pound of cocoa sold at village markets.

Data on prices and quantities from these transactions was subsequently collected for analysis.

Casaburi & Reed (2022) specify a model of imperfect competition among buyers. Each

market consists of N buyers and a unit measure of homogenous producers. The price Pi that

a buyer i pays to producers is given by the inverse supply Pi = λ+κQi+θ
∑

j ̸=iQj, which is

micro-founded by assuming there exists a representative producer with a love for variety.28

A buyer’s profit function equals Πi = Qi(v + sZi − Pi), where v denotes the wholesale price

net of costs and Zi indicates whether the buyer is randomly assigned a subsidy valued at s.

In equilibrium, the buyers choose their quantities Qi to maximize profit, while accounting

for optimal decisions {Qj}j ̸=i of their competitors. The profit-maximizing quantities satisfy

26Specifically, this IV estimand places larger weights on students for which Ȳ−i is more responsive to Z̄−i.
27This interpretation assumes that students’ baseline scores {Zj}Nj=1 are uncorrelated with one another,

which is implied by the experimental design, as students are randomly assigned to classrooms within a school.
28Following footnote 6 in Casaburi & Reed (2022), a producer’s profit is: V (P,Q) = Q0+

∑N
i=1 PiQi−C(Q),

where C(Q) = λ
∑N

i=1Qi+
1
2κ
∑N

i=1Q
2
i +θ

∑
j ̸=iQiQj is the cost of production, and Q0 is any unsold output.
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the linear-in-means model with constant effects, where the interaction effect β is θ(N−1)/2κ.

Qi =
v − λ

2κ
− θ

2κ

∑
j ̸=i

Qj +
s

2κ
Zi

= α︸︷︷︸
(v−λ)/2κ

+
β

N − 1︸ ︷︷ ︸
−θ/2κ

∑
j ̸=i

Qj + γ︸︷︷︸
s/2κ

Zi, for i ∈ {1, . . . , N}. (24)

In this setting, we can interpret θ/2κ as a conduct parameter that measures how a buyer i’s

demand depends on the total quantity purchased by i’s competitors. Under constant effects,

the conduct parameter is identified from IV, where the quantity purchased by i’s competitors∑
j ̸=iQj is instrumented by the treatment statuses of i’s competitors, denoted by {Zj}j ̸=i.
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4.2.1 OLS/IV Estimates and Over-identification Tests

Table 4 presents our implementation of linear peer effects estimators. The first two columns of

Panel A report OLS estimates from regressing a buyer i’s purchases Qi on her own treatment

status Zi and the number of treated competitors
∑

j ̸=i Zj, with and without trader controls.

Under constant effects, this regression recovers the spillover effect of a competitor j’s subsidy

on a trader i’s purchases, as well as the total individual effect of a trader i’s subsidy on her

own purchases. The last two columns of Panel A report estimates from regressing
∑

j ̸=iQj

on Zi and
∑

j ̸=i Zj, with and without trader controls. If Assumptions C.1 and C.4 hold, then

by Lemma 1, the coefficient on Z̄−i in a regression of Yi on Zi and Z̄−i should match the

coefficient on Zi in a regression of Ȳ−i on Zi and Z̄−i. We are unable to reject this in the data.

The first two columns of Panel B present estimates from IV regressions of Qi on
∑

j ̸=iQj,

where the number of treated competitors
∑

j ̸=i Zj is the excluded instrument. In the classical

linear-in-means model, this regression recovers the conduct parameter −θ/2κ. The last two

columns of Table 4, Panel B, report estimates from alternate IV specifications using multiple

instruments. In addition to
∑

j ̸=i Zj, we introduce three extra instruments: (1) number of

treated competitors who have access to a storage facility, (2) number of treated competitors

older than the median age (37), and (3) number of treated competitors with baseline sales

above the median (300 lbs of cocoa). Each of these instruments is valid by the same identifi-

cation arguments used in the original paper. We use these over-identified regressions to test

whether all traders share a common conduct parameter. We then conduct a Sargan–Hansen

test for over-identifying restrictions using all four excluded instruments. From this exercise,

29Casaburi & Reed (2022) do not run this IV regression since they never explicitly define a market in their
empirical analysis. Rather, they rely on additional model assumptions to estimate the market size N while
never explicitly assigning traders to markets. To conduct our analysis, however, we need to know which
traders belong to which markets. We achieve this objective by defining a market as the interaction between
a week and a chiefdom, which represents a small administrative unit in Sierra Leone. In the data, we find
that 90% of traders operate in a single chiefdom in a given week and that over 98% of traders make more
than half of their sales in the same chiefdom. We leverage this observation to assign traders to chiefdoms.
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Table 4: Strategic Interactions—Cocoa Traders in Sierra Leone

Trader Quantity Competitors’ Total Quantity

(1) (2) (1) (2)

Panel A. Reduced Form
Treatment Trader 416.663*** 454.895*** -166.995 -61.516

(45.733) (49.594) (248.156) (267.626)
Number of Treated Competitors -10.733*** -7.423** 507.685*** 522.394***

(2.975) (3.697) (16.141) (19.948)

Observations 610 602 610 602
Trader Controls X X

One Instrument Spec. Multiple Instrument Spec.

(1) (2) (1) (2)

Panel B. Instrumental Variables
Competitors’ Total Quantity -0.007 -0.020*** -0.004 -0.018***

(0.006) (0.007) (0.006) (0.007)

First-Stage F-Stat 23.06 14.15 22.90 14.09
Sargan-Hansen Testa 9.82 12.35

(0.02) (0.006)

Observations 610 602 610 602
Trader Controls X X

Notes. Data comes from Casaburi & Reed (2022). Following the original paper, we include week
fixed effects. Trader controls are: baseline pounds of cocoa sold, number of villages where
trader operates, baseline share of suppliers receiving credit from trader, age, years working
with wholesaler, ownership of a cement or tile floor, mobile phone, and access to a storage
facility. Sample sizes differ between (1) and (2) due to missing data about trader controls.

aWe report a Sargan-Hansen χ2
3 test statistic with a corresponding p-value in parentheses.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

we find strong evidence against the constant effects assumption. This suggests that different

traders likely respond strategically in different ways to their competitors’ pricing decisions.

4.2.2 Reanalysis under Heterogeneous Interaction Effects

Motivated by these findings, we reanalyze the estimates in Table 4 under the linear-in-means

model with heterogeneous effects. To better interpret our findings, we make two observations.

First, Assumption PM is likely to hold since the coefficient γi is proportional to the subsidy

s, which is homogeneous within and across markets. Second, Assumption NNW is likely to

hold, as the experimental design ensures that treatments {Zj}Nj=1 are mutually uncorrelated.
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Learning from OLS Estimates

Consider the OLS estimates in the first two columns of Table 4, Panel A. Under heterogeneous

effects, the coefficient on Zi recovers E(∆Qi/∆Zi), which represents the average effect of

receiving a subsidy on a trader’s own purchases, after accounting for spillovers. We estimate

that, on average, the subsidy leads traders to buy about 400 more pounds cocoa from farmers.

In this OLS regression, the coefficient on the number of treated competitors
∑

j ̸=i Zj is

estimated to be negative and statistically significant. By Lemma 7, this finding suggests that

the conduct parameters θi/2κi are nonzero with positive probability. Therefore, at least some

traders exhibit strategic interactions, which tells us that markets are imperfectly competitive.

Learning from IV Estimates

Consider the IV estimates in the first two columns in Panel B. After including trader controls,

we estimate a significant, negative IV estimand of -0.02. Under heterogeneous interaction ef-

fects, this estimand corresponds to a weighted average of conduct parameters among traders.

Since Assumptions PM and NNW are plausible in this environment, we conclude from

Proposition 3 that the IV estimand is a causal parameter, representing a positively-weighted

average of conduct parameters.30 Moreover, as the conduct parameters θi/2κi are positive

by construction, the IV estimand gives an upper bound on the average conduct parameter

E(θi/2κi) among traders. We conclude that, on average, raising a competitors’ cocoa pur-

chases by 1 pound does not reduce a trader’s own purchases by more than 0.02 pounds. This

upper bound is low, which suggests that strategic interactions are limited in this context.

Testing for Social Multipliers

In this application, we find no evidence of social multiplier effects. To see why, consider the

OLS estimates in the last two columns in Table 4, Panel A. The coefficient on Zi corresponds

to E
(
∆
(∑

j ̸=iQj

)
/∆Zi

)
, which measures the average effect of one trader i’s treatment status

on the total quantity of his/her competitors, after accounting for spillovers.31 We estimate

this coefficient to be small and statistically insignificant, indicating that there is no social

multiplier in this setting. We therefore conclude that the strategic interactions have little to

no material impact on how changes in traders’ demand or costs affect overall market output.

5 Conclusion

We analyzed a general class of linear simultaneous equations models where agents are influ-

enced by the average outcome of their peers. Our framework nests the classical linear-in-

means model (Manski, 1993). Moreover, we extended the model to allow for both positive

30Larger weights placed on traders whose competitors’ purchases are more responsive to receiving subsidies.
31As in the first application, this interpretation requires that {Zj}Nj=1 are uncorrelated with one another.

This condition is ensured by the experimental protocols, as a trader’s treatment status is randomly assigned.
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and negative interaction effects that differ within and across groups. We showed that the

assumption of uniform interaction effects significantly limits the scope of economic behavior,

making the model unsuitable for many real-world applications. By allowing for heteroge-

neous effects, we demonstrated that the model can be applied more broadly to study a

wide range of network settings, such as joint labor supply decisions within households and

strategic interactions between firms. Using the heterogeneous effects framework, we exam-

ined what insights are gained from linear peer effects estimators. We found that linear OLS

and IV regressions can be used to draw informative inferences about endogenous interaction

effects and social multipliers, even while these methods do not yield point identification. We

applied our results to two applications from Duflo et al. (2011) and Casaburi & Reed (2022).
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Appendix
Proof of Proposition 1

Consider a group with N agents, where agents’ outcomes are defined by the system (1).32 To
prove Proposition 1, we begin by defining the reduced form system using matrix notation.

Y = det(I −B)−1A[α+ diag(γ)Z],

where A = adj(I −B) is the adjugate of I −B, and det(I −B) is the determinant of I −B.
By definition, A is equal to the transpose of the matrix of cofactors of I −B. In particular,
the individual entries {Aij}i,j of the matrix A are defined so that:

Aij = (−1)i+j × det([I −B]−j,−i),

where [I −B]−j,−i is a submatrix formed by removing the jth row and ith column of I −B.

We want to derive alternate expressions for {Aij}i,j that are not in matrix form. To do so,
we write Aij = (−1)i+j ×det

(
C(i, j)− (N −1)−1β−j1

′
(N−1)×1

)
, where C(i, j) ∈ R(N−1)×(N−1)

is a matrix that is given by C(i, j) = I−j,−i(1(N−1)×1 + (N − 1)−1β−j). This matrix satisfies:

det
(
C(i, j)

)
= 1{i = j} ×

∏
ℓ̸=j

(
1 +

βℓ
N − 1

)

adj
(
C(i, j)

)
=


diag

({ ∏
ℓ/∈{k,j}

(
1 +

βℓ
N − 1

)}
k ̸=j

)
if i = j[

(−1)i+j−1 ×
∏

ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)]
[ej]−i[ei]

′
−j if i ̸= j

Then, by the matrix determinant lemma, the diagonal entries {Ajj}Nj=1 of A are equal to:

Ajj = det
(
C(j, j)

)
− 1

N − 1
1′(N−1)×1 adj

(
C(j, j)

)
β−j

=
∏
ℓ̸=j

(
1 +

βℓ
N − 1

)
− 1

N − 1
1′(N−1)×1 diag

({ ∏
ℓ/∈{k,j}

(
1 +

βℓ
N − 1

)}
k ̸=j

)
β−j

=
∏
ℓ̸=j

(
1 +

βℓ
N − 1

)
−
∑
k ̸=j

[
βk

N − 1

∏
ℓ/∈{k,j}

(
1 +

βℓ
N − 1

)]
32To simplify the notation, we will omit group subscripts and treat Zi as a one-dimensional variable.
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Moreover, by the exact same reasoning, the off-diagonal entries {Aij}i ̸=j of A are equal to:

Aij = (−1)i+j ×
[
det
(
C(i, j)

)
− 1

N − 1
1′(N−1)×1 adj

(
C(i, j)

)
β−j

]
= (−1)i+j ×

[
0− 1

N − 1
1′(N−1)×1

[
(−1)i+j−1 ×

∏
ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)]
[ej ]−i[ei]

′
−jβ−j

]

=
1

N − 1
1′(N−1)×1

∏
ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)
[ej ]−i[ei]

′
−jβ−j

=
βi

N − 1

∏
ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)

Now that we have derived these expressions for {Aij}i,j, our next step is to re-write the
determinant of I −B so that it is not in matrix form. To do so, we take the following steps:

det(I −B) = det
[
I +

1

N − 1
diag(β)− 1

N − 1
β1′N×1

]
= det

[
I +

1

N − 1
diag(β)

](
1− 1

N − 1
1′N×1

[
I +

1

N − 1
diag(β)

]−1
β

)
For any agent i ∈ {1, . . . , N}, this determinant can be reformulated as:

det(I −B) =
N∏
ℓ=1

(
1 +

βℓ
N − 1

)
×
[
1−

N∑
j=1

βj
N − 1

(
1 +

βj
N − 1

)−1
]

=
∏
ℓ ̸=i

(
1 +

βℓ
N − 1

)
×
[
1−

(
1 +

βi
N − 1

)∑
j ̸=i

βj
N − 1

(
1 +

βj
N − 1

)−1
]

= Aii −
βi

N − 1

∑
j ̸=i

[
βj

N − 1

∏
ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)]

By plugging in our expressions for {Aij}i,j and det(I − B), we are now able to write
down the ith reduced form equation for any agent i ∈ {1, . . . , N}. This equation is given by:

Yi =
1

det(I −B)

[
Aii(αi + γiZi) +

∑
j ̸=i

Aij(αj + γjZj)
]

= αi + γiZi +

∑
j ̸=i ζij ×

[
βj

N−1(αi + γiZi) + (αj + γjZj)
]

det(I −B)

where ζij = βi

N−1

∏
ℓ/∈{i,j}

(
1 + βℓ

N−1

)
. Next, for any i ∈ {1, . . . , N}, consider the average

outcome Ȳ−i among everyone excluding agent i. To derive an expression for Ȳ−i, we write:

Ȳ−i =
1

(N − 1)× det(I −B)
× (1N×1 − ei)

′A[α+ diag(γ)Z]

=
1

(N − 1)× det(I −B)
×

N∑
j=1

[∑
k ̸=i

Akj

]
︸ ︷︷ ︸

cij

(αj + γjZj),
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where the coefficient cii =
∑

k ̸=iAki is defined to be:

cii =
∑
k ̸=i

[
βk

N − 1

∏
ℓ/∈{k,i}

(
1 +

βℓ
N − 1

)]
,

and where each of the coefficients cij =
∑

k ̸=iAkj, for j ̸= i, is defined to be:

cij = Ajj +
∑

k/∈{i,j}

Akj

=
∏
ℓ̸=j

(
1 +

βk
N − 1

)
−
∑
k ̸=j

[
βk

N − 1

∏
ℓ/∈{k,j}

(
1 +

βℓ
N − 1

)]
+
∑

k/∈{i,j}

[
βk

N − 1

∏
ℓ/∈{k,j}

(
1 +

βℓ
N − 1

)]

=
∏
ℓ̸=j

(
1 +

βk
N − 1

)
− βi
N − 1

∏
ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)
=
(
1 +

βi
N − 1

− βi
N − 1

) ∏
ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)
=

∏
ℓ/∈{i,j}

(
1 +

βℓ
N − 1

)
After plugging in these expressions for {cij}Nj=1, we arrive at the following equation:

Ȳ−i =

∑
j ̸=i cij ×

[
βj

N−1(αi + γiZi) + (αj + γjZj)
]

(N − 1)× det(I −B)

By taking similar steps, we can derive an analogous expression for the the mean outcome Ȳ :

Ȳ =

∑N
j=1 cj × (αj + γjZj)

N × det(I −B)
, where cj =

∏
ℓ̸=j

(
1 +

βℓ
N − 1

)
for j ∈ {1, . . . , N}

Necessary and Sufficient Conditions for a Unique Equilibrium

A unique equilibrium exists if and only if the determinant of I −B is nonzero. We write:

det(I −B) =

N∏
j=1

(
1 +

βj
N − 1

)
×
[
1−

N∑
i=1

βi
N − 1

(
1 +

βi
N − 1

)−1
]

=
N∑
i=1

[
1

N

N∏
j=1

(
1 +

βj
N − 1

)
− βi
N − 1

∏
j ̸=i

(
1 +

βj
N − 1

)]

=
(N − 1

N

) N∑
i=1

(1− βi)
∏
j ̸=i

(N − 1 + βj)

So, for anyN ≥ 2, a unique equilibrium exists if and only if
∑N

i=1(1−βi)
∏

j ̸=i(N−1+βj) ̸= 0.
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Proof of Lemma 3

Let Zj and Zk be binary variables so that (Zj, Zk) takes values in {(0, 0), (0, 1), (1, 0), (1, 1)}.
Given this set of feasible values, Assumption IAM consists of four separate restrictions:

(1) P
(

∆Ȳ−i

∆Zj
≥ 0
)
= 1 or P

(
∆Ȳ−i

∆Zj
≤ 0
)
= 1

(2) P
(

∆Ȳ−i

∆Zk
≥ 0
)
= 1 or P

(
∆Ȳ−i

∆Zk
≤ 0
)
= 1

(3) P
(

∆Ȳ−i

∆Zj
+ ∆Ȳ−i

∆Zk
≥ 0
)
= 1 or P

(
∆Ȳ−i

∆Zj
+ ∆Ȳ−i

∆Zk
≤ 0
)
= 1

(4) P
(

∆Ȳ−i

∆Zj
− ∆Ȳ−i

∆Zk
≥ 0
)
= 1 or P

(
∆Ȳ−i

∆Zj
− ∆Ȳ−i

∆Zk
≤ 0
)
= 1

As long as βi, βj, βk ∈ (−1, 1), the partial effects ∆Ȳ−i/∆Zj and ∆Ȳ−i/∆Zk have the same
signs (respectively) as γj and γk. For this reason, restrictions (1) and (2) are equivalent to:

(1’) P(γj ≥ 0) = 1 or P(γj ≤ 0) = 1

(2’) P(γk ≥ 0) = 1 or P(γk ≤ 0) = 1

When combined with (1) and (2), the restrictions (3) and (4) can be reformulated as a single
condition: either P(|∆Ȳ−i/∆Zj| ≥ |∆Ȳ−i/∆Zk|) = 1 or P(|∆Ȳ−i/∆Zj| ≤ |∆Ȳ−i/∆Zk|) = 1.
We can re-interpret this condition as a statement about the random coefficients by writing:

(3’) P
(

1+ 1
2
βj

1+ 1
2
βk

≥
∣∣∣ γjγk ∣∣∣) = 1 or P

(
1+ 1

2
βj

1+ 1
2
βk

≤
∣∣∣ γjγk ∣∣∣) = 1

Proof of Lemma 4

Let Zj and Zk be continuous variables, and consider any two vectors (zj, zk) and (z′j, z
′
k)

taken from the support of (Zj, Zk). The difference in Ȳ−i when evaluated at these vectors is:

Ȳ−i(zj , zk)− Ȳ−i(z
′
j , z

′
k) =

[
Ȳ−i(zj , zk)− Ȳ−i(z

′
j , zk)

]
+
[
Ȳ−i(z

′
j , zk)− Ȳ−i(z

′
j , z

′
k)
]

=
∆Ȳ−i

∆Zj
× (zj − z′j) +

∆Ȳ−i

∆Zk
× (zk − z′k)

Assumption IAM requires that Ȳ g1
−i (zj, zk) − Ȳ g1

−i (z
′
j, z

′
k) and Ȳ g2

−i (zj, zk) − Ȳ g2
−i (z

′
j, z

′
k) share

the same sign for any two groups g1 and g2. We show that the condition holds if and only if:

(1) P
(

∆Ȳ−i

∆Zj
≥ 0
)
= 1 or P

(
∆Ȳ−i

∆Zj
≤ 0
)
= 1

(2) P
(

∆Ȳ−i

∆Zk
≥ 0
)
= 1 or P

(
∆Ȳ−i

∆Zk
≤ 0
)
= 1

(3) P
(

∆Ȳ−i/∆Zj

∆Ȳ−i/∆Zk
= a
)
= 1 for some a ∈ R

(“⇐”) Suppose Assumption IAM holds. Then, (1) and (2) apply for the same reason
that they do in the binary case. To justify (3), take (zj, zk) to be any vector that lies within
the interior of the support of (Zj, Zk). Then, for groups g1 and g2, define the quantities:

z′j = zj −
[
∆Ȳ g1

−i

∆Zk
+

∆Ȳ g2
−i

∆Zk

]
× ϵ and z′k = zk +

[
∆Ȳ g1

−i

∆Zj
+

∆Ȳ g2
−i

∆Zj

]
× ϵ,
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where ϵ > 0 is chosen to be sufficiently small so that (z′j, z
′
k) lies inside the support of (Zj, Zk).

In this case, the differences Ȳ g1
−i (zj, zk)− Ȳ

g1
−i (z

′
j, z

′
k) and Ȳ

g2
−i (zj, zk)− Ȳ

g2
−i (z

′
j, z

′
k) are equal to:

Ȳ g1
−i (zj , zk)− Ȳ g1

−i (z
′
j , z

′
k) =

(
∆Ȳ g1

−i

∆Zj
×

∆Ȳ g2
−i

∆Zk

)
ϵ−

(
∆Ȳ g1

−i

∆Zk
×

∆Ȳ g2
−i

∆Zj

)
ϵ

Ȳ g2
−i (zj , zk)− Ȳ g2

−i (z
′
j , z

′
k) =

(
∆Ȳ g1

−i

∆Zk
×

∆Ȳ g2
−i

∆Zj

)
ϵ−

(
∆Ȳ g1

−i

∆Zj
×

∆Ȳ g2
−i

∆Zk

)
ϵ

Observe that the first equation is equal to the negative of the second equation. So, these
differences can only share the same sign when they both equal zero. Specifically, we require:

∆Ȳ g1
−i

∆Zj
×

∆Ȳ g2
−i

∆Zk
=

∆Ȳ g1
−i

∆Zk
×

∆Ȳ g2
−i

∆Zj
⇐⇒

∆Ȳ g1
−i/∆Zj

∆Ȳ g1
−i/∆Zk

=
∆Ȳ g2

−i/∆Zj

∆Ȳ g2
−i/∆Zk

This equation holds for any two groups g1 and g2. So, P
(

∆Ȳ−i/∆Zj

∆Ȳ−i/∆Zk
= a
)
= 1 for some a ∈ R.

(“⇒”) Suppose that conditions (1), (2), and (3) apply. Then, for some constant a ∈ R:

Ȳ−i(zj , zk)− Ȳ−i(z
′
j , z

′
k) =

∆Ȳ−i

∆Zk
×
[
a× (zj − z′j) + (zk − z′k)

]
,

where ∆Ȳ−i/∆Zk retains the same sign across groups. Thus, Assumption IAM must apply.
Note that we can re-write the conditions (1), (2), and (3) in terms of the random coefficients:

(1’) P(γj ≥ 0) = 1 or P(γj ≤ 0) = 1

(2’) P(γk ≥ 0) = 1 or P(γk ≤ 0) = 1

(3’) P
(

1+ 1
2
βj

1+ 1
2
βk

= a× γj
γk

)
= 1 for some a ∈ R

Proof of Lemma 5

For any j ̸= i, consider any two vectors (zj, {zk}k/∈{i,j}) and (z′j, {zk}k/∈{i,j}) in the support of
Z−i. By Lemma 1, the difference between the values of Ȳ−i evaluated at these vectors is:

Ȳ−i(zj , {zk}k/∈{i,j})− Ȳ−i(z
′
j , {zk}k/∈{i,j}) =

∏
ℓ/∈{i,j}

(
1 + βℓ

N−1

)
× γj(zj − z′j)

(N − 1)× det(I −B)

As det(I−B) > 0 and
∏

ℓ/∈{i,j}
(
1+ βℓ

N−1

)
> 0 with probability 1, the PM condition requires:

P
(
γj(zj − z′j) ≥ 0

)
= 1 or P

(
γj(zj − z′j) ≤ 0

)
= 1,

which occurs if and only if P(γj ≥ 0) = 1 or P(γj ≤ 0) = 1. This condition applies for all j.

Proof of Lemma 6

This result immediately follows from the observation that, under Assumption III, the spillover
effect ∆Ȳ−i/∆Zj of Zj on Ȳ−i always shares the same sign as γj for every j ∈ {1, . . . , N} \ i.
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Proof of Proposition 3

In this model, Ȳ−i is a linear function of Z. Therefore, we can write Ȳ−i = π0+
∑N

j=1 πjZj for

some parameters π0 and {πj}Nj=1 that depend on the random coefficient vector (α, β, γ,N ).
Because the random coefficients are independent of Z, the conditional expectation of Ȳ−i

given Z is equal to E(Ȳ−i|Z) = E(π0)+
∑N

j=1 E(πj)Zj. Given these properties, we can write:

β̂TSLS
i (zi)

p→ Cov(Yi,L(Ȳ−i|Z−i)|Zi = zi)

Cov(Ȳ−i,L(Ȳ−i|Z−i)|Zi = zi)
=

Cov(Yi,E(Ȳ−i|Z)|Zi = zi)

Cov(Ȳ−i,E(Ȳ−i|Z)|Zi = zi)

=
∑
j ̸=i

E(πj)×
Cov(Yi, Zj |Zi = zi)

Cov(Ȳ−i,E(Ȳ−i|Z−i)|Zi = zi)

=
∑
j ̸=i

E(πj)×
Cov(Yi, Zj |Zi = zi)∑

k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

=
∑
j ̸=i

E(πj)× Cov(Ȳ−i, Zj |Zi = zi)∑
k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)︸ ︷︷ ︸

ωj

× Cov(Yi, Zj |Zi = zi)

Cov(Ȳ−i, Zj |Zi = zi)

By construction, the weights {ωj}j ̸=i sum to one. In addition, we prove the following claim.

Claim 1. Suppose that Assumption NNW holds. Then ωj will be non-negative for all j ̸= i.

Proof. For j ̸= i, the weight ωj is non-negative if and only if its numerator and denomina-
tor have the same sign. So, {ωj}j ̸=i are non-negative if and only if E(πj)×Cov(Ȳ−i, Zj|Zi = zi)
has the same sign as

∑
k ̸=i E(πk) × Cov(Ȳ−i, Zk|Zi = zi) for all j ̸= i. Note that this state-

ment is equivalent to the requirement that E(πj) × Cov(Ȳ−i, Zj|Zi = zi) retains the same
sign across all j ̸= i. Therefore, for any j, k ∈ {1, . . . , N} \ i, we rule out the case where:

0 > E(πj)× Cov(Ȳ−i, Zj |Zi = zi)

= E(πj) E(πk) Cov(Zj , Zk|Zi = zi) +
∑

ℓ/∈{i,k}

E(πj) E(πℓ) Cov(Zℓ, Zj |Zi = zi)

0 < E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

= E(πj) E(πk) Cov(Zj , Zk|Zi = zi) +
∑

ℓ/∈{i,j}

E(πk) E(πℓ) Cov(Zℓ, Zk|Zi = zi)

These inequalities can be reformulated in terms of bounds on the covariance of Zj and Zk.
33

−
∑

ℓ/∈{i,j}

E(πℓ)

E(πj)
Cov(Zℓ, Zk|Zi = zi) < Cov(Zj , Zk|Zi = zi) < −

∑
ℓ/∈{i,k}

E(πℓ)

E(πk)
Cov(Zℓ, Zj |Zi = zi)

Therefore, the requirement that all the weights {ωj}j ̸=i are non-negative is equivalent to the
condition that Cov(Zj, Zk|Zi = zi) does not satisfy the inequalities above for any j, k ̸= i.

33To see how, divide both inequalities by E(πj) E(πk), which we assume is positive without loss of generality.
If E(πj) E(πk) is negative, then the inequalities flip, and the claim still holds as j and k are chosen arbitrarily.

47



Having proven this claim, the next step is to write down an expression for the TSLS
estimand as a weighted average of individual βi’s. Consider the following decomposition:

β̂TSLS
i (zi)

p→
∑

j ̸=i E(πj)× Cov(Yi, Zj |Zi = zi)∑
k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

=

∑
j ̸=i E(πj)×

(∑
ℓ ̸=i E(βiπℓ)× Cov(Zℓ, Zj |Zi = zi)

)
∑

k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

=

∑
ℓ̸=i E(βiπℓ)×

(∑
j ̸=i E(πj)× Cov(Zℓ, Zj |Zi = zi)

)
∑

k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

=

∑
ℓ̸=i E(βiπℓ)× Cov(Ȳ−i, Zℓ|Zi = zi)∑
k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

= E

(
βi ×

∑
ℓ̸=i πℓ × Cov(Ȳ−i, Zℓ|Zi = zi)∑

k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

)
To obtain the second equation above, we switch the order of summation in the numerator.
The final equation holds by linearity of expectation. In integral form, the TSLS estimand is:

βTSLS
i (zi) =

∫
supp(βi)

βi × ω(βi|zi)dβi,

where: ω(βi|zi) =
∑

ℓ̸=i E(πℓ|βi)× Cov(Ȳ−i, Zℓ|Zi = zi)∑
k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

fβi
(βi)

The last step of this proof will be to demonstrate that the weights ω(βi|zi) are all non-
negative as long as Assumptions PM and NNW are satisfied. We justify this claim below.

Claim 2. If Assumptions PM and NNW hold, then ω(βi|zi) is non-negative for every βi.

Proof. Using Lemma 1, we can write the coefficient πj, for any j ̸= i, to be:

πj =

γj ×
∏

ℓ/∈{i,j}
(
1 + βℓ

|N |−1

)
(|N | − 1)× det(I −B)

if j ∈ N

0 if j /∈ N

Here,
∏

ℓ/∈{i,j}
(
1 + βℓ

|N |−1

)
> 0 and det(I −B) > 0 with probability one. Moreover, by PM,

either γj ≥ 0 with probability one or γj ≤ 0 with probability one. Without loss of generality,
assume that γj ≥ 0 with probability one. Then P(πj ≥ 0) = 1, which ensures that:

E(πj) =

∫ ∞

−∞
πjfπj (πj)dπj =

∫ ∞

0
πjfπj (πj)dπj ≥ 0

E(πj |βi)fβi
(βi) =

∫ ∞

−∞
πjfπj |βi

(πj |βi)fβi
(βi)dπj =

∫ ∞

0
πjfπj ,βi

(πj , βi)dπj ≥ 0

These inequalities imply that E(πj) Cov(Ȳ−i, Zj|Zi = zi) and E(πj|βi) Cov(Ȳ−i, Zj|Zi =
zi)fβi

(βi) are either both non-negative or both non-positive across all βi ∈ supp(βi). More-
over, as the index j was chosen arbitrarily, this relationship applies for all j ∈ {1, . . . , N}\ i.

Assumption NNW ensures that E(πj) Cov(Ȳ−i, Zj|Zi = zi) has the same sign across all
j ̸= i. Since these terms also share the same sign as E(πj|βi) Cov(Ȳ−i, Zj|Zi = zi)fβi

(βi), for
all βi ∈ supp(βi) and j ̸= i, we conclude that all the weights ω(βi|zi) would be non-negative.
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Proof of Proposition 4

As a first step, we decompose the TSLS estimand to isolate the mean interaction effect.

βTSLS
i (zi) =

∑
j ̸=i E(βiπj)× Cov(Ȳ−i, Zj |Zi = zi)∑
k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)

= E(βi) +

∑
j ̸=iCov(βi, πj)× Cov(Ȳ−i, Zj |Zi = zi)∑

k ̸=i E(πk)× Cov(Ȳ−i, Zk|Zi = zi)︸ ︷︷ ︸
(∗)

Under Assumption NNW, the product E(πj)×Cov(Ȳ−i, Zj|Zi = zi) has the same sign across
all j ̸= i. So, whenever Cov(βi, πj) has the same sign as E(πj) for all j ̸= i, the term (∗) will
be positive. Alternatively, if Cov(βi, πj) and E(πj) have opposite signs for all j ̸= i, then the
term (∗) will be negative. This reasoning leads us to the second step of the proof, where we
show ψi =

1
N−1

∑
j ̸=i

[
βj
∏

ℓ/∈{i,j}
(
1+ βℓ

N−1

)]
governs the sign of Cov(βi, πj) relative to E(πj).

Pick any j, where j ̸= i. By the PM condition, either P(γj ≥ 0) = 1 or P(γj ≤ 0) = 1.
Without loss of generality, assume P(γj ≥ 0) = 1. Then, as shown in the proof of Theorem
2, the mean of πj must be positive. Also, the Law of Total Covariance guarantees that:

Cov(βi, πj) = E
(
Cov(βi, πj |γj , β−i,N )

)
+Cov

(
E(βi|γj , β−i,N ),E(πj |γj , β−i,N )

)︸ ︷︷ ︸
=0

Note that the second term on the right-hand-side is zero because E(βi|γj, β−i,N ) = E(βi).
Following the proof of Lemma 1, the coefficient πj can be expressed in terms of ψi by writing:

πj = 1{j ∈ N} ×
γj ×

∏
ℓ/∈{i,j}

(
1 + βℓ

|N |−1

)
(|N | − 1)× det(I −B)

= 1{j ∈ N} ×
γj ×

∏
ℓ/∈{i,j}

(
1 + βℓ

|N |−1

)
(|N | − 1)×

[
Aii − βi × ψi/(|N | − 1)2

]
where Aii depends only on β−i and N . To simplify notation, define the following parameters:

δij = 1{j ∈ N} × (|N | − 1)×
∏

ℓ/∈{i,j}

(
1 +

βℓ
|N | − 1

)
ξi = (|N | − 1)2 ×Aii

These terms δij and ξi depend only on β−i and N . Also, δij is positive with probability one.
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Using this new notation, we can write covariance between βi and πj to be:

Cov(βi, πj) = E

(
Cov

(
βi,

γj × δij
ξi − βi × ψi

∣∣∣γj , β−i,N
))

= E

(
E

([
βi − E(βi)

]
×
[ γj × δij
ξi − βi × ψi

− E
( γj × δij
ξi − βi × ψi

∣∣∣γj , β−i,N
)]∣∣∣∣γj , β−i,N

))
= E

(
E

([
βi − E(βi)

]
×
[ γj × δij
ξi − βi × ψi

− γj × δij
ξi − E(βi)× ψi

]∣∣∣∣γj , β−i,N
))

+ E

(
E

([
βi − E(βi)

]
×
[ γj × δij
ξi − E(βi)× ψi

− E
( γj × δij
ξi − βi × ψi

∣∣∣γj , β−i,N
)]∣∣∣∣γj , β−i,N

))
= E

([
βi − E(βi)

]
×
[ γj × δij
ξi − βi × ψi

− γj × δij
ξi − E(βi)× ψi

])
= E

(
ψi ×

γj × δij ×
[
βi − E(βi)

]2
(ξi − E(βi)× ψi)(ξi − βi × ψi)︸ ︷︷ ︸

≥ 0 almost surely and ̸=0 with positive probability

)

If ψi > 0 with probability one, then Cov(βi, πj) > 0. Alternatively, if ψi < 0 with probability
one, then Cov(βi, πj) < 0. Therefore, we conclude that Cov(βi, πj) has the same (different)
sign as E(πj) whenever ψi is positive (negative) with probability one. Since j is chosen
arbitrarily, this relationship holds for all j ̸= i. By the arguments above, this property
ensures that the term (∗) is positive if P(ψi > 0) = 1 and that (∗) is negative if P(ψi < 0) = 1.

Derivation of Social Multipliers

We now derive a closed-form expression for the individual-specific social multiplier Mheterog.
(i) .

Mheterog.
(i) =

∑N
j=1∆Yj/∆Zi

∆Yi/∆Zi
=

γiνi
det(I−B)

γi +
βiγi( 1

N−1

∑
j ̸=i βjνij)

(N−1) det(I−B)

=

(
1 + βℓ

N−1

)−1

1−
∑N

j=1
βj

N−1

(
1 +

βj

N−1

)−1
+ βi

N−1

(
1 + βi

N−1

)−1
(∑

j ̸=i
βj

N−1

(
1 +

βj

N−1

)−1
)

=

(
1 + βℓ

N−1

)−1

1− βi

N−1

(
1 + βi

N−1

)−1
+

[
βi

N−1

(
1 + βi

N−1

)−1
− 1

](∑
j ̸=i

βj

N−1

(
1 +

βj

N−1

)−1
)

=

(
1 + βi

N−1

)−1

(
1 + βi

N−1

)−1
[
1−

(∑
j ̸=i

βj

N−1

(
1 +

βj

N−1

)−1
)]

=
1

1−
(∑

j ̸=i
βj

N−1

(
1 +

βj

N−1

)−1
)

Note that the derivation of the expression for the aggregate multiplierMheterog. is analogous.
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