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Abstract

We study peer effects in linear-in-means models with heterogeneous interaction ef-
fects. The classical linear-in-means model imposes strict homogeneity on the inter-
action effects, yielding testable implications that can be readily examined in data.
We relax these restrictions to allow for both positive and negative interaction effects
that vary within and across groups. This extension makes the linear-in-means model
suited to study a wide range of economic behaviors in addition to peer effects, includ-
ing joint labor supply decisions within households and strategic interactions among
firms. We analyze what can and cannot be learned from frequently used OLS and IV
estimands for linear-in-means models under heterogeneous interaction effects. While
these estimands do not lead to point identification, they can still be used to draw
inferences about key economic quantities. We apply these results to two economic
applications: classroom peer effects in Kenyan primary schools and strategic pricing
decisions among cocoa traders in Sierra Leone. In each application, we reject homoge-
nous interaction effects. Yet, we still draw meaningful inferences about endogenous
interactions and social multipliers while allowing for heterogeneous interaction effects.

1 Introduction

Peer effects models are widely used in economics to study how individuals’ actions are shaped
by those around them, with applications ranging from education and health to labor markets
and beyond. The classical linear-in-means model (Manski, 1993) remains the most commonly
used framework for empirically analyzing these interactions.® This model typically assumes
strict homogeneity in the endogenous interaction effects, requiring that all individuals, within
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and across peer groups, are influenced in exactly the same way by the average outcome of
their peers. Identification and estimation is well-studied under this homogeneity assumption,
with researchers typically relying on linear OLS and IV estimators to recover economic
quantities of interest (Kline & Tamer, 2020). However, the identification arguments behind
these estimators do not readily transfer to settings with heterogeneous interaction effects.

The goal of our paper is to study peer effects in linear-in-means models with heterogeneity
in endogenous interaction effects. Our main contribution is to analyze what can and cannot
be learned from frequently used OLS and IV estimands for linear-in-means models. Although
these estimands do not generally lead to point identification under heterogeneous effects, we
show that they still offer valuable insights into key economic quantities—even in cases where
the available instruments are binary or have limited support. This stands in contrast to the
existing work on identification under heterogeneous effects, such as in Masten (2017), which
place strong demands on the available instruments and can often be difficult to implement.

We consider a setting with two or more groups, where each group ¢ consists of a set of
agents N;,. Each agent i in group g has an outcome Y;,, which is influenced by the outcomes
of other agents in the same group. This interdependence is characterized by a linear system:
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In these equations, { g }iens,, {Big bien,» and {ig }ien;, are all unknown structural parameters.
Additionally, {Zs}icn, is a set of observed variables, which could include individual-level
shifters, if Z;, # Z;, for i # j, as well as group-level covariates, if Z;;, = Z;, for all i, 7 € Nj,.

In this model, the parameter 3;, represents the individual interaction effect, indicating
how each agent i in group ¢ is influenced by the average outcome in the rest of the group.
Whereas the classical linear-in-means model maintains that 3;, is constant across individuals
7 and groups ¢, we allow the interaction effects to differ along both these dimensions. Also,
unlike previous work, we do not restrict the sign or magnitude of 3;,. Therefore, agents may
be positively or negatively affected, however intensely, by their peers. The parameters o,
and ;4 specify how the variables Z;; would determine an agent i’s outcome Y;, in absence of
spillover effects. We allow these terms to vary freely among agents within and across groups.
We also do not restrict the size or composition of each group, as characterized by the set Nj,.

In Section II, we begin by reviewing the economic quantities commonly studied in models
with constant effects, along with the identification strategies used to recover these quantities.
To guide and interpret our results, we draw on three examples: classroom peer effects, house-
hold labor supply decisions, and competition among firms in oligopolies. In each example,
we show that assuming constant effects imposes strong restrictions on individual preferences
or technology, whereas allowing for heterogeneous effects relaxes these restrictions and allows
us to study a richer set of economic questions. We also show that the constant effects model



yields testable implications in the form of over-identification tests and restrictions on OLS
estimands, which can be used to assess whether agents have homogeneous interaction effects.

Motivated by this analysis, we consider, in Section III, the heterogeneous effects model,
which allows a4, B4, and ;4 to vary freely among agents within and across groups. Under
this more general framework, we derive new expressions for the equilibrium outcomes in terms
of the individual interaction effects. We use these expressions to characterize equilibrium
behavior in the presence of heterogeneity, revealing how different configurations of interaction
effects distort group-level outcomes. We find that, with heterogeneous effects, the equilibrium
impact of an exogenous shock on group-level outcomes depends on which agents in the group
are directly exposed to that shock. These equilibrium effects may also differ across groups.

We then investigate what features of the model are recovered from OLS and IV estimation
under heterogeneous effects. We start by analyzing a class of OLS estimands obtained by
regressing the outcomes Y on exogenous variables Z (or linear combinations of 7). We show
that correctly specified OLS regressions can recover the average equilibrium effects of Z on Y
across groups, even when interaction effects are heterogeneous. These regressions also shed
light on social multiplier effects, which measure how network spillovers distort the impact of
individual-level shocks on group-level outcomes (Glaeser et al., 2003). Under heterogeneous
effects, OLS does not lead to point identification of social multipliers. Yet, we show that OLS
can still be used to test for positive (or negative) multipliers, allowing us to learn whether
spillovers tend to amplify (or suppress) the impacts of targeted policies. Moreover, we show
that OLS can be used to test for the presence of positive (or negative) interaction effects.

Next, we analyze what economic quantities are recovered from IV estimation. We study
a large class of IV estimands that use exclusion restrictions to recover the interaction ef-
fects B;5. We show that, with heterogeneous effects, the IV estimand represents a particular
weighted average of interaction effects, which places higher weight on groups where aggregate
outcomes are more responsive to the instruments. We then derive necessary and sufficient
conditions for these weights to be non-negative, which we view as a minimal requirement for
the IV estimand to be informative about interaction effects. We also show how the IV esti-
mand compares to an unweighted average of interaction effects. In general, this relationship
depends on the signs of the interactions, whether they are positive or negative. We prove
that in many common network settings, such as classical peer effects, oligopoly models, and
public goods games, the IV estimand will necessarily overstate the average interaction effect.

In Section IV, we apply our analysis to data for two economic applications that employ
the linear-in-means model with constant effects: peer effects in Kenyan grade schools (Duflo
et al., 2011) and competition between cocoa traders in Sierra Leone (Casaburi & Reed, 2022).
In both instances, we find strong evidence to reject homogeneous interaction effects. In the
first application, we find that peer effects differ across classrooms. In the second application,
we conclude that traders respond strategically in different ways to their competitors’ actions.



Given these findings, we then re-analyze our two empirical applications under the linear-
in-means model with heterogeneous interaction effects. In the Kenyan primary school setting,
we find that peer effects are positive for a large share of students. Our estimate of the upper
bound on the average peer effect implies that a 1 point increase in peers’ average test scores
raises a student’s own test score by no more than 0.45 points, on average. We also find strong
evidence of positive social multiplier effects, indicating that in some classrooms, the impact
of policies targeting individual achievement is amplified through peer interactions. In the
analysis of competition between cocoa traders in Sierra Leone, we find evidence of strategic
interactions and imperfect competition in price setting. Our estimated upper bound on the
average conduct parameter implies that increasing competitors’ cocoa purchases by 1 pound
reduces a trader’s own purchases by no more than 0.02 pounds, on average. We find no evi-
dence of social multiplier effects in this setting, suggesting that strategic interactions do not
substantially alter how trader-specific changes in demand or costs affect total market output.

Our paper contributes to two literatures. First, we contribute to a literature on the
empirical analysis of social interactions; see Paula (2017) and Kline & Tamer (2020) for
recent surveys.? Within this literature, there is increasing recognition of the importance of
accounting for individual heterogeneity in endogenous interaction effects.> While economic
theory is well-studied in these cases (Jackson & Zenou, 2015), there is less work addressing the
identification of models with heterogeneous interaction effects. One key exception is Masten
(2017), who studies identification for a linear peer effects model with random coefficients.*
He proves that the marginal distributions of the coefficients are point identified if there is
an instrument with continuous variation over a large support. However, he also shows that
instruments are insufficient for recovering the full joint distribution of random coefficients.
These results raise questions about what can be learned about other economic quantities,
such as equilibrium effects and social multipliers, in the presence of heterogeneity. Our paper
addresses this question by analyzing how to interpret and learn from OLS and IV estimation
in contexts with heterogeneous interaction effects. We view our results as constructive. While
point identification might not be achievable, we find that meaningful inferences can still be
made from frequently used OLS and IV estimators. Our approach is broadly applicable for a
variety of settings where access to a continuous instrument with large support is not feasible.

The second literature to which we contribute is concerned with the interpretation of
linear OLS and IV estimands in settings with unobserved heterogeneity in treatment effects.
Mogstad & Torgovitsky (2024) give a recent survey of this work. In a seminal paper, Imbens
& Angrist (1994) pioneer a framework for interpreting linear IV estimands as weighted aver-

2See Blume et al. (2011) for more discussion. Also, Sacerdote (2011) surveys the literature on peer effects
in education, and Browning et al. (2014) discusses the use of social interaction models for household behavior.

3Sacerdote (2011) highlights the importance of allowing for heterogeneity in interaction effects. Using a
discrete choice model, Volpe (2025) finds robust evidence that these effects differ across demographic groups.

4Hurwicz (1950), Kelejian (1974), and Hahn (2001) also examine simultaneous equations with random
coefficients. Hurwicz (1950) does not give explicit identification results. In addition, as Masten (2017) points
out, Kelejian (1974) and Hahn (2001) conduct analyses that are based on self-contradictory assumptions.



ages of local average treatment effects, and Angrist et al. (2000) extend these interpretations
to supply and demand models consisting of two simultaneous equations. The system of linear
simultaneous equations for peer effects differs in two important ways from the linear supply
and demand system studied by Angrist et al. (2000). First, the supply and demand system
is restricted to a network of two agents: a representative firm and a representative consumer
in each market. Second, the supply and demand system focuses on specific interaction ef-
fects where the sign is known, i.e., upward-sloping supply and downward-sloping demand. In
contrast, the system of linear simultaneous equations we consider does not place restrictions
on the signs of the interaction effects, which means that agents’ outcomes could be strategic
substitutes and/or complements. Therefore, we can apply our model to a wide range of set-
tings that involve substitutabilities and/or complementarities in decision-making, including
peer effects, household labor supply decisions, and competition among firms in an oligopoly.

Our paper contributes to this literature by demonstrating how to interpret linear OLS
and IV estimands for linear peer effects models with heterogeneous interaction effects. Our
analysis finds that many of the existing tools for interpreting these estimands do not easily
transfer to peer effects models. For example, with peer groups larger than two, the standard
monotonicity conditions for IV to have a causal interpretation (Imbens & Angrist, 1994) place
strong restrictions on the peer effects, which are unlikely to apply in many practical settings.
We propose alternative, weaker conditions under which IV retains a causal interpretation. We
then demonstrate how this causal parameter allows us to learn about economic quantities of
interest. Overall, our analysis gives an accessible framework for learning about heterogeneous
interaction effects and social multipliers from frequently used linear OLS and IV estimands.

2 The Linear-in-Means Model

In this section, we present the linear-in-means model, provide economic interpretations, and
define a set of target parameters. We then explain how each of these parameters is recovered
from the data under the assumption that the endogenous interaction effects are homogeneous.

2.1 Econometric Model

In its general form, the linear-in-means model with heterogeneous interactions is given by:
Yy = s NNy 4z for i € N, 1
ig—ozl-g+|'/\/g|_1z g T Zigig, fori €Ny (1)
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To interpret the flexibility of this model, it is useful to contrast it with the classical linear-in-
means model, which assumes that all the interaction effects are homogeneous. Specifically,
the classical model imposes that §;, = 3;, for any two agents ¢ and j, which means that all
agents in a group are affected in the exact same way by their peers. Additionally, it requires
that 3;, = f3; for all 7 and g, implying that every group exhibits identical interaction effects.



One notable implication of these homogeneity restrictions is that all interaction effects must
have the same sign. For instance, it is generally assumed that 3;, > 0 for every agent ¢ and
group g. This assumption imposes uniform strategic complementarities, where everyone in
the population seeks to conform to the mean outcome of their peers. Situations where some
agents prefer to conform while others prefer to deviate are hence ruled out by construction.

In addition to these homogeneity restrictions, the classical linear-in-means model gener-
ally assumes that |3;4| < 1 for all ¢ and g, which ensures that the interaction effects are small
in magnitude. Also, while there are many variants of this model, many papers maintain that
the coefficient v;, is homogeneous, which means that the direct effect of Z;, on Y;, in absence
of spillovers is fixed in the population. We summarize these restrictions below for reference.

Classical Linear-in-Means Assumptions
C.1 (Homogeneous Interactions within Groups). B, = Bj, for any two agents i, j € Nj.
C.2 (Homogeneous Interactions across Groups). B, = [; for all agents i and groups g.
C.3 (Bounded Interaction Effects). |B;,| < 1 for all agents ¢ and groups g.
C.4 (Homogeneous Incidence of Z). v;, = v for all agents i and groups g.

2.2 Economic Interpretations of the Model

We now illustrate how the linear-in-means model can be derived as the estimating equation
for three economic decision problems: peer effects in schools, joint labor supply decisions in
households, and strategic interactions among firms in oligopolistic markets. In each example,
strong restrictions on the preferences or technology are needed in order to justify the classical
linear-in-means assumptions. Relaxing these assumptions therefore makes the model better
suited for studying economic behavior in these different settings. Throughout the remainder
of the paper, we will continue to draw on these examples to guide and interpret our analysis.

2.2.1 Peer Effects

Consider a peer group g, where each individual ¢ makes a choice Y;, from an action space R.
When making their choices, individuals either seek to conform to or deviate from the average
behavior of their peers. These social pressures directly enter into each agent’s utility function.

1- ﬁzgY
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This utility specification is commonly used in the education literature to study peer effects;
see Blume et al. (2015) and Kline & Tamer (2020). The first component of utility captures
the non-social determinants of an agent’s choice. The second term represents social pressure,
penalizing the squared deviations between an agent’s own choice and the average choice of
her peers. The third term is a convex cost of action. In this framework, the social interaction
effect 3;, determines the extent to which the agent seeks to conform to or diverge from peer



behavior. In equilibrium, agents’ optimal decisions {Yj,}icn;, will satisfy the equations (1).°

The classical linear-in-means assumptions would imply that all individuals experience the
same amount of social pressure, leading to identical marginal rates of substitution between
private and social utility. By relaxing these assumptions, we allow individuals to face different
types of social pressure. For example, it could be that certain agents seek to deviate from,
rather than conform to, their peers; or, it could be that all agents wish to conform but some
do so more than others. Our extension allows for such nuances in the study of peer effects.

2.2.2 Household Labor Supply

Consider a non-unitary model of household labor supply, as discussed in the survey by Donni
& Chiappori (2011). Each member of a household allocates a fixed time endowment 7" be-
tween labor and leisure. Let h;4 be the number of hours that member ¢ of household g chooses
to work, and let W;, be the wage. The resulting labor income for individual ¢ is Y, = Wzhig.

Members of each household pool their incomes. These incomes are then redistributed so
that each member i receives a fraction r;, € [0, 1] to spend on personal consumption. The
total value of household consumption, denoted by C, cannot exceed total household income.
In addition to consuming x;,Cy, each individual ¢ can also consume non-transferable goods.
These goods may come in the form of workplace amenities or social assistance benefits, such
as healthcare services that only i can access. The value of these goods to individual 7 is a;4.

Each individual maximizes welfare through leisure and consumption. The return on each
input is marginally decreasing, as represented by the following log-additive utility function.

max Uig(hig|Wig, Cg) = piglog(T — hig) + (1= pig) log(aig + £igCy), .t Cg = Z Wighijg-
ig JENy

The parameter p;, € [0, 1] reflects individual i’s relative preference for leisure over consump-
tion. As long as everyone spends some time working, h;, € (0,7), an interior solution exists.
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These equilibrium equations satisfy the linear-in-means model (1) where the interaction effect
Big equals —pu;4(JN,;| —1). This interaction effect governs how much an individual ’s income
falls when the other household members more. It also determines the elasticity of ¢’s earnings
with respect to the wage rate W;,. The variable Z;, can be anything that influences i’s wage.

5An alternative utility specification, used by Epple & Romano (1998) and Calvé-Armengol et al. (2009), is

Uig(Yig|Zig, Y_ig) = (ozig + Zgg%g)Yig + BigY—igYi — 2Yfg, which also rationalizes the linear-in-means model.
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The classical linear-in-means assumptions require that the marginal rate of substitution
between consumption and leisure is the same across all individuals, both within and between
households. By allowing for heterogeneous interaction effects, we permit individuals to make
different consumption-leisure trade-offs. For example, we allow labor supply responses to dif-
fer between the primary and secondary earners in a household. These responses might also
vary across households due to contextual factors such as the number of children in the home.

2.2.3 Firm Oligopoly

Finally, consider a model of oligopolistic competition where firms face heterogeneous, convex
cost curves. Following Bresnahan (1981) and Perry (1982), we examine a framework that
nests both Bertrand and Cournot competition. This framework assumes that firms form con-
jectures about their competitors’ actions, which are consistent with equilibrium outcomes.

Each market g contains multiple firms ¢, each producing output Yi,. The price that clears
the market is given by an inverse demand: P, = ay —by Y .. N, Y.y, where a, and b, can vary
across markets g. A firm’s production costs are given by czg(Yg) (ANigo+Zi, Azgl)Yzﬁ— 50i0Y 0,
where Ajg0, Aig1, and ;4 can vary both across firms ¢ and across markets g. Assume that the

vector Z;, contains observable cost-shifters, which directly influence the firm’s productivity.

We suppose that every firm ¢ has some reference output Y;g, which is common knowledge
in the market. The firm conjectures that increasing its own output Yj, relative to Yi“ causes
the other firms to adjust their total output by 6;,, believing that i Yjg €quals > i YO

Oig(Yig— Y;g). Given these conjectures, each firm 7 in market g maximizes 1ts profit by solvmg.

=ag — by Z Yig
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In this model, 0;, represents the conjectural variation, measuring a firm 4’s perceived influ-
ence in market g. Three special cases are particularly notable. First, if 6;, = 0 for all ¢, then
the model corresponds to Cournot oligopoly. In this case, firms do not internalize the effect of
their own output decisions on the behavior of other firms. Second, if 6;; = —1 for all 7, then
the model is one of Bertrand competition. Here, firms expect that their actions have no effect
on total market output. Third, if 6;, = |[N,| —1 for all 4, then the market is monopolistic. In
this setting, each firm acts as if it fully controls the market, which leads to perfect collusion.
Given this range of possibilities, it seems natural to permit 6;, to be between —1 and [N, —1.

In equilibrium, each firm’s output Y;, must equal its reference output Yig. The resulting



equilibrium condition will generate the linear-in-means model (1) as an estimating equation.

1
Y;, = {a — Xigo — b E Y~—Z{)\¢1]
T G+ by (24 0i) |7 J ! i " 9
Big ! .

= + —4— Yig + 7., v, , forieN,.
KON ESID SRR NS 9

ag—=Xigo ~—— . Nigt

5igtbg(2+0,4) bg 8igtbg(2+6;g)

- 8ig1bg(246;4)

To understand how the classical linear-in-means assumptions restrict firm behavior, consider
bg (INg|—1)

- 51’92‘179 (92+9ig)

as defined by Weyl & Fabinger (2013). This quantity measures how a firm’s output responds

to the output of its competitors, and it depends on three factors: the elasticity of consumer
demand b,, the slope d;, of the marginal cost curve, and the conjectural variation 0;,. By

the interaction effect 3;, = , which represents a firm-specific conduct parameter,

assuming constant interaction effects, the classical linear-in-means model implicitly requires
that: (1) consumer demand is equally elastic in every market, (2) firms’ marginal costs have
the same curvature, and (3) all firms share the same beliefs about competition. By extending
the model to allow for heterogeneous interaction effects, we relax each of these restrictions.

2.3 Economic Quantities of Interest

Depending on the empirical context, researchers may be interested in learning about a range
of reduced form and structural parameters in the model. In Table 1, we list several economic
quantities that are commonly studied in the classical linear-in-means model. For each one, we
give a definition and derive its expression in terms of the model’s structural parameters. To
ease notation, we suppress group subscripts and set A = {1, ..., N}, while noting that the
group size can freely vary. Also, for expositional purposes, we assume Z, is one-dimensional,
although including a vector of shifters/covariates does not meaningfully impact our analysis.

For now, we analyze the economic quantities under the classical linear-in-means model,
as presented in Column 2 of Table 1, and defer the more general analysis with heterogeneous
effects (Column 3 of Table 1) to Section III. Under Assumption C.3, the system of equations
(1) exhibits a unique solution, which allows us to derive the following reduced form equations:

Y = <1+B’ﬁzwﬂ> (Ofi‘i_%Zi)"i_Zwij(aj—i_’ijj)? fOIiE{l,...,N}, (2>
J#i J#i

These equations characterize how Z affects Y in equilibrium, after accounting for spillovers.

The term 1);; is a structural parameter representing the equilibrium effect of a unit increase

in agent j’s outcome Y on agent ¢’s outcome Y;. In Section III, we derive a general expression

for 1;; in terms of the interaction effects {;})¥,. However, under Assumptions C.1 and C.2,



the interaction effects are homogeneous, in which case 1;; reduces to a constant 1, given by:

B
1=PN-1+5)

Note that 1) has the same sign as (3, and it tends to zero as the group size N tends to infinity.
Together with Assumption C.4, the reduced form equations (2) simplify in the following way:

Y=

Yi=(1+8¢) (i +vZ) + 9 Y (o +7Z;), forie{l,....N}. (3)
J#i

Spillover Effect

The first term in Table 1 is the individual spillover effect of Z; on Y;. In a peer effects model,
this quantity measures how a student i is indirectly influenced by factors that alter another
student j’s achievement. In a model of household labor supply, it measures how a person i’s
income is affected by the wage earned by another family member j. In a model of oligopoly,
it measures how the output of a firm ¢ reacts to a productivity shock within another firm j.

The spillover effect may be decomposed as the product of two terms, 7, and v;;, where ~;
denotes the direct effect of Z; on Y}, and 1);; represents the effect of Y; on Y; in equilibrium.

AY;
AZ;

Vi X Yij. (4)

Under Assumptions C.1-C.4, both v; and 1);; are constant across all agent pairs (7, j). Thus,
the classical linear-in-means model assumes that the spillover effect of Z; on Y; is homoge-
neous: it does not depend on who receives the direct shock or who is indirectly affected by it.

Total Individual Effect

The second term in the table is the total individual effect of Z; on Y;, after accounting for
spillovers. We decompose this term to distinguish between direct and indirect effects of Z;.
AY; AY_, AY_, 1
L=y e h L=y X —— .
Az~ T PRz vhere (7 7XN—1;% (5)

——
Indirect Effect

The indirect effect accounts for network distortions. It depends on the cycles in the network,
which specify how an agent’s behavior is reflected back onto itself via interactions with oth-
ers. This feedback loop may either reinforce or undermine the direct effect of the variable Z;.

To understand when the interaction effects will amplify or suppress the impact Z; on Y},
we must examine the product of ; and ﬁ > ;i Wji- This product represents an indirect
interaction effect that agent ¢ has with herself, as measured by evaluating all the cycles in
the network that start and end with agent i. If §; x ﬁ > i Wyi 1s positive, then agent

10



1’s behavior is self-reinforcing. In this case, the interaction effects magnify the impact of an
exogenous shock: |AY;/AZ;| > |v;|. Conversely, if 3; X 7= > i Vji 1s negative, then agent
i’s actions are self-undermining, thereby suppressing the impact of a shock: |AY;/AZ;| < |vi].

With Assumptions C.1-C.4, the total individual effect is constant: AY;/AZ; = v(1+5v).
In other words, all agents are affected uniformly by a shock to their own outcome. Moreover,
as the product [; x ﬁ Zj i Yj; = B X1 is non-negative, the classical linear-in-means model
assumes that the interaction effects always amplify the impact of a shock: |AY;/AZ;| > |-
For example, in a peer effects model, social pressure must amplify the impact of additional
effort on a student’s own academic performance. In a household labor supply model, second
earner effects must amplify the impact of receiving a raise on an individual’s own income. In
a model of firm oligopoly, strategic interactions must amplify the impact of a productivity
shock on a firm’s own output. As we discuss in Section III, this amplification pattern need
not hold under heterogeneous interaction effects. In particular, we show that heterogeneous
interactions can, in certain cases, suppress the impact of a shock on an agent’s own outcome.

Total Effect on the Average

Third, we define the total equilibrium effect of Z; on the average outcome Y in the group.

1+(L+N%l)§:%1xvm (6)

JF#i

AY 1

AZ;, N

AY; AY;

1
AZ T2nz| T
J#i

N

With Assumptions C.1-C.4, this effect reduces to a constant: AY /AZ; = % (#) So, in the
classical linear-in-means model, the total effect of a shock to agent ¢ on the average outcome
Y is the same regardless of which agent i is considered. Moreover, because AY /AZ; has the

same sign as 7y, any increase in one agent’s outcome Y; must also raise the average outcome Y.

Social Multiplier Effect

The fourth parameter we define is the social multiplier effect. We use this quantity to measure
how network externalities distort the effect of exogenous shocks on aggregate outcomes in a
group. Much of the literature on social multipliers (e.g., Goldin & Katz, 2002; Glaeser et al.,
2003; Becker & Murphy, 2003) assumes that the interaction effects are positive: ; > 0 for all
1. Under this assumption, network spillovers always amplify the impact of a policy shock on
group outcomes. However, this pattern need not hold in settings with negative interaction
effects. In such cases, network spillovers have a potential to suppress the impact of a policy.

For the classical linear-in-means model, Glaeser et al. (2003) define the social multiplier
to be the ratio of aggregate coefficients to individual coefficients in the reduced form, given by:

constant __ A}_//AZ . 5 + N —1
M AY/AZ B+ (1-B)(N—1) (7)

This parameter measures how the equilibrium impact of Z on Y changes at different levels of
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aggregation. As the size of the group N grows large, the multiplier effect tends to (1 —3)~1.

Table 1: Economic Quantities of Interest

Economic Quantity Structural Interpretation

Constant Effects Heterogeneous Effects

Reduced Form Quantities

Spillover Effect (AY;/AZ;) YA et

Total Individual Effect (AY;/AZ;) e o P S ”g’&ﬁi;ﬁi@@
Total Effect on the Average (AY /AZ;) % X (115) % X detZ}'fB)
Individual Social Multiplier (%) % ,w%lym
Aggregate Social Multiplier (%) ﬁ+(ffgzj\1;,1) %Zﬁyzl('/iii%;:;j B )
Structural Quantities

No Interference Outcome (Y;|(Y_;, Z;) = 0) o; o

No Interference Effect (AY;/AZ;|Y_,) 0l Vi
Interaction Effect (AY;/AY.;) o Bi
Interaction Effect Correlation (corr ( AAYY;, %)) 0 corr(B;, ;)

Notes. The reduced form effects AY;/AZ;, AY;/AZ;, and AY /AZ; are defined by holding {Z;},; fixed.
To ease notation in the last column, we let v; = H#i (1+ %) and v;; = Hw{iyj} (1—|—%) for any 7 and j.

Structural Coefficients and Higher Moments

The next three parameters are the structural coefficients «;, ;, and ;. Among these terms,
the interaction effect (3; is often the primary target parameter (Sacerdote, 2011). In a peer
effects model, it measures how much social pressure an individual experiences. In a model
of household behavior, it specifies how a person’s income depends on the earnings of others.
In an oligopoly model, it measures the degree of strategic interaction between firms. The
parameters a; and ~; also have an economic interpretation, as they indicate how the variable
Z; would impact an agent’s outcome Y; in absence of network interference. In certain settings,
it might be important to distinguish between the direct treatment responses and the indirect
effects of treatments that arise through social interactions; see Manski (1993) for discussion.

Lastly, we may be interested in the correlation structure of interaction effects for agents
in a network—specifically, parameters like corr(3;, 8;) for different individuals ¢ and j. These
parameters can offer insights into the formation of network ties. For example, if one individ-
ual feels strong pressure to conform to a group, is it likely that her peers would feel similarly?
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Do members of the same family share similar preferences over leisure and consumption? Do
firms in the same market exhibit similar beliefs about competition? Such questions are unan-
swerable in the classical linear-in-means model, because the interaction effects are assumed
to be homogeneous across all agents. In contrast, the heterogeneous effects framework is well
suited for studying these types of correlations and their implications for economic behavior.

2.4 Standard Constant Effects Estimands

We now review the OLS and IV estimands that are typically used to recover reduced form
and structural parameters in the classical linear-in-means model. In Table 2, we define these
estimands and summarize the economic content that each one delivers, both under the gen-
eral model with heterogeneous interaction effects and in the homogeneous effects special case.

Table 2: Economic Inferences from OLS and IV Estimands

Economic Quantity BOMS(Y;) BOS(Y) BOS(YL)  BP(Y)/BPM(Y)) B
Spillover Effect

Constant Effects Ind. Effect — Ind. Effect — —
Heterogeneous Effects Avg. Effect — —

Total Individual Effect
Constant Effects Ind. Effect — — — —
Heterogeneous Effects Avg. Effect — — — —

Total Effect on the Average
Constant Effects — Ind. Effect — — —
Heterogeneous Effects — Avg. Effect — — —

Social Multiplier
Constant Effects Test: <1 — Test: <1 Ind. Effect —
Heterogeneous Effects — — Test: <1 forall g — —

Interaction Effect
Constant Effects Test: <0 — — — Ind. Effect
Heterogeneous Effects Test: < 0 for all g — — — Weighted Avg.
Notes. In this table, we define a class of OLS estimands BOLS(z) = E(ZZ')~'E(Zz), where Z = (1,Z')’, and
IV estimands gV = C(i(\)/v(gfl‘lfz;jl‘zzj);‘zzl:j;)), where Z_; = (1, g(Z_;)) for some monotone function g defined
on supp(Z_;). In Column 2, we maintain Assumptions C.1-C.4. In column 3, we maintain Assumptions I-I11.

For now, we analyze these estimands under the classical linear-in-means model, imposing
Assumptions C.1-C.4, and we postpone the analysis under heterogeneous effects to Section 3.
Following the literature, we assume that the vector « is mean independent of the observables
Z and group composition N, so that E(«|Z,N) = E(«). We also assume that {Z;};cn are
individual-level shifters, and we require that these shifters are not perfectly collinear, which
implies that E(ZZ’) is nonsingular. Finally, we assume that v # 0, so each Z; has a nonzero
effect on agents’ outcomes. Under these conditions, each Z; is a valid instrument in our setup.

Since this model involves simultaneity, instruments play a central role in identification.
Specifically, they provide exclusion restrictions, which are factors that directly affect a subset
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of the agents in a group, while leaving others unaffected. Examples of exclusions are policy
variables that shift an agent’s marginal cost of action. Alternatively, an exclusion could be a
restriction on the interactions in the network, whereby some agents do not directly influence
certain members of their group. In the Appendix, we show how to extend the linear-in-means
model to reformulate these restrictions as instruments. In doing so, our analysis speaks to a
wide range of identification strategies that use exclusions to recover structural parameters.%

Frequently-Used OLS Estimands

We begin by analyzing OLS estimands obtained by projecting outcomes Y on individual-level
shifters Z. Specifically, we consider three different estimands, SO*3(Y;) = B(ZZ')'E(ZY;),
BOVS(Y) =R(ZZ')'E(ZY), and fOMS(Y_,) = E(ZZ')"'E(ZY_;), which correspond to linear
regressions of Y;, Y, and Y_;, respectively, on the vector Z = (1,Z"). Under Assumptions
C.1-C.4, these estimands recover the individual spillover effect AY;/AZ;, the total individual
effect AY;/AZ;, and the total effect on the average AY /AZ;. Moreover, the social multiplier
effect is identified from a ratio of OLS coefficients, given by Meonstant — gOLS(y") /gOLS(y)),

As shown in Table 1, one key implication of assuming constant effects is that the reduced-
form quantities AY;/AZ;, AY;/AZ;, and AY /AZ; are identical across all agent pairs (i, 5).
This restriction allows us to derive testable implications of the classical linear-in-means model
using OLS. In Lemma 1, we outline two such tests, which are straightforward to implement.

Lemma 1. Suppose that the linear-in-means model has a well-defined reduced form. Then:

(1) If B; = B in all groups, then for any i ¢ {j, k}, the coefficient on Z; in an OLS regres-
sion of Y; on (1, Z')" equals the coefficient on Z; in an OLS regression of Y, on (1, Z')".

(ii) If Assumptions C.1 and C.4 hold, then the coefficient on Z_; in an OLS regression of Y;
on (1, Z;, Z_;)" equals the coefficient on Z; in an OLS regression of Y_; on (1, Z;, Z_;)'.

Part (i) of Lemma 1 provides a way to separately test Assumption C.1, which maintains that
the interaction effects are fixed among all agents in the same group. A testable implication
of this assumption is that the reduced form effects AY;/AZ; and AY/AZ; are the same for
any distinct agents ¢, j, k € N. In fact, for any agents 4, j, and k, we show in the Appendix
that 5; = B if and only if AY;/AZ; = AY,/AZ,. The intuition behind this property is that,
if two agents j and k are influenced in the same way by a third agent i, then any exogenous
shock to agent i’s outcome would produce identical spillover effects on agent j and agent k.
Using this property, we can test whether 8; = 3, by running OLS regressions of Y; and Y}, on
(1, Z") and checking whether the coefficient on any Z; with i ¢ {j, k} differs between the two.

Part (ii) of Lemma 1 provides a way to jointly test Assumptions C.1 and C.4. Specifically,
under these assumptions, the reduced-form effects AY;/ AZ_; and AY_, /AZ; must be equal,
since both correspond to the same homogeneous spillover effect, AY;/AZ;. This equivalence

6See Kline & Tamer (2020) for a review. Bramoullé et al. (2009) formalize how to use network exclu-
sions—where not all agents interact with one another—for identification of classical linear-in-means models.
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imposes a testable restriction: in the population, the coefficient on Z_; in a regression of Y;
on (1, Z;, Z_;) must equal the coefficient on Z; in a regression of Y_; on (1, Z;, Z_;)'. A differ-
ence between these coefficients would indicate that at least one of the assumptions is violated.

Frequently-Used IV Estimands

We now shift attention to a large class of IV estimands that use instruments to recover the
interaction effect 5. This quantity is often the main target parameter in constant effects mod-
els, and our framework nests a wide variety of existing approaches that are used to recover it.

We define an IV estimand for 3 that uses Z_; as the excluded instrument for Y_; in an
agent #’s outcome equation. We allow Z_; to be any monotonic transformation of the vector
Z_;. In particular, we define Z_; = 9(Z_;), where g is a monotone mapping taking values in
the support of Z_;.7 Our specification encompasses a wide array of IV strategies, including:
(1) using one instrument individually, (2) using multiple instruments jointly, and () using
an increasing transformation of multiple instruments, e.g., a group-level average of {Z;}, ;.
For any realization of z; in the support of Z;, we can write down an IV estimand as follows:

Y Cov(YL, LY Zo) | Zi = =)

where L(Y_;|Z_;) represents the population fitted values from a regression of Y_; on (1, Z_;).

Under constant effects, the interaction effect 3; is point-identified from this IV estimand.
In fact, even if the interaction effects vary within a group, the estimand would still recover
B;, provided that this interaction effect remains constant across groups. This result is well-
established in the literature, and it is reviewed in textbooks tracing back to Fisher (1966).

Lemma 2. Suppose that the linear-in-means model has a well-defined reduced form. Then,
if Assumption C.2 is satisfied, the IV estimand 3} (z;) will recover the interaction effect 3;.

This lemma provides us with a testable restriction for Assumption C.2. Specifically, under
these assumptions, the IV estimand 3!V (z;) always recovers the same parameter, regardless
of which excluded instruments Z_; are used in the regression. Therefore, we can validate the
classical linear-in-means assumptions by conducting an over-identification test. For N > 2
there may be multiple valid instruments {Z;},; for the endogenous variable Y_; in an agent
1’s outcome equation. We can leverage this over-identification to construct two IV estimands
,Biw’l and Bgv,z for B; using two distinct instruments Z_Z-’l and Z_m, respectively. We can
then empirically assess whether Assumptions C.2 holds by testing the null Hy : gVt = BZN’Q.

1

TFormally, we restrict g to the set of functions G = {g : supp(Z_;) — R"|g(z"_,) > g(z_;) for 2/, > z_;}.
For Z_; to be a relevant instrument, we require that g is strictly increases in at least one component of Z_;.
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3 Econometric Analysis under Heterogeneous Effects

We now relax Assumptions C.1-C.4 to allow agents to exhibit interaction effects of different
signs and magnitudes, which vary both within and between groups. We treat a, = [aglien, ,
By = [Biglien;,, and v, = [%{g]z‘e ~, as random vectors jointly distributed according to a density
f. We impose no parametric structure on f and allow for arbitrary dependence among the
coefficients. For example, an agent ¢’s interaction effect 3;, could be shaped by the interaction
effects of ¢’s peers, as well as by the interaction effects that are realized in the other groups.
Moreover, since we permit the coefficients ;4 to be heterogeneous, we allow for the possibility
that the incidence of Z;, varies and may even depend on the characteristics of other agents.®

3.1 Characterization of an Equilibrium

To analyze the equilibrium behavior of the linear-in-means model with heterogeneous inter-
action effects, we first derive the necessary and sufficient conditions for there to be a unique
solution to the system of equations (1). The condition that we derive will significantly relax
Assumption C.3. Specifically, rather than placing bounds on the signs and magnitudes of
the endogenous interaction effects, our condition only rules out a single equality constraint.

Assumption I (Unique Solution). 37,cx. (1 = Big) [Ljen;,\i(INgl = 1 + Bj9) # 0 for any group g.

Assumption I is a rank condition. It ensures that I — By is invertible, where I denotes the
identity matrix and By is the adjacency matrix specifying the interaction effects in group g¢:

0 Big - Pig

R T
B=wr=i] o o | ¥

BiNglg Pwglg - 0

This assumption rules out cases where the outcome equations (1) correspond to parallel lines.
If these lines are parallel to each other, then they either never intersect or they overlap. In
the first case, the model has no solution. In the second case, it has infinitely-many solutions.?

By eliminating these two cases, Assumption I ensures that the equilibrium is well-defined.

We now present a closed form representation of the equilibrium, showing how the out-
comes {Yjg}ien, depend on the variables {Z;,}icn;, after accounting for spillover effects. In

8We allow ag, By, and 7, to be correlated with the group size and composition, as characterized by the set
Ny. This correlation could be economically meaningful. For example, the social pressures that individuals
experience might depend on the number or types of peers within the group. Moreover, this correlation ties
our hands by preventing us from using group size variation as a source of identification. Both Lee (2007)
and Davezies et al. (2009) study how variation in group sizes can be used for identification of peer effects.

9Tamer (2003) discusses issues of incoherency and incompleteness of simultaneous equation models. When
a model is incoherent, it has no solution. When a model is incomplete, it has multiple solutions. In our setting,
nonintersecting lines makes the model incoherent, and overlapping lines makes the model incomplete. In the
Appendix, we provide a graphical illustration of these two cases, discussing why they are both problematic.
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general, spillovers have the potential amplify or suppress the impacts of {Zi;}ien;, on agents’
outcomes. These distortions are driven by the interaction effects {3;,}icn;,, which can be
positive or negative in our framework. Moreover, as we allow the interaction effects to vary
among agents, the nature of these distortions becomes more complex as the group size |N|
grows larger. The following proposition gives a general characterization of the equilibrium.

Proposition 1. A unique solution to system (1) exists if and only if Assumption I holds. In
equilibrium, the outcomes {Yj,}icn, in group g satisfy Yi, = oy + BigYy—i+ Z! 14 7ig> Where:

B
_ Zje/\/g [HZENQ\]‘ (1 + |N[\g 1)] (g + Z/g%'g)

_ d:
! | x det(T — By) -
Big
Y, = ZjGNg Vijg X [INglfl <ai9 + Zl(g%g) + (ajg i Z§Qng)] for i € N,
i = (N[ = 1) % det(I — B | )

Here, we define v;j, = 1 for [Ny| = 2 and vijy = [[ep\ i) (1 + Wi%) for |N,| > 2. The
determinant of I — By also has a closed-form expression, which is provided in the Appendix.

While prior work derives similar formulas for two- or three-agent special cases (e.g.,
Masten, 2017), our equilibrium formulas apply to groups of any size. Given this general-
ity, our analysis extends to a wide range of settings with varying group size and composition.

Remark 1. Moment Determinacy.

Although Assumption I rules out models with parallel lines, it does not eliminate models
with nearly parallel lines, in which det(I — B,) is close to zero with high probability. This
distinction becomes important when we consider mean-based identification strategies, since
the moments of the reduced form coefficients may not exist if det(/ —B,) is very close to zero.
For the reduced form moments to be well-defined, we need a slightly stronger assumption.

One sufficient condition for moment determinacy is that the vector of outcomes Y, has a
bounded support. Moreover, as Masten (2017) shows, the reduced form moments can exist
even when Y, takes full support if the tails of the outcome distributions are sufficiently thin.
By reformulating Assumption A6 in Masten (2017) for our framework, we arrive at the fol-

lowing sufficient condition, which is expressed as a restriction on the structural parameters.*’

Assumptions II (Sufficient Conditions for Moment Determinacy).

IL1. P (( Mo, (1= Big) Tjen (NG| — 1+ ﬁjg)‘ > T> — 1 for some scalar 7 > 0.
I1.2. The marginal distributions of {e,}, and {74}, have subexponential tails.

Remark 2. Preservation of Order.

Although not necessary for identification, it is often helpful for interpreting economic quan-

19For more discussion, as well as necessary conditions for moment determinacy, we refer to Masten (2017).
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tities if the structural coefficients {v;,}:, have the same signs (respectively) as the reduced
form effects {AY;;/AZ;;}i .. That is, if Z;; has a positive direct effect on the outcome Y,
when does Z;, have a positive effect on Y;, in equilibrium? Consider the following condition.

Assumption IIT (Bounded Interactions). 1 — |Ny| < §;, < 1 for all agents ¢ and groups g.

By ensuring that v;, and AY;,/AZ;, share the same sign, Assumption III rules out equilib-
rium behaviors that might seem illogical. For example, in a peer effects model, a student’s
achievement would not fall when the marginal utility of effort rises. In a household labor
supply model, a person’s income would not decrease after receiving a raise. In an oligopoly
model, a firm’s output would not fall as a consequence of becoming more productive.!!

3.2 Defining Economic Quantities under Heterogeneous Effects

Next, we define and interpret the economic quantities in Table 1 under heterogeneous effects.
As before, we ease notation by removing group subscripts and treating Z; as one-dimensional.

Reduced Form Parameters

We first reexamine the reduced form parameters AY;/AZ;, AY;/AZ;, and AY /AZ;, defined
in equations (4)—(6). To aid in our analysis, we state the following corollary to Proposition 1.

Corollary 1. In equilibrium, the total effect of a unit increase in Y; on Y}, for 7 # j, equals:

iy (1 T %)
(N —1) x det(I = B)’

Yij = Bi X

Additionally, if Assumption IIT holds, then 1);; has the same sign as the interaction effect 3;.

This corollary expresses 1;; in terms of the individual interaction effects, providing a
foundation for reinterpreting the reduced form parameters under heterogeneous effects. For
example, the individual spillover effect is defined in equation (4) to be: AY;/AZ; = ~; x ;5.
Under Assumption III, this effect has the same sign as «; x ;. Therefore, in equilibrium, a
positive shock to Y; would increase Y; when f; is positive and reduce Y; when j; is negative.

The total individual effect is defined in equation (5) as: AY;/AZ; = ;¥ (1+Nﬁi . Z#i %’z‘)-
Nﬁil Z#i ;i is positive, which, by Corollary

1, occurs when all the interaction effects {3;} X, share the same sign. In such cases—whether

This effect exceeds 7; in magnitude whenever

the interaction effects are all positive (as in classical peer effects) or are all negative (as in

I Assumption II1 is a special case of Assumption I. Thus, it also ensures that there is a unique equilibrium.
In addition, it implies that det(I —B,) > 0 with probability 1 (see the Appendix for a proof). In a household
labor supply model, Assumption III holds if all people value consumption: p;4 # 1 for all ¢. In an oligopoly
model, it rules out Bertrand competition for firms with constant marginal costs: (0;4,0;4) # (—1,0) for all <.
Such models do not possess an interior solution, since firms would always seek to undercut one another until
they are all left with zero profit. This phenomenon is known as the Bertrand paradox (Edgeworth, 1925).
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the household labor supply model or the model of firm oligopoly)—agents’ actions are self-
reinforcing, and spillovers amplify the impact of an exogenous shock on individual outcomes.

By Corollary 1, the total effect on the average, which is defined in equation (6), becomes:

AY [ 1z (1 + NBf1>
AZ; N x det(I — B)

X Y. (10)

Under Assumption III, this quantity always has the same sign as the coefficient ;. Therefore,
in a peer effects model, a policy that improves one student’s performance always increases
the average achievement level in the group. Similarly, in a household labor supply model, a
wage boost for one individual always raises the total income of the household. In a model
of firm oligopoly, improving one firm’s productivity always increases overall market output.

Social Multiplier Effects

When the endogenous interaction effects are heterogeneous, Glaeser et al.’s (2003) social
multiplier is not well-defined because Z could affect Y in different ways depending on which
of the variables {Z;}¥, is changed. In other words, the total effect of an exogenous shock on
group outcomes depends on which agent(s) in the group are directly exposed to that shock.
For heterogeneous effects, we can define an individual-specific social multiplier for an agent 7.

Mheterog. _ Zjvzl AY}/AZZ _ 1
© AY;/AZ;

" N 5 : (11)
— o1 Xt TRE T

This quantity is defined as the ratio of the total effect of Z; on Zjvzl Y; to the individual effect
of Z; on Y;. It generalizes the original definition of the social multiplier by accommodating

heterog.

heterogeneous effects. In a constant effects model, M, 0) reduces to Mt for every .

Additionally, as the size of the group N becomes large, M (lgterog' tends to (1— 5 > i B;) L.

The notion of an individual-specific social multiplier is particularly intuitive when group
members assume different roles. In the household labor supply example, M(};‘;’terog' measures
how an exogenous change in person i’s wage would affect total household income relative
to 4’s individual income Y;. If there is only one primary earner in the household, then it is
likely that these multipliers differ across household members i. For example, in a two-person
household, M (l;‘;temg‘ equals 1 — 7, which captures the second household member j’s trade-off
between consumption and leisure. If member j places high value on leisure (so y; is large),
then 7 is more willing to work less when 7 earns more. In this case, the multiplier M (};‘;temg' is
small since the total impact of raising i’s wage on total household income would be heavily
offset by a reduction in j’s labor supply. Alternatively, if j places high value on consumption,

then his/her labor supply is less responsive to i’s wage, and the multiplier M (lgtemg' is large.'?

12Note that the multiplier effects are always less than one in this example, since strategic substitutability

suppresses the impact of exogenous wage shocks on total household income, which ensures that M (lﬁterog' < 1.
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Averaging across agents, we can construct an aggregate social multiplier effect M/heteroe.
equal to Zfil M (};‘;temg'. Alternatively, we can take MPe%™g: a5 the ratio of average effects:

_ N B -1
SNAY/AZ N 2= (1 - N—l) i

Mheterog. — - = — -
<> AY /AZ; 1 N Bi \ 1 B
NZ]—I ]/ J NZj:l <1+Ni1> (1—mzk¢] W@V—l)) Vi

. (12)

While they have slightly different interpretations, both versions of the aggregate social mul-
tiplier reduce to the original definition under constant effects. Throughout the rest of the
paper, we take the expression in (12) as our definition of the aggregate social multiplier. If
7; is constant across agents i, then M"et™8 tends to (1 — % Zfil Bi)_l as N grows large.

3.3 Analysis of OLS and IV under Heterogeneous Effects

We now analyze what can and cannot be learned from frequently used OLS and IV estimands
for linear-in-means models under heterogeneous effects. We show that, while these estimands
do not lead to point identification, they still carry information about key economic quantities.

To accommodate heterogeneous effects, we replace the instrument exogeneity condition
with the assumption that Z, L (o, By, 74, Ny). This assumption is standard in the literature
on random coefficients. It ensures that the unobserved parameters are statistically indepen-
dent of the vector of observables Z,.1? As in Section II, we ease notation by omitting group
subscripts and treating Z;, as one-dimensional. We also assume that Z;, is an individual-level
shifter, and that the shifters are not perfectly collinear. To ensure instrument relevance, we

assume that 7;, # 0 for every i and g, so that Z;, has a nonzero effect on observed outcomes.*

3.3.1 Empirical Analysis of OLS Estimands

We first analyze the OLS estimands 3°%5(Y;) and 3°U5(Y') that are defined in Table 2. Under
heterogeneous effects, these estimands recover the average reduced form effects across groups.

Proposition 2. In a linear-in-means model with heterogeneous effects, 3°5(Y;) and SO (Y)
recover the average reduced form effects E(AY;/AZ;), {E(AY;/AZ;)} iz, and {E(AY /AZ;)};.

This proposition reveals that, even under heterogeneous effects, the OLS estimands 5°%5(Y;)
and BOMS(Y) offer insight into how individual-level shocks affect equilibrium outcomes. In a
peer effects setting, they capture average equilibrium responses (across classrooms) of student
achievement to policy interventions. In a household labor supply context, they reflect average
responses (across families) of earnings to individual wage shocks. In an oligopoly setting,
they measure average responses (across markets) of firm output to firm-specific cost shocks.

131f Z, includes covariates, then we can relax Assumption I to allow for independence of individual-level
shifters conditional on covariates: Z7 L (ag, 84,74, Ny)|Z;, where Z7 are shifters and Z; are covariates. In
addition, if the set of agents NV, in a group is observed, then we can relax it by writing Z, L (ag, Bg,7g)|Ny-
14This assumption can be relaxed to allow for instruments that affect the outcomes for a subset of agents.
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For the OLS estimands to be well-specified in the presence of within-group heterogeneity,
it is essential to include all individual shifters {Zj}év:l as separate regressors. A researcher
might be tempted to simplify these regressions by instead computing the following estimands:

BOM(Y;) = E(Z,Z) ' E(ZY;) and BOUS(Y)=E(ZZ)'E(ZY),

corresponding to OLS regressions of Y; on Z; = (1,7Z;, Z_;) and of Y on Z = (1, Z). These
estimands successfully recover average reduced form effects under Assumptions C.1 and C.4,
where [3; and 7; are homogeneous within each group. However, when (; and v; vary among
agents in a group, these simplified regressions are no longer valid. The reason is that within-
group heterogeneity causes AY;/AZ; and AY/ AZ; to vary across agents j. Therefore, any
OLS regression that includes averages of Z, while excluding {Z; };V: 1 as individual regressors,
suffers from omitted variable bias.!> This bias arises even with constant effects across groups.
Indeed, as long as 3; and ~; differ within a group, the simplified regressions are misspecified.

OLS Estimands for Social Multiplier Effects

For constant effects models, the social multiplier A<omstant = (AY /AZ)/(AY;/AZ;) is point
identified from OLS estimands. Specifically, AY /AZ is recovered from regressing Y on (1, Z)
and AY;/AZ; is recovered from regressing Y; on (1, Z;, Z_;). However, in the linear-in-means
model with heterogeneous effects, the social multiplier is no longer point identified from OLS.

To understand why OLS estimands do not recover social multipliers under heterogeneous
effects, first recall that Meomstant jg not well-defined in the case of within-group heterogeneity.
Instead, we define individual-specific multipliers M (}Stemg' and aggregate multipliers Mheterog:
which are better suited for settings where agents in a group face different interaction effects.
If the interactions are constant across groups, then M (}Stemg‘ and MPeterog: are both identified
from correctly specified OLS regressions, following the previous discussion. However, if the

interaction effects vary across groups, then these regressions instead recover the estimands:

and MOLS — Zfil E(AY/AZZ)

~ .
B(AY,/AZ) LY B(AY;/AZ)
These estimands represent ratios of average equilibrium effects across groups. Yet, they do

not correspond to the economic quantities of interest in Table 1. As we show in Section V,
we may still be able to use OLS to place informative bounds on the social multiplier effects.

3.3.2 Empirical Analysis of IV Estimands

We now reexamine the IV estimand, which is defined in equation (8). Under heterogeneous
effects, IV does not lead to point identification of 5;. This negative result motivates our sub-
sequent analysis, examining: When is the IV estimand informative about interaction effects?

151§ {Zj}ﬁf:l are all uncorrelated, then the coefficient on Z; in a regression of Y; on (1, Z;, Z_;) would still
recover the average total individual effect E(AY;/AZ;). Yet, the other coefficients are biased by construction.
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We establish conditions under which the IV estimand 3!V (z;) will be a positively-weighted
average of 3;, which is a minimal requirement for it to be informative about social interaction
effects. A standard condition for this property, which is widely used in the treatment effects
literature, is proposed by Imbens & Angrist (1994). It requires that the endogenous variable
Y_, is affected uniformly by any change in the instrument Z_;. If we take Z_; to be Z_; (or
if Z_i is a one-to-one function of Z_;) then this condition has the following characterization.

Assumption IAM (Imbens-Angrist Monotonicity). For any vectors (z_;, z;) and (2, z;) in
the support of Z, either P (Y_; (2, 2) > Y_i(2';,2)) =1 or P (Y_i(2—;, z) < Y_i(2/;, 2)) = 1.

We argue that this condition is plausible in settings where the interactions take place between
two agents, but we demonstrate that it is unlikely to hold with groups of three or more agents.

Pairs of Agents (N = 2)

We consider a special case of the model where the interactions take place between two agents.

Yi=a+B8Ysa+mZ (13)
Yo = an + BoY1 + 72 2s. (14)

This special case allows us to study peer effects between pairs of students, joint labor supply
decisions in two-person households, and the strategic interactions among firms in duopolies.

For any j # i, the IV estimand equals 8!V (z;) = Cov(Y;, Z;|Z; = z1)/ Cov(Y;, Z;|Z; = 2;).
This estimand can be expressed as a weighted average of all the potential realizations of ;.

N _ . N \ _ E(AY;/AZ;|Bi = b;) f5,(b:)
B (z) = /Supp(ﬁi) b; X w(b;)db;, where w(b;) = E(AY,/AZ,)

(15)

Observe that larger weights w(b;) are placed on values of §; in groups where the outcome Y;
is more responsive to the instrument Z;. For the weights to be non-negative, we can impose
IAM monotonicity, which requires that Y; is uniformly affected in the same direction by Z;.
This condition holds if and only if the coefficient 7; retains the same sign across all networks:

P(y; >0)=1o0r P(y; <0) =1. (16)

This condition does not impose restrictions on the interaction effects (3, 82) in the model.'®

Example (Peer Effects). Consider a model of peer effects with two students: ¢ and j. Let
Z; indicate whether student j receives a scholarship, and assume that this scholarship always
raises student achievement, such that P(y; > 0) = 1. In this case, IV recovers the average
peer effect 5; in groups where student j’s achievement is most impacted by the scholarship.

Ezample (Household Labor Supply). Suppose that each household has two members, i

16 An alternative sufficient condition is: v; L (81, 32). However, this condition does not extend to N > 2.
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and j, and let Z; be a policy that increases person j’s wage. Then, IV measures the average
second earner effect p; in households where j’s income is particularly affected by the policy.

Example (Duopoly). Consider a duopoly, and let Z; be a technological shock that always
raises the productivity of firm j, i.e., P(A;; < 0) = 1. In this case, IV would estimate the
average conduct parameter for firm ¢ in the markets where 7 is most responsive to the shock.

Groups of Three Agents (N = 3)

For peer groups of more than two agents, the ITAM assumption is more restrictive with respect
to the interaction effects. To unpack these restrictions, we will examine the three-agent case.

Y, + Y-

Y1:Oél+ﬁ1< 22 3)+’lel (17)
Y, + Y-

Ygzag—l—ﬁg< 12 3>+7222 (18)
Y+ Y.

Y3=Oés+ﬁ3< 12 2)+73Z2- (19)

For distinct agents 7, j, k € {1, 2,3}, the endogenous variable in agent i’s outcome equation is
Y., = %(Y] +Y%). A researcher can use either Z; or Zj as a valid instrument for Y_,. In this
example, we focus on an IV strategy that uses both instruments jointly, i.e., Z_; = (Z;, Z).
As in the two-agent case, we can interpret 51V (z;) as a weighted average of interaction effects,
where larger weights are given to values of 3; in groups where Y_; is more affected by Z_;.

If we impose IAM, then 3!V (z;) will be a positively-weighted average of 3;’s. However,
as shown in Figure 1, IAM places strong conditions on the reduced form effects AY_;/AZ;
and AY_;/AZ;,.\T For binary instruments, it requires that these effects have the same signs
in all networks and that one of these effects is always larger in magnitude than the other one.
For continuous instruments, it requires that the ratio of AY_;/AZ; to AY_;/AZ is constant.

The restrictions on the reduced form also impose restrictions on the interaction effects.
Lemma 3. When N = 3 and (Z;, Z;) are binary, Assumption IAM holds if and only if:
(1) P(ye>0)=1or P(y, <0) =1, for £ € {j,k}.
() P(”—%ﬁj> >:1orp(1+—%ﬁj< ):1.

1+18, = 1+18, —
Example (Peer Effects). Suppose that Z; and Zj, are binary variables indicating whether

v
Tk

5
Tk

students j and k, respectively, receive a scholarship. For simplicity, assume that v; and v,
are uniform within and across peer groups. Then, IAM requires that one student always has
a larger interaction effect than the other student: either P(8; > ) = 1 or P(8; < ;) = 1.'8

17Specifically, the IAM assumption imposes a total order on a vector space, requiring that the relation >,
where z_; = 2’ if and only if P (Y,i(z,i, z) > Y_ (2, zz)) =1, is a total order on the support of Z_;.

I8f the indices j and k are chosen arbitrarily, then one could overcome this restriction by defining j to be
the member of the peer group who experiences the most social pressure. However, if j and k take on specific
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Ezample (Household Labor Supply). Suppose that Z; and Z;, are binary factors influenc-
ing the wages of household members j and k, respectively. In this case, IAM requires that one
person always values leisure more than the other: either P(u; > pp) =1 or P(p; < pu) = 1.

Example (Oligopoly). Suppose that Z; and Z, are binary productivity shocks to firms j
and k, respectively. If the coefficients A;; and Ay are constant within and across markets,
then IAM implies that J; 4+ bf; is always greater than (or always less than) dy + b6;. To
interpret this statement, recall that J; and J; are the slopes of firms’ marginal cost curves,
and b0; and bl are the (conjectured) indirect effects of firms’ actions on the market price.
Unless the indices j and k are chosen to satisfy this restriction, it is hard to justify in practice.

Figure 1. lllustration of IAM Conditions for Two Instruments

AY

AY_;
AZy,

AZy,
1.0 1.0 K
0.5 e
AY -
i AV
0.0 Az 0.0 A_Z]
-0.5 0.5
-1.0 -1.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 0.5 0.0 0.5 1.0
Case 1. Binary Instruments (Z;, Z) Case 2. Continuous Instruments (Z;, Zj)

Notes. These plots display feasible regions of the vector (AY_;/AZ;, AY_;/AZ),) under Assumption IAM.

If the instruments Z; and Z, are continuous, then IAM imposes even stronger restrictions.
Lemma 4. When N = 3 and (Z;, Z;) are continuous, Assumption IAM holds if and only if:
(i) P(¢ > 0)=1or P(y, <0) =1, for £ € {j, k}.
.. 1+18; Vi ) _ (H—%ﬁj Y > _
<“)P<—1+%Bkz =lorP (32 < =1.

Yk 1+58k — |
Ezamples. For the peer effects example where v; = ~;, Assumption IAM requires that j3;
is a deterministic linear function of Sy, such that §; = 2(a — 1) + afj for a € R. For a house-
hold labor supply model where the wages (W;, W) are used as instruments, this assumption
requires that household member j and k’s preferences over leisure and consumption are de-
terministic functions of one another, where 2 Z L=ax 2 " L Finally, for an oligopoly model
with A\j; = Ay, it implies that (§; +b00;) = a x (9% + b@k) —|— 1.5b(a — 1). We are not aware

roles, such as “teacher and student” or “parent and child”, then this relabeling approach will not be feasible.
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of any meaningful justification for these restrictions. So, for any model with heterogeneous
effects and two continuous instruments, IAM would be particularly difficult to rationalize.®

Alternative Conditions for Positive Weights

In order to overcome the economic restrictions implied by Imbens-Angrist monotonicity, we
propose an alternative assumption, which is sufficient for the IV estimand to be a positively-
weighted average of interaction effects. Specifically, under a testable condition on the instru-
ment correlation structure, we can relax IAM by imposing a weaker form of monotonicity.

Assumption PM (Partial Monotonicity). For any j # i and any (2, z_;) and (2}, z_;) in the
support of Z, either P (Y_;(zj,2-;) > Y_i(2},2-5)) = 1 or P (Y_i(2j,2-5) < Y_i(z],25)) = 1.

This form of monotonicity is studied by Mogstad et al. (2021) as an alternative to the
Imbens-Angrist condition. It requires that monotonicity holds separately for each instrument
instead of for the entire instrument vector. If there is only one instrument, then both
assumptions are the same. If there are multiple instruments, then PM is weaker than IAM.

To see what PM implies about the structural parameters, consider the following lemma.

Lemma 5. Assumption PM holds if and only if P(y; > 0) = 1 or P(v; < 0) =1 for all j # 7.

This result is perhaps surprising given the complex nature of the model. It reveals that PM
imposes no restrictions on the interaction effects. Instead, it only requires that the random
coefficient 7; on each instrument Z;, where j # 4, retains the same sign across all groups.

We now introduce a testable condition that restricts the correlation structure of Z. This
condition places a bound the covariances of the instruments {Z; },; in relation to the average
reduced form effects {E(AY_;/AZ;)};.i, which are point identified from OLS regressions.

Assumption NNW (No Negative Weights). Fix some z; € supp(Z;). For any j,k € N\ @:

E(AY_;/AZ)

E(AY_:/AZ)
2. E E(AY_;/AZy,)

5 COV(va Zk|zl)7 - Z
&=, BAY-1/AZ;)

COV(Zj,Zk‘Zi) ¢ < —
0¢{i,k}

COV(Zg, Zj ]zz)> .

This assumption holds if all the instruments Z_; are uncorrelated. Also, if the components
of v_; share the same sign, then it holds when no two instruments are negatively correlated.

Lemma 6. Assumption NNW is satisfied if either: (1) Cov(Z;, Zg|z;) =0 for all j,k € N'\ i
or if (2) both Cov(Z;, Zy|z;) > 0 for all j,k € N\ i and P(y_; > 0) =1 or P(y_; <0) =1.

Note that NNW can be tested empirically as the terms in this condition are identified in the
data. So, one can assess whether this restriction holds without making economic arguments.

9Even if the instrument Z_; is a non-invertible function of (Z;, Z,), Assumption IAM is often still highly
restrictive. For example, in the case where Z_,; is a linear combination of Z; and Zy, the restrictions implied
by Lemmas 3 and 4 are similar, if not unchanged. Moreover, even if we were to use only one instrument,
setting Z_; = Z;, the restrictions on the interaction effects do not go away unless Z; and Zj, are uncorrelated.
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Suppose that we use a combination of the variables in Z_; as our excluded instrument.
Then PM and NNW ensure that the estimand ]V (z;) is a positively-weighted average of 3;’s.

Proposition 3. Choose Z_; C Z_;, and suppose that Assumptions PM and NNW both hold.
Then the IV estimand is a positively-weighted average of instrument-specific IV estimands:

Cov(Y;, Zj|%) o,
BHY () Z w; Cov Y 20 where: ij =1 and w; >0, Vj # i.
J#i paI J#i

Additionally, the IV estimand represents a positively-weighted average of interaction effects:

511\/(21') = / ﬁl X w(ﬁl|zz)dﬁl, where: /w(,@z|zz)d,6’z =1 and w(5z|zl) > O, Vﬁl
supp (i)

From this proposition, we also derive a corollary that applies for any type of instrument 7
Corollary 2. For any choice of Z_;, the IV estimand is a positively-weighted average of f; if:
(i) P(7-: = 0) = Lor P(y; < 0) = 1.
(i7) corr(Z;, Zx|z) > 0, for any j, k # i.
To interpret these results, we now reconsider the special case of the model with three agents.

Groups of Three Agents (N = 3)

When there are three agents i, j, k € {1,2,3}, Assumption PM requires that -, and ~; retain
the same signs across all peer groups, and Assumption NNW simplifies in the following way:

E(AY_;/AZ;)
E(AY_;/AZy)

E(AY_;/AZ)
E(AY_,/AZ;)

Cov(Z;, Zy|2) ¢ ( Var(Z;|z), — Var(Zk]zi)). (20)

Example (Peer Effects). First, consider a peer effects model where Z; and Z, are factors
that raise the achievement of students j and k, respectively. If these factors are not negatively
correlated, then the IV estimand 3!V (z;) is a causal parameter. It measures the average peer
effect 3; in groups where the mean performance of students j and k is most affected by Z_;.

Example (Household Labor Supply). Suppose that Z; and Z, are the wages of household
members j and k, respectively. If these wages are not negatively correlated, then (1Y (z;)
represents the average value of p; in households where the earnings of j and k are most
improved by Z_;, i.c., where j and k are least inclined to reduce their labor when wages rise.

Ezample (Oligopoly). Suppose that Z; and Z; are positive productivity shocks that are
experienced by firms j and k, respectively. As long as these two shocks are not negatively cor-
related, the parameter 8!V (z;) is causal. It measures the average conduct parameter of firm
i in markets where the mean output of firms j and k is most responsive to the instrument Z_;.
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Conditional IV Estimation Using One Instrument

In cases where Assumptions NNW and PM fail to hold, an alternative IV specification may
still recover a positively-weighted average of interaction effects. Consider the IV estimand:

BV (2 ;) = COV(_YiaZHZ—j =2j)
! - COV(Y_i, Zj|Z_j = Z_j)

This estimand uses only one instrument Z;, while controlling for all other instruments Z_;.

(21)

To interpret this estimand as a positively-weighted average of the interaction effects, we only
require that AY_;/ AZ; has the same sign across all networks. This monotonicity condition
imposes the same parametric restriction as in the N = 2 case. In particular, /¥ (z_;) equals
a positively-weighted average of f;-values if and only if P(y; > 0) = 1 or P(y; < 0) = 1.%
Higher weights are put on 3;-values in groups where Y_; is more affected by the instrument Z;.

3.4 Learning about Interaction Effects and Multipliers under Het-
erogeneous Effects

In this section, we show how to use OLS and IV regressions to learn about endogenous inter-
action effects and social multipliers in the linear-in-means model with heterogeneous effects.

3.4.1 Using IV to Bound Average Interaction Effects

First, we show how the IV estimand compares to an unweighted average of interaction effects.
The following proposition demonstrates that this relationship is governed by ﬁ Zj i Vjis
which is defined in Corollary 1. This parameter has an important economic interpretation:
it determines how an individual i’s outcome Y; affects the average outcome Y_; of i’s peers.

Proposition 4. Let 31V (z;) be a positively-weighted average of 3; and E(8;|8_,v—i) = E(53:).
(1) If 7= >4 ¥ji > 0 with probability 1, then 8V (z;) > E(5).
(id) If ﬁ Z#i ¥j; < 0 with probability 1, then £;¥(z;) < E(5;).

There are notable examples where the sign of ﬁ > i 1j; can be easily determined. Under
Assumption III, ﬁ Z#i 1j; 1s positive if 5; > 0 for all j and negative if 8; < 0 for all j.*

Examples. Suppose that all the interaction effects share the same sign. Then the IV
estimand overstates the magnitude of E(f;) for any agent i. Namely, for a peer effects
model with positive social interactions, IV would overestimate the average peer effect. For a
household labor supply model, it would overestimate the average added earner effect. Finally,
for an oligopoly model, it would overestimate the average conduct parameter in the market.

20 Averaging over Z_;, we can also define the following IV estimand 8! = [ 8!V (2_;)fz_, (2—;)dz_;.
21Tn the Appendix, we show how this result extends to cases where 3; and B_; are statistically dependent.
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Remark. While these examples may suggest that IV generally overestimates the magni-
tude of E(;), there are also notable exceptions. For example, consider a peer effects model
where 3; < 0 and 3; > 0 for every j # 7. In this setting, everyone seeks to conform to the
average action in the group, except for person 7, who wishes to deviate. Since ﬁ Zj 4i )y
is below zero in this case, the IV estimand S!V(z;) would understate the magnitude of E(3;).

Puairs of Agents (N = 2)

For two-agent groups, we draw comparisons to the mean with the following decomposition.

Cov|Bi, /(1 — B152)]
E[y;/(1 = B152)] .

If 3; is mean independent of (3;,7;), then the relationship between 3!V (z;) and E(8;) is fully
governed by agent j’s interaction effect §;. In particular, (3) and (i) in Proposition 4 become:

BV (z) = E(B;) +

(22)

(¢) If B; > 0 with probability 1, then 3!V (z;) > E(5;).
(4i) If B; < 0 with probability 1, then 8!V (z;) < E(8;).

One implication of Proposition 4 is that, if 8; and §; have the same sign within and across
groups, then IV necessarily overstates the magnitudes of E(3;) and E(f;). Alternatively, if
p1 and [ always have opposite signs, then IV understates the magnitudes of E(5;) and E(fs).

Figure 2. Cases Where 3!V (2;) > E(3;) for Three-Agent Groups

1.0 B
0.5
[N )
0.0 B;
BISS < E(B)
-0.5
-1.0
-1.0 -0.5 0.0 0.5 1.0

Notes. This figure depicts values of (3;, 8x) where the IV estimand overstates the average interaction effect.

Groups of Three Agents (N = 3)

Suppose that each group contains three agents. Then, (i) and (ii) in Theorem 2 reduce to:
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(¢) If B; + By + B8k > 0 with probability 1, then 3!V(z;) > E(8;).
(43) If B; + Bk + BBk < 0 with probability 1, then 8!V (z;) < E(8;).

In Figure 2, we plot the settings where the sum 3;+4 8+ 03; 5y is positive. If §; and 5, share the
same sign, then the relationship between 51V (z;) and E(;) is unambiguous. Alternatively, if
these interaction effects have different signs, then it is harder to compare 3!V (z;) with E(f;).

3.4.2 Using OLS to Test for Endogenous Interaction Effects and Multipliers

We now demonstrate how to use OLS regressions to test for the presence of social multipliers
and endogenous interaction effects, as well as to learn about the signs and magnitudes of these
interaction effects under heterogeneous effects. Our tests will utilize the average equilibrium

quantities {E(AY;/AZ)}i;, {E(AY /AZ;)},, and {E(AY_;/AZ;)},, all of which are are point
identified from correctly specified OLS regressions, following the discussion in Section IV.A.

Before presenting our tests, we first establish the following proposition, which shows how
endogenous interaction effects and social multipliers relate to various reduced form quantities.

Proposition 5. Let «; > 0 for all . Then, under Assumptions I, II, and III, it follows that:
(a) M(lz‘;terog' — 1 has the same sign as AY_;/AZ;.
(b) MPe*rog8 1 has the same sign as S0 | AY ;/AZ,.
(¢) (; has the same sign as AY;/AZ,.
(d) If B;, Br. > 0 or B3;, B, < 0, then B; — Bx has the same sign as AY;/AZ; — AY,/AZ;.
We will draw on the results presented in Proposition 5 throughout our subsequent analysis.

Testing for Social Multipliers

We begin by showing how to use OLS estimands to draw inference about individual-specific
social multipliers M, (}Stemg' and aggregate social multipliers M"eter8- which are both defined
in Table 1. If these multipliers are greater (less) than one, then it would suggest that spillover

effects amplify (suppress) the impact of individual shocks on the average outcome in a group.

To learn about the social multipliers, we analyze the equilibrium effects Y_;/AZ;, which
represent spillover effects of Z; on agent i’s peers. By Proposition 5, we can assess whether
social multipliers are greater (less) than one by evaluating the signs of these reduced form
quantities. Although we are unable to compute {AY_;/AZ;}7 | within every group, we can
estimate the average reduced form effects {E(AY_;/AZ;)},, using OLS regressions. With
these estimates, we can test whether social multipliers are greater than or less than one for

a subset of groups in the population, providing insight into the role of network spillovers.

For example, a rejection of the null Hy : E(AY_;/AZ;) < 0 implies that P(M(}S’terog' >1)>0.
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Testing for Positive Interaction Effects

Next, we show how to test for positive (or negative) interaction effects among agents in the
population. Recall that positive interaction effects indicate strategic complementarity, which
is consistent with classical peer effects, but is inconsistent with household labor supply and
oligopoly. In contrast, negative interaction effects indicate strategic substitutability, which
is consistent with household labor supply and oligopoly, but not with classical peer effects.

By Proposition 5, the sign of the interaction effect 3; can be inferred from the individual
spillover effect AY;/AZ;, provided the sign of ; is known. Specifically, for two agents ¢ and
J where 7; > 0, the interaction effect §; of agent ¢ always shares the same sign as AY;/AZ;.

By this property, we can construct a test for the existence of positive interaction effects
from OLS regressions. In particular, if we assume that P(y; > 0) = 1, then we can assess
whether 8; > 0 with positive probability by testing the null hypothesis Hy : E(AY;/AZ;) < 0.

In some cases, it may not be feasible to regress the outcomes Y; on the entire vector Z.
Moreover, if the interaction effects are heterogeneous within groups, then using an alternative
regression based on averages of {Z;}; introduces omitted variable bias. This bias confounds
our ability to recover the average individual spillover effects E(AY;/AZ;), which prevents us
from conducting the tests outlined above. Fortunately, we can still test for the presence of
endogenous interaction effects even when running a correctly specified regression is infeasible.

Lemma 7. Define 68LZ§_, to be the coefficient on Z_; in an OLS regression of Y; on (1, Z;, Z_Z-).
If this estimand is nonzero, then the interaction effect [3; is nonzero with positive probability.

Lemma 7 provides a way to test for endogenous interaction effects, even in the presence of
heterogeneous effects, using an OLS regression of Y; on (1, Z;, Z_;). However, it is important
to note that this regression does not allow us to determine the sign of the interaction effects.

Testing for the Relative Strengths of Interaction Effects

We can also use OLS to test for the relative strengths of interaction effects. Specifically, for
two distinct agents j and £ in the group, we may want to empirically assess whether 3; > f;.
For example, do female or male students face more social pressure? Do husbands or wives
exhibit higher second earner effects? What types of firms have larger conduct parameters?

To conduct this test, we draw on Proposition 5. If 8; and S share the same sign and
if ; > 0, then difference between agents’ interaction effects, 5; — Bi, always has the same
sign as the difference in individual spillover effects, AY;/AZ; — AY},/AZ; for any third agent
i ¢ {j,k}. Under a monotonicity assumption, P(y; > 0) = 1, we can assess whether 3; > f3;
with positive probability by testing the null hypothesis Hy : E(AY;/AZy) < E(AY;/AZy).

Testing for Bounded Spillovers

Using OLS regressions, we can also test Assumption III, which states that §; € (1— N, 1) for

30



every agent i. One consequence of this assumption is that AY /AZ; has the same sign as 7;.
Using this property, we can test P(1—N < 3; < 1) = 1 through the null Hy : E(AY /AZ;) >0
as long as we maintain a monotonicity assumption that P(y; > 0) = 1. Rejecting this test
means that the spillovers are unbounded, which suggests that the model is likely misspecified.

4 Empirical Applications

We now examine two applications: peer effects in Kenyan primary schools (Duflo et al., 2011)
and strategic pricing decisions of cocoa traders in Sierra Leone (Casaburi & Reed, 2022).
Both studies adopt a linear-in-means model with constant interaction effects. In each case,
the model is over-identified, as individual-level shifters affect the outcomes of multiple agents
in a group. We exploit this over-identification to test for constant interaction effects, finding
that these tests are rejected in both applications.?? We then reanalyze the estimates under
heterogeneous effects, drawing insights about endogenous interactions and social multipliers.

4.1 Classroom Peer Effects in Kenya

Our first application comes from Duflo et al. (2011), who study peer effects and the impact of
ability tracking in primary schools in Kenya. The study includes 121 schools, each assigning
students to one of two classrooms. Students in treatment schools are assigned to classrooms
based on ability, as measured by their baseline test score, while students in control schools are
randomly assigned. Following Duflo et al. (2011), we restrict the sample to the control group.
This sample is composed of 2,849 students over 61 schools, each split into two rooms.?3

To measure peer effects in classrooms, Duflo et al. (2011) consider the following model:
Y, = BY_ i+ Ziy 4+ vs + &, (23)

where Y; is the endline test score of a student 4, Y_; is the average endline test score of i’s
classmates, Z; is a vector of controls that includes i’s own baseline score, and v, is a school
fixed effect. The authors use the average baseline score of i’s classmates Z_; as an instrument
for Y_,;. As outcome variables, they consider math, reading, and total endline test scores.?*

4.1.1 OLS/IV Estimates and Over-identification Tests

Table 3 presents results from our implementation of linear peer effects estimators. The first
three columns of Panel A give OLS estimates from regressing Y; on Z; and Z_; with school
fixed effects, the same specification used in Duflo et al. (2011). In the classical linear-in-means

22 As usual, we need to maintain the assumption of instrument exogeneity for the over-identifying restric-
tions to be a test of homogeneous interaction effects. Otherwise, it is a test of multiple model assumptions.

23 After removing missing data, we retain 2,190 students over 48 schools.

24Equation (23) corresponds to (E4) in the original paper, with the notation adjusted to align with ours.
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model with equal class sizes, these OLS regressions recover two key economic quantities: the
spillover effect, AY;/AZ;, j # i, of peer j’s baseline score on student i’s endline score and
the total individual effect, AY;/AZ;, of student i’s own baseline score on her endline score.

The last three columns of Panel A give estimates from OLS regressions of Y_; on Z; and
Z_;, again with school fixed effects. Under Assumptions C.1 and C.4, Lemma 1 tells us that
the coefficient on Z; in these regressions should equal the coefficient on Z_; in the first set of
regressions. However, we find strong evidence that these coefficients differ, suggesting that
Assumption C.1 and/or C.4 is violated and that the peer effects may differ within classrooms.

Table 3: Classroom Peer Effects—Primary Schools in Kenya

Own Endline Score Peers’ Mean Endline Score
Total Math Literature Total Math Literature
(1) (2) (3) (4) (5) (6)

Panel A. Reduced Form

Own Baseline Score 0.507***  0.496***  (.413%** 0.007** 0.006* 0.007**
(0.026)  (0.022)  (0.030)  (0.003)  (0.003)  (0.003)

Peers’ Mean Baseline Score  0.345%*  (0.324** 0.291**  (.788***  (.697*** 0.704%**
(0.150)  (0.160)  (0.131)  (0.157)  (0.174)  (0.134)

Observations 2,188 2,188 2,189 2,188 2,188 2,189
One Instrument Spec. Multiple Instrument Spec.
Total Math Literature Total Math Literature

Panel B. Instrumental Variables
Peers’ Mean Endline Score — 0.444***  (0.469***  (0.422%**  (.424*** (.488*** 0.487***
(0.117) (0.124) (0.120) (0.094) (0.103) (0.117)

First-Stage F-Stat 371.8 371.6 1970 293.4 463.4 590.9
Sargan-Hansen Test® 15.12 12.53 12.76
(0.004) (0.014) (0.013)

Observations 2,188 2,188 2,189 2,188 2,188 2,188

Notes. Data comes from Duflo et al. (2011). Following the authors’ specifications, we include school fixed
effects and controls for gender, age, and being assigned to the contract teacher. Columns (1)-(3) in
Panel B use peers’ mean baseline score as an excluded instrument. Columns (4)-(6) in Panel B use
as excluded instruments: peers’ mean baseline score, peers’ minimum and maximum baseline scores,
and mean baseline scores of male and female peers. Standard errors clustered at the school level.

aWe report the Sargan-Hansen 2 test statistic with the corresponding p-value in parentheses below.
*p<0.1; **p<0.05; ***p<0.01.

The first three columns of Panel B report estimates for the main IV specification. For a
classical linear-in-means model, these regressions would recover the constant peer effect [3.
The last three columns of Table 3, Panel B, report estimates from alternate IV specifications
that use multiple excluded instruments. In addition to Z_;, we include four more instrumen-
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tal variables: (1) minimum baseline score of peers, (2) maximum baseline score of peers, (3)
average baseline score among female peers, and (/) average baseline score among male peers.

If the peer effects are constant across classrooms, then by Lemma 2, any combination of
instruments should yield the same IV estimand. However, if the peer effects vary, then the
IV estimand will depend on the particular choice of instruments used. To test for constant
effects in the model, we conduct a Sargan—Hansen test for over-identifying restrictions using
all five excluded instruments. This test allows us to determine the validity of over-identifying
restrictions using any linear combination of the excluded instruments. We find that this test
is rejected at the significance level 0.05, implying that peer effects differ between classrooms.

4.1.2 Reanalysis under Heterogeneous Interaction Effects

Motivated by these findings, we re-analyze the estimates in Table 3 under the linear-in-means
model with heterogeneous interaction effects. Our analysis leverages two observations about
the empirical setting. First, Assumption PM is likely to hold because students’ baseline test
scores are expected to have a nonnegative impact on their endline scores, making it plausible
that P(v; > 0) = 1 for all 4. Second, Assumption NNW is likely to hold, as the experimental
design ensures that baseline scores { Z; }é\le are uncorrelated after conditioning on the school.

Learning from OLS Estimates

Consider the OLS estimates reported in the first three columns of Table 3, Panel A. Under
heterogeneous interaction effects, the coefficient on Z; represents the average total individual
effect E(AY;/AZ;)—that is, the effect of a student’s baseline test score on his/her own endline
test score, after accounting for spillovers. We estimate that, on average, scoring 1 point higher
on the baseline test would lead a student to score about 0.5 points on the endline test.

In these OLS regressions, the coefficient on peers’ mean baseline score Z_; is estimated to
be positive and statistically significant. By Lemma 7, this result allows us to infer that peer
effects are present in at least some classrooms. Nevertheless, under heterogeneous effects, we
cannot use this estimate to infer the sign of these peer effects, even though they do exist.?®

Learning from IV Estimates

Consider the IV estimates in the first three columns of Table 3, Panel B, where we estimate
positive and statistically significant IV estimands of approximately 0.45. Under heteroge-
neous effects, these estimands represent weighted averages of peer effects 3; across students.

Given that Assumptions PM and NNW hold, Proposition 3 implies that the IV estimand

251 this application, it is infeasible to regress the outcomes Y on the entire vector Z = (1, Z") as it requires
labeling each student i in a way that is consistent across classrooms. This task may be straightforward in
certain applications, e.g., when studying labor supply in two-person households where there is always one
primary earner. However, it is impractical in other cases where the number and composition of agents in a
group varies. Also, when N is large, there could be more parameters to estimate than there are observations.
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is a causal parameter, representing a positively weighted average of peer effects.?6 Moreover,
if we further assume that all peer effects are nonnegative, such that P(5; > 0) = 1 for all ¢,
then Proposition 4 implies that the IV estimands serve as upper bounds on the average peer
effect E(5;). We thus conclude that a 1 point increase in peers’ average test scores would not
raise a student’s own score by more than about 0.45 points on average. This upper bound is
high, which suggests that peer effects could have a substantial impact on student outcomes.

Testing for Social Multipliers

In the last three columns of Table 3, Panel A, we estimate a statistically significant, positive
regression coefficient on a student’s own baseline test score Z;, corresponding to the average
equilibrium effect E(AY_;/AZ;).2" By Proposition 5, this result tells us that social multi-
pliers must exceed one in at least some classrooms. In such settings, factors that boost one
student’s achievement are amplified through social interactions, raising overall performance.

4.2 Strategic Pricing Decisions in Sierra Leone

Our second application builds on the analysis conducted by Casaburi & Reed (2022), who
study the strategic behavior of traders purchasing cocoa from farmers in Sierra Leone. During
an experiment conducted from October to December 2011, half of the 80 traders in the sample
were randomly assigned a subsidy of 150 leones per pound of cocoa sold at village markets.
Data on prices and quantities from these transactions was subsequently collected for analysis.

Casaburi & Reed (2022) specify a model of imperfect competition among buyers. Each
market consists of N buyers and a unit measure of homogenous producers. The price P; that
a buyer ¢ pays to producers is given by the inverse supply P, = A+ rQ; +0 > i @, which is
micro-founded by assuming there exists a representative producer with a love for variety.?®
A buyer’s profit function equals I1; = Q;(v + sZ; — P;), where v denotes the wholesale price
net of costs and Z; indicates whether the buyer is randomly assigned a subsidy valued at s.

In equilibrium, the buyers choose their quantities ); to maximize profit, while accounting
for optimal decisions {Q);},; of their competitors. The profit-maximizing quantities satisfy

26Specifically, this IV estimand places larger weights on students for which Y_; is more responsive to Z_;.
*TThis interpretation assumes that students’ baseline scores {Z; }5\7:1 are uncorrelated with one another,
which is implied by the experimental design, as students are randomly assigned to classrooms within a school.

28Following footnote 6 in Casaburi & Reed (2022), a producer’s profit is: V (P, Q) = Q0+Z§11 PQ;—C(Q),
where C'(Q) = A ZZV:I Qi—s—%m Zfil Q?+6 Z#i Q;Q; is the cost of production, and Qo is any unsold output.
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the linear-in-means model with constant effects, where the interaction effect 3 is (N —1)/2k.

v—A 0 S
S Ta ) DU A

v —
(v=A)/2k N=—=—~— J#i $/2k
—0/2k

_ g '
- +m2Qj+ﬂyZi, fori e {1,...,N}. (24)

In this setting, we can interpret 6/2k as a conduct parameter that measures how a buyer i’s
demand depends on the total quantity purchased by i’s competitors. Under constant effects,
the conduct parameter is identified from IV, where the quantity purchased by ¢’s competitors
> j»i @j is instrumented by the treatment statuses of i’s competitors, denoted by {Z;}; 2%

4.2.1 OLS/IV Estimates and Over-identification Tests

Table 4 presents our implementation of linear peer effects estimators. The first two columns of
Panel A report OLS estimates from regressing a buyer i’s purchases (); on her own treatment
status Z; and the number of treated competitors ), Z;, with and without trader controls.
Under constant effects, this regression recovers the spillover effect of a competitor j’s subsidy
on a trader 7’s purchases, as well as the total individual effect of a trader i’s subsidy on her
own purchases. The last two columns of Panel A report estimates from regressing > i @
on Z; and ) i Zj, with and without trader controls. If Assumptions C.1 and C.4 hold, then
by Lemma 1, the coefficient on Z_; in a regression of Y; on Z; and Z_; should match the
coefficient on Z; in a regression of Y_; on Z; and Z_;. We are unable to reject this in the data.

The first two columns of Panel B present estimates from IV regressions of ; on > ki Qj,
where the number of treated competitors » ;i Zj 1s the excluded instrument. In the classical
linear-in-means model, this regression recovers the conduct parameter —60/2x. The last two
columns of Table 4, Panel B, report estimates from alternate IV specifications using multiple
instruments. In addition to } . 4i Zj, we introduce three extra instruments: (1) number of
treated competitors who have access to a storage facility, (2) number of treated competitors
older than the median age (37), and (8) number of treated competitors with baseline sales
above the median (300 lbs of cocoa). Each of these instruments is valid by the same identifi-
cation arguments used in the original paper. We use these over-identified regressions to test
whether all traders share a common conduct parameter. We then conduct a Sargan—Hansen
test for over-identifying restrictions using all four excluded instruments. From this exercise,

29Casaburi & Reed (2022) do not run this IV regression since they never explicitly define a market in their
empirical analysis. Rather, they rely on additional model assumptions to estimate the market size N while
never explicitly assigning traders to markets. To conduct our analysis, however, we need to know which
traders belong to which markets. We achieve this objective by defining a market as the interaction between
a week and a chiefdom, which represents a small administrative unit in Sierra Leone. In the data, we find
that 90% of traders operate in a single chiefdom in a given week and that over 98% of traders make more
than half of their sales in the same chiefdom. We leverage this observation to assign traders to chiefdoms.

35



Table 4: Strategic Interactions—Cocoa Traders in Sierra Leone

Trader Quantity Competitors’ Total Quantity
(1) (2) (1) (2)
Panel A. Reduced Form
Treatment Trader 416.663***  454.895***  _166.995 -61.516
(45.733) (49.594) (248.156) (267.626)
Number of Treated Competitors -10.733***  _7.423**  507.685%** 522.394***
(2.975) (3.697) (16.141) (19.948)
Observations 610 602 610 602
Trader Controls X X
One Instrument Spec. Multiple Instrument Spec.
(1) (2) (1) (2)
Panel B. Instrumental Variables
Competitors’ Total Quantity -0.007 -0.020%** -0.004 -0.018***
(0.006) (0.007) (0.006) (0.007)
First-Stage F-Stat 23.06 14.15 22.90 14.09
Sargan-Hansen Test® 9.82 12.35
(0.02) (0.006)
Observations 610 602 610 602
Trader Controls X X

Notes. Data comes from Casaburi & Reed (2022). Following the original paper, we include week
fixed effects. Trader controls are: baseline pounds of cocoa sold, number of villages where
trader operates, baseline share of suppliers receiving credit from trader, age, years working
with wholesaler, ownership of a cement or tile floor, mobile phone, and access to a storage
facility. Sample sizes differ between (1) and (2) due to missing data about trader controls.

2We report a Sargan-Hansen x3 test statistic with a corresponding p-value in parentheses.
*p<0.1; **p<0.05; ***p<0.01.

we find strong evidence against the constant effects assumption. This suggests that different
traders likely respond strategically in different ways to their competitors’ pricing decisions.

4.2.2 Reanalysis under Heterogeneous Interaction Effects

Motivated by these findings, we reanalyze the estimates in Table 4 under the linear-in-means
model with heterogeneous effects. To better interpret our findings, we make two observations.
First, Assumption PM is likely to hold since the coefficient ~; is proportional to the subsidy
s, which is homogeneous within and across markets. Second, Assumption NNW is likely to
hold, as the experimental design ensures that treatments {Z; }jvzl are mutually uncorrelated.
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Learning from OLS Estimates

Consider the OLS estimates in the first two columns of Table 4, Panel A. Under heterogeneous
effects, the coefficient on Z; recovers E(AQ;/AZ;), which represents the average effect of
receiving a subsidy on a trader’s own purchases, after accounting for spillovers. We estimate
that, on average, the subsidy leads traders to buy about 400 more pounds cocoa from farmers.

In this OLS regression, the coefficient on the number of treated competitors i Zj 18
estimated to be negative and statistically significant. By Lemma 7, this finding suggests that
the conduct parameters 6; /2k; are nonzero with positive probability. Therefore, at least some
traders exhibit strategic interactions, which tells us that markets are imperfectly competitive.

Learning from IV Estimates

Consider the IV estimates in the first two columns in Panel B. After including trader controls,
we estimate a significant, negative IV estimand of -0.02. Under heterogeneous interaction ef-
fects, this estimand corresponds to a weighted average of conduct parameters among traders.

Since Assumptions PM and NNW are plausible in this environment, we conclude from
Proposition 3 that the IV estimand is a causal parameter, representing a positively-weighted
average of conduct parameters.®® Moreover, as the conduct parameters 6;/2k; are positive
by construction, the IV estimand gives an upper bound on the average conduct parameter
E(6;/2k;) among traders. We conclude that, on average, raising a competitors’ cocoa pur-
chases by 1 pound does not reduce a trader’s own purchases by more than 0.02 pounds. This
upper bound is low, which suggests that strategic interactions are limited in this context.

Testing for Social Multipliers

In this application, we find no evidence of social multiplier effects. To see why, consider the
OLS estimates in the last two columns in Table 4, Panel A. The coefficient on Z; corresponds
to E (A( > i Q]) / AZi), which measures the average effect of one trader ¢’s treatment status
on the total quantity of his/her competitors, after accounting for spillovers.3! We estimate
this coefficient to be small and statistically insignificant, indicating that there is no social
multiplier in this setting. We therefore conclude that the strategic interactions have little to
no material impact on how changes in traders’ demand or costs affect overall market output.

5 Conclusion

We analyzed a general class of linear simultaneous equations models where agents are influ-
enced by the average outcome of their peers. Our framework nests the classical linear-in-
means model (Manski, 1993). Moreover, we extended the model to allow for both positive

30Larger weights placed on traders whose competitors’ purchases are more responsive to receiving subsidies.
31As in the first application, this interpretation requires that {Z; }jvzl are uncorrelated with one another.
This condition is ensured by the experimental protocols, as a trader’s treatment status is randomly assigned.

37



and negative interaction effects that differ within and across groups. We showed that the
assumption of uniform interaction effects significantly limits the scope of economic behavior,
making the model unsuitable for many real-world applications. By allowing for heteroge-
neous effects, we demonstrated that the model can be applied more broadly to study a
wide range of network settings, such as joint labor supply decisions within households and
strategic interactions between firms. Using the heterogeneous effects framework, we exam-
ined what insights are gained from linear peer effects estimators. We found that linear OLS
and IV regressions can be used to draw informative inferences about endogenous interaction
effects and social multipliers, even while these methods do not yield point identification. We
applied our results to two applications from Duflo et al. (2011) and Casaburi & Reed (2022).
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Appendix

Proof of Proposition 1

Consider a group with N agents, where agents’ outcomes are defined by the system (1).3? To
prove Proposition 1, we begin by defining the reduced form system using matrix notation.

Y =det(I — B) "' Afa + diag(v)Z],

where A = adj(I — B) is the adjugate of I — B, and det(I — B) is the determinant of I — B.
By definition, A is equal to the transpose of the matrix of cofactors of I — B. In particular,
the individual entries {A4;;};; of the matrix A are defined so that:

Aij = (*1)i+j X det([[ — B],j7,i),
where [ —B|_,_; is a submatrix formed by removing the jth row and ¢th column of I — B.

We want to derive alternate expressions for {A;;}; ; that are not in matrix form. To do so,
we write A = (—1)" x det (C(i,j) — (N —1) 7' B_;1{y_4),,), where C(i, j) € RV-DxN= 1
is a matrix that is given by C(i, j) = I_; (L (n_1)x1 + ( —1)7'4_;). This matrix satisfies:

det (C(i, ) = 1{i=j} x | | ( Nﬁf 1)

(]
adj (C(i, 7)) = " <{ e¢1;[,j} <1 ’ Nﬁf 1> }k#j) ifi=j
1(C0,7)) = {(—1)%—1 X zgglz;['} Be 1)} lej]iles]; ifi#j

Then, by the matrix determinant lemma, the diagonal entries {A;;}., of A are equal to:

Ajj = det (C(] j)) ( —1)x 1ad.]( (])j))ﬁ—J

:g(lJrN 1) N —x dlag<{e¢gj}(1+Nﬁg1>}k¢j>6_j
:H<1+N 1) ;[

Be
1+ )
| II (1+55
l#j
32To simplify the notation, we will omit group subscripts and treat Z; as a one-dimensional variable.

€§Z{k7j}
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Moreover, by the exact same reasoning, the off-diagonal entries {A4;;},2; of A are equal to:
Ajj = (—1)"*7 x [det (C(z,j)) — ﬁll(N—l)xl ad] (C(’L,]))ﬁ_j}

= 0 o= a0 T (1 ) Jide 6]
£¢{i,5}

1
= ﬁll(N—l)xl H (1 + Nﬂf 1)[ej],i[ei]’_j _j
¢ {ig}
Bi By
CN-1 11 <1+N—1>

£¢{i.j}

Now that we have derived these expressions for {A4;;}; ;, our next step is to re-write the
determinant of I — B so that it is not in matrix form. To do so, we take the following steps:

1 . 1
det(I — B) = det [I + —diag(8) - mﬁum}
1 1, 1 -1
= det [I + N 1d1ag(ﬁ)} <1 — ﬁlN“ [I+ N1 dlag(ﬂ)} B)
For any agent ¢ € {1,..., N}, this determinant can be reformulated as:

N N ) . _
det(I—B):H<1+Nﬂj1>x[1_21Ni1<1+N611> 1]
=

_g(lJrNﬁfJ * [l_(1+Nﬂi1)z¢:Nﬂi1(l+Nﬁil)_l}

i

A Bi B; Be

= Ay N_lz N -1 H <1+N—1>
J#i e¢{i,5}
By plugging in our expressions for {A;;};; and det(/ — B), we are now able to write
down the ith reduced form equation for any agent i € {1,..., N}. This equation is given by:
1
Y; = 7det([ — B) [Aii(ai + %’ZZ') + ; A,‘j(aj + ’Yij)}
p 2 i Gig X [%(0@ +%iZi) + (o + %‘Zj)}
=t Nt det(I — B)

where (;; = %Hé’&é{ij} (1 + %) Next, for any i € {1,..., N}, consider the average
outcome Y_; among everyone excluding agent i. To derive an expression for Y_;, we write:

Y deet(j g * (Lt o) Alo+ ding(5)Z]

[ > :Aky] (o +75Zj),
ki
—_———

1 N
T (N —1) x det(I — B) X;
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where the coefficient ¢;; = >, 4i Ay; 1s defined to be:

i =) [Nﬁfl IT (1+ Nﬁflﬂ’

ki ¢ {k.i}

and where each of the coefficients ¢;; = Zk#i Ay, for j # i, is defined to be:

cij=Aj+ Y A

k(i)
:H(HNﬁ:) -2 {Nﬁfl 11 <1+Nﬁf1>] t 2 {Nﬁfl 11 (1+Nﬁf1)]
t Py 0¢{k.3) ki) 0 {k.j}
:H(HNBL) _Nﬁil I1 (1+Nﬁf1)
0] e¢{i5}

:(1+Nﬁi1_N6—i1> 11 (1+Nﬁf1)

0¢{i.j}
= 11 (1+Nﬁf1>
¢¢{ig}

After plugging in these expressions for {c;; }é-V:l, we arrive at the following equation:

7 Zj;ﬁi Cij X [%(al + ’YiZi) + (Oéj + ’Yij)}
i (N — 1) x det(I — B)

By taking similar steps, we can derive an analogous expression for the the mean outcome Y

o e x (g +v57) B
' Nxdeil _B) where  ¢; 4171(1+N_1) for je{l,...,N}

Necessary and Sufficient Conditions for a Unique Equilibrium

A unique equilibrium exists if and only if the determinant of I — B is nonzero. We write:

det(I—B):ﬁ(1+ ﬁil) X [l—i]\fﬁ_jl(l—FNﬁ_il)l]
i=1

j=1
N N ‘ | |
- P [117]1;[1 <1+ Nﬁi1> B Nﬂi 1]1;{ (1+ Nﬁilﬂ
() a1+
i=1 j#i

So, for any N > 2, a unique equilibrium exists if and only if Zij\il(l—ﬁi) [1;,(N=1+85;) # 0.
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Proof of Lemma 3

Let Z; and Zj, be binary variables so that (Z;, Z) takes values in {(0,0), (0,1),(1,0),(1,1)}.
Given this set of feasible values, Assumption IAM consists of four separate restrictions:

(1) P(AY—Z >0) —1 0rP<AY‘1 <0) ~1
(2) P(AZ‘; 20):10rP<
(39) P (87 + 57 20) =1or P (85 + 55 <0) =1
) P(87 -85 20)=1orP (82 - 42 <0) =1
As long as f3;, B;, B € (—1,1), the partial effects AY_;/AZ; and AY_;/AZ; have the same
signs (respectively) as 7, and ~y,. For this reason, restrictions (1) and (2) are equivalent to:
(1') P(y;20)=1or P(y; <0) =1
(2°) Py, > 0)=1or P(1, <0) =1
When combined with (1) and (2), the restrictions () and (4) can be reformulated as a single
condition: either P(|AY_Z/AZJ| Z ’AY_Z/AZ]CD =1or P<|AY_1/AZJ| S |AY_1/AZk|> =1.
We can re-interpret this condition as a statement about the random coefficients by writing:

1+ﬂj ul) — 1455 v\

Tk Tk

-igo>=1

Proof of Lemma 4

Let Z; and Z;, be continuous variables, and consider any two vectors (zj, zx) and (z}, 2;)
taken from the support of (Z;, Z;,). The difference in Y_; when evaluated at these vectors is:

Y_i(zj, Zk) — Y_i(z}, Z;C) = [Y_i(zj, Zk) — Y_Z( ! Zk)] + [Y_Z‘(Z}, Zk) -Y_ (Z Z’k)]

AY_; AY_;
- AZ, X (zj — z’) AZ, X (21 — 21)

Assumption TAM requires that Y (z;, z) — Y7} (2}, z;,) and Y% (2, z) — Y% (2}, 2,) share
the same sign for any two groups ¢; and g,. We show that the condition holds if and only if:

ﬂ)P(iZQEQ::1mP(i§f§Q):1
(2) P(i’%ﬁzo):mw(i%:go):l
(3) P(%za)zlforsomeaéﬂ%

(“«<") Suppose Assumption TAM holds. Then, (1) and (2) apply for the same reason
that they do in the binary case. To justify (3), take (z;, z) to be any vector that lies within
the interior of the support of (Z;, Z;). Then, for groups ¢g; and g, define the quantities:

, AY9  AY®
g AT

AYIH  AY9?
—1 —1
% AZ, T AZ ] e

x e and z;—zk—i-[ +
} AZ; | AZ
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where € > 0 is chosen to be sufficiently small so that (27, z;) lies inside the support of (7}, Zy).
In this case, the differences Y7 (2, z) — Y7} (2], %) and Y (25, z1,) — Y% (2], 2;,) are equal to:

NN AZy " AZ;

NGNS AVS AV
Az, Az )\ az; C Az )¢

y % AYS AYY AV AV
y9;<zj,zk>_yg;(z;,z;€):< S > _( 9 1)6

Y92(2j, 21) — Yf?(z},z;) = <

Observe that the first equation is equal to the negative of the second equation. So, these
differences can only share the same sign when they both equal zero. Specifically, we require:
AY?  AY® _ AY?  AY® AYY /NZ; B AY? /NZ;

= — = -
AZ; Az | AZ,  AZ AYY/AZ, ~ AY%]AZ),

AY_;/AZ;

This equation holds for any two groups ¢g; and g». So, P (m

:a> = 1 for some a € R.

(“=") Suppose that conditions (1), (2), and (3) apply. Then, for some constant a € R:
AY_;
AZy,

Y_i(zj,zk) — Y_z(zé,z,;) = X [a X (Zj — 2’;) + (Zk — Z;C)],

where AY_;/AZ), retains the same sign across groups. Thus, Assumption TAM must apply.
Note that we can re-write the conditions (1), (2), and (3) in terms of the random coefficients:
(1) P(7;> 0) = L or P(y; < 0) = 1
(2°) P(vy >0)=1or P(y <0)=1

; 14385 _ ﬁ>_
(3°) P(H%Bk—ax% =1 for some a € R

Proof of Lemma 5

For any j # 4, consider any two vectors (2;, {2k }reijy) and (2}, {2k fre(ij3) in the support of

Z_;. By Lemma 1, the difference between the values of Y_; evaluated at these vectors is:

[eg iy (1 + %) x (25 — 25)
(N —1) x det(I — B)

Y_i(zj, {2 tegqiy) — Yoi(2h {zrtneqigy) =
As det(I —B) > 0 and [[,4y; 5 (1+ %) > 0 with probability 1, the PM condition requires:
P(’yj(zj — z;) > 0) =1 or P(’yj(zj — z;) < 0) =1,

which occurs if and only if P(y; > 0) = 1 or P(y; < 0) = 1. This condition applies for all j.
[l

Proof of Lemma 6

This result immediately follows from the observation that, under Assumption III, the spillover
effect AY_;/AZ; of Z; on Y_; always shares the same sign as ~; for every j € {1,..., N} \ .
[
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Proof of Proposition 3

In this model, Y_; is a linear function of Z. Therefore, we can write Y_; = —i—Zj.V:l m;Z; for
some parameters 7o and {m;}}_; that depend on the random coefficient vector (a, 3,7, N).
Because the random coefficients are independent of Z, the conditional expectation of Y_;
given 7 is equal to E(Y_;|Z) = E(m) + Z;VZI E(m;)Z;. Given these properties, we can write:

ﬁTSLS(z)& Cov (Y;, L( —l‘Z—z)‘Z = z) _ Cov (Y;, E( _,\Z)|Z = z;)
COV(Y_Z,L( _Z|Z_Z)|Z = z) COV(Y_,,E( _Z|Z)|Z = z)
_ ZE - COV(}/“Z |Z; = z;)
C V(Y z,E( Z|Z )|Z,L = Zz)

J#
Yi, Zj|Zi = zi
= ZE 71_] X COV( J| = i )
i Zk;ﬁi E(ﬂ’k) X COV(Y_Z', Zk’ZZ = Zz)
_ Z E(m;j) x Cov(Y_;, Z;j| Zi = z) Cov(Yi, Zj|Zi = z;)

N = Zk#E( k) x Cov(Y_i, Zy| Zi = z;) = Cov(Y_y, Zj|Zi = 2;)

Wi

By construction, the weights {w;},-; sum to one. In addition, we prove the following claim.

Claim 1. Suppose that Assumption NNW holds. Then w; will be non-negative for all j # 1.

Proof. For j # 14, the weight w; is non-negative if and only if its numerator and denomina-
tor have the same sign. So, {w; };; are non-negative if and only if E(7;)x Cov(Y_;, Z;|Z; = 2;)
has the same sign as >, , E(m) x Cov(Y_;, Zi|Z; = 2;) for all j # i. Note that this state-
ment is equivalent to the requirement that E(m;) x Cov(Y_;, Z;|Z; = 2;) retains the same
sign across all j # i. Therefore, for any j,k € {1,..., N} \ 4, we rule out the case where:

0 > E(m;) x Cov(Y_;, Zj| Z; = 2)
= B(m)) E(mi) Cov(Z), Zi| Zi = z) + Y, B(mj) E(my) Cov(Zy, Z5| Zi = 2)
¢ {ik}
0< E(ﬂ'k) X COV(Y_Z‘, Zk|ZZ = Zi)
= E(?Tj) E(?Tk) COV(Z]', Zk|Zi = Zi) + Z E(Trk) E(Trg) COV(ZZ, Zk|Zi = Zi)
e¢{i,j}

These inequalities can be reformulated in terms of bounds on the covariance of Z; and Zj,.%

E()
E(7)

COV(Z@, Z]|ZZ = Zi)

- Z ov(Zy, Zy|Zi = zi) < Cov(Z;, ZplZi = z) < — )
z¢{u} i) 06 {3k}

Therefore, the requirement that all the weights {w; },; are non-negative is equivalent to the
condition that Cov(Z;, Zy|Z; = z;) does not satisfy the inequalities above for any j, k # 1.
O

33To see how, divide both inequalities by E(r;) E(m), which we assume is positive without loss of generality.
If E(m;) E(my) is negative, then the inequalities flip, and the claim still holds as j and k are chosen arbitrarily.
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Having proven this claim, the next step is to write down an expression for the TSLS
estimand as a weighted average of individual j;’s. Consider the following decomposition:

BTSLS () B >z B(m;) x Cov(Y;, Zj|Z; = z) B > i B(my) x <ZZ;£1‘E(BZ'7FZ) x Cov(Zy, Zj|Zi = Zz))

Zkz;ﬁi E(?Tk) X COV(Y;Z', Zk|Zi = Zz) N Zk;ﬁi E(Tf‘k) X COV(Y,i, Zk|Zi = Zz)

| Y BBme) x (X4 Blm) x Cov(Ze, 2412 = =)

D ki B(mr) x Cov(Y_y, Zk| Z; = 2:)
. Zg?gi E(Bim) % COV(Y_Z-,Z[’ZZ» = 2)
> ki B(mi) x Cov(Yoi, Zi|Z; = z)
>oi T X Cov(Y_y, Zy|Zi = 2i) >
> ki B(mi) x Cov(Y_y, Zy|Z; = z)

To obtain the second equation above, we switch the order of summation in the numerator.
The final equation holds by linearity of expectation. In integral form, the TSLS estimand is:

BISES(2) = / Bi x w(Bi|z)dB;,

supp(5;) )
_ Zf#z E(Trdﬁl) X COV(Y_Z', Zg|ZZ = Zi)
B Zk;ﬁz E(ﬂ'k) X COV(Y—i, Zk|Zz = Z’i)

where:  w(f;|z;)

The last step of this proof will be to demonstrate that the weights w(/;|z;) are all non-
negative as long as Assumptions PM and NNW are satisfied. We justify this claim below.

Claim 2. If Assumptions PM and NNW hold, then w(f;|z;) is non-negative for every ;.

Proof. Using Lemma 1, we can write the coefficient 7}, for any j # 7, to be:

[eg iy (U + 17)
mi =3 7 N = 1) x det(I — B)
0 ifj¢N
Here, [[,q0 5 (1+ I/\?ﬁ) > 0 and det( — B) > 0 with probability one. Moreover, by PM,
either v; > 0 with probability one or 7; < 0 with probability one. Without loss of generality,
assume that v; > 0 with probability one. Then P(7; > 0) = 1, which ensures that:

E(?Tj) = / 7ij7rj (ﬂ'j)dﬂ'j = /0 TI'jfﬂj(ﬂ'j)de 2 0

—0o0

ifjenN

E(leﬁl)fﬁl(ﬁl) :/ wjfﬂ,j|5i(7rj|ﬁi)f5i (Bi)dﬂ'j :/0 ijﬂjvﬁi(ﬂj’ﬁi)dwj >0

These inequalities imply that E(7;) Cov(Y_;, Z;|Z; = 2) and E(m;|8;) Cov(Y_;, Z;|Z; =
2i) f5,(B;) are either both non-negative or both non-positive across all 8; € supp(f;). More-
over, as the index j was chosen arbitrarily, this relationship applies for all j € {1,..., N} \1.

Assumption NNW ensures that E(m;) Cov(Y_;, Z;|Z; = z;) has the same sign across all

J # 4. Since these terms also share the same sign as E(7;|5;) Cov(Y_;, Z;|Z; = z) f35,(5:), for
all §; € supp(f;) and j # i, we conclude that all the weights w(f;|2;) would be non-negative.
0
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Proof of Proposition 4

As a first step, we decompose the TSLS estimand to isolate the mean interaction effect.
_ 2y B(Bimy) % Cov(Y_i, Zj|Zi = z)
Zj;éi Cov(B;, mj) x COV(Y_i,Zj‘ZZ- =2z)
> ki B(7r) x Cov(Y_i, Zk| Z; = 2:)
()

ﬁ;I‘SLS (Zz)

= E(8:) +

Under Assumption NNW, the product E(r;) x Cov(Y_;, Z;|Z; = 2;) has the same sign across
all j # i. So, whenever Cov(/3;, 7;) has the same sign as E(r;) for all j # 4, the term (x) will
be positive. Alternatively, if Cov(f;, 7;) and E(;) have opposite signs for all j # 4, then the
term (%) will be negative. This reasoning leads us to the second step of the proof, where we
show ¢; = = > i 8] Hé%{i,j} (1+ %)} governs the sign of Cov(f;, 7;) relative to E(r;).

Pick any j, where j # i. By the PM condition, either P(y; > 0) =1 or P(y; <0) = 1.
Without loss of generality, assume P(7; > 0) = 1. Then, as shown in the proof of Theorem
2, the mean of 7; must be positive. Also, the Law of Total Covariance guarantees that:

Cov(B;,mj) = E (Cov(B;, mj|;, B—i, N)) 4+ Cov (E(Bi|vj, B-i, N), E(m;]vj, B-i, N))

=0

Note that the second term on the right-hand-side is zero because E(5;|v;, 8-i, N) = E(5;).
Following the proof of Lemma 1, the coefficient 7; can be expressed in terms of ¢; by writing:

v X Hégé{i,j} (1 + ﬁﬁ)
(INM] —1) x det(I — B)
B Hegz{v;,j} (1+ \J\ﬁﬁ)
(VT =1) x [Ais = Bi x /(N = 1)?]

Fj:ﬂ{jEN}X

=1{j e N} x

where A;; depends only on 3_; and A. To simplify notation, define the following parameters:

5ij:]l{j€N}X(‘N|—l)X H <1+ N|ﬁg—1)
£¢{i,5}
gi: (|N|—1)2 XAii

These terms d;; and & depend only on _; and M. Also, d;; is positive with probability one.
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Cov(B;,m;) =E <Cov (5@'7 % 'yj,ﬁi,./\/))

E<E<[ﬂi—E(ﬁi)] X [N E(g’YJXCSU

Using this new notation, we can write covariance between 3; and 7; to be:
— Bi X i i — Bi X i

5082 s B-5)
E (E <{/Bz - E(/Bi)] x {gify_j;iijd% ¢ _’Yé(zjz‘; wl} ,Yjﬁ_i,/\f))
+E <E ([51 - E(ﬁi)} X [% - E (% Vj,ﬁ—z',/\/'ﬂ Vj,ﬁ—i,./\/'>>
X By X By
([ e « [ s )
_ , v % 835 % [Bi — E(B;)]?
=F <‘”Z X G EG) < 00— B <) >

/

>0 almost surely and #0 with positive probability

If ¢; > 0 with probability one, then Cov(3;, ;) > 0. Alternatively, if ¢; < 0 with probability
one, then Cov(f;, m;) < 0. Therefore, we conclude that Cov(f;, ;) has the same (different)
sign as E(m;) whenever 1; is positive (negative) with probability one. Since j is chosen
arbitrarily, this relationship holds for all j # i. By the arguments above, this property
ensures that the term (%) is positive if P(¢; > 0) = 1 and that (x) is negative if P(¢; < 0) = 1.

[
Derivation of Social Multipliers
We now derive a closed-form expression for the individual-specific social multiplier M, (};‘;temg'.
N Yili
Mheterog. _ Zj:l A}/}/AZl _ det(/—B)
(4) AY;/AZ; Bivi (w1 3 Bivis)
Yi + T N=1) det (I=B)
1 g \ 7!
B + 3
B 1 N B 1 Bj ! Bi_(q Bi -1 B; 1 Bj !
- ijl N—l( + N—l) g\t t N—l) Zj;éi ﬁ( + N—l)
-1
(1+5%)
B 1 Bi 1 Bi -1 Bi 1 Bi -t 1 Bj 1 Bj -1
N71< +N71> + N71< +N71> Zj;éiﬁ( v 1)
—1
(1++4)
N S 8 8\ !
(1 + NB 1) [1 - <Zj;éi N1 (1 + Nil) )]

Note that the derivation of the expression for the aggregate multiplier M/"*™¢ is analogous.
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