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Sample Spaces & Events

The notion of randomness captures our uncertainty (or, rather, our
ignorance) about a process. What is not seen as random is deterministic.

Definition (Sample Space, Outcome, Event)

A sample space, denoted by Ω, is a set of all possible outcomes. Each
outcome is denoted by ω. An event, denoted by A, is a subset of Ω.

Examples

Coin Flips: Ω = {ω1, ω2}, where ω1 = “Heads” and ω2 = “Tails”.

Test Scores: Ω = [0, 100], ω = 85 (outcome), A = [85, 90] (event).

Fish in Lake Michigan: Ω = N0 and A = {ω ∈ Ω : ω > 30 million}.
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Elementary Definitions

Definition (Union, Intersection)

Let A and B be events in Ω. The union A ∪ B is the event that A and/or
B occurs. The intersection A ∩ B is the event that both A and B occur.

Note: unions/intersections are commutative, associative, and distributive.

Definition (Complement)

The complement of A, denoted by Ac , is the event that A does not occur.

Definition (Empty Set, Disjoint)

The empty set, denoted by ∅, is the set containing no elements. Two sets
A and B are disjoint if there are no outcomes in common, i.e. A ∩ B = ∅.
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Probability Measures

We use probabilities to measure how likely events are to occur.

Definition (Probability Measure)

A probability measure on Ω is a function P : Ω→ [0, 1] satisfying:

P(Ω) = 1

P(A) ≥ 0 for all A ⊆ Ω.

P(A ∪ B) = P(A) + P(B) for disjoint events A and B.

Some Properties

P(Ac) = 1− P(A)

P(∅) = 0

A ⊆ B implies P(A) ≤ P(B)

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
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Random Variables

Definition (Random Variables)

A random variable is a function X : Ω→ R mapping elements of a sample
space to real numbers. Realizations of X are denoted by lowercase letters.

Example
You flip two coins. Let X be the number of “Heads” that are observed:

Ω = {(H,H), (H,T ), (T ,H), (T ,T )}
P(ω) = 0.25 for all ω ∈ Ω

P(X = 0) = 0.25, P(X = 1) = 0.5, and P(X = 2) = 0.25

A random vector is a function mapping elements of Ω onto Rn.

Example 1: X = (X1,X2), where Xi indicates if flip i is “Heads”.

Example 2: X = (X1, . . . ,Xn) is a random sample, each observation
Xi counting the number of “Heads” from two consecutive coin flips.
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Discrete versus Continuous

The support of X , denoted as supp(X ), is the set of values X can take.

Definition (Discrete Random Variable)

A random variable is discrete if its support has countably many elements.

Example
A variable is Bernoulli (or binary) if has a support of {0, 1}. If X ∼ Bernoulli(p),
then X equals 1 with probability p, and X equals 0 with probability 1− p.

Definition (Continuous Random Variable)

A random variable is continuous if its support has uncountably many elements.

Example
A variable is uniformly distributed over an interval [a, b] if its support is [a, b] and
if it takes any value in [a, b] with equal probability. We write X ∼ Uniform[a, b].
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Discrete Distributions

The probability mass function (PMF) of a discrete random variable X is
given by pX : R→ [0, 1], where pX (x) = P(X = x). The cumulative
distribution function (CDF) of X is given by FX : R→ [0, 1], where:

FX (x) = P(X ≤ x) =
∑
j≤x

P(X = j) =
∑
j≤x

pX (j)

Example
The PMF of a Bernoulli(p) random variable is:

pX (x) = px(1− p)x =

{
p for x = 1

1− p for x = 0

The CDF FX (x) is 0 for x < 0, 1− p for x ∈ [0, 1), and 1 for x ≥ 1.
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Continuous Distributions

The probability density function (PDF) fX (·) of a continuous random
variable X is the derivative of its cumulative distribution function (CDF):

fX (x) =
∂FX (x)

∂x
, where FX (x) = P(X ≤ x) =

∫ x

−∞
fX (u)du

By the Fundamental Theorem of Calculus, we write:

P(a ≤ X ≤ b) = P(X ≤ b)− P(X ≤ a) = FX (b)− FX (a) =

∫ b

a

fX (x)dx

Note: continuous distributions assign probability zero to any countable set.
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Uniform & Normal Distributions

The Uniform Distribution
The density and distribution functions of X ∼ Uniform[a, b] are:

fX (x) =

{
1

b−a if x ∈ [a, b]

0 if x /∈ [a, b]
and FX (x) =


0 if x < a
x−a
b−a if x ∈ [a, b]

1 if x > b

The Normal Distribution
A normal (or Gaussian) random variable X with mean µ and variance σ2,
denoted by X ∼ N(µ, σ2), has a density function given by:

fX (x) =
1

σ
√

2π
e−

1
2

(
x−µ
σ

)2
Note: any probability distribution is uniquely characterized by its CDF FX .
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Distributions of Random Vectors

The joint distribution function of random variables X and Y equals:

FX ,Y (x , y) = P(X ≤ x ,Y ≤ y), for all x , y ∈ R

Generally, a vector of random variables has the joint distribution function:

FX (x1, . . . , xn) = PX (X1 ≤ x1, . . . ,Xn ≤ xn), for all x1, . . . , xn ∈ R

Definition (Independence)

Any two random variables X and Y are independent, denoted by X ⊥ Y ,
if their joint distribution function equals the product of their marginal
distribution functions, i.e. if FX ,Y (x , y) = FX (x)FY (y), for all x , y ∈ R.
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Discrete Random Vectors

The joint probability mass function of discrete random variables (X ,Y ) is:

pX ,Y (x , y) = P(X = x ,Y = y), for all x , y ∈ R

Example
Suppose supp(X ) = {0, 1} and supp(Y ) = {20, 40}, with a joint PMF:

pX ,Y (x , y) X = 0 X = 1

Y = 20 0.3 0.2
Y = 40 0.25 0.25

This table tells us P(X = x ,Y = y) for all x , y .

We can also compute marginal probabilities P(X = x) and P(Y = y).
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Continuous Random Vectors

The joint probability density function of continuous random variables
(X ,Y ) is the cross-partial derivative of their distribution function:

fX ,Y (x , y) =
∂2

∂x∂y
FX ,Y (x , y), for all x , y ∈ R

The marginal probability density functions of X and Y are given by:

fX (x) =

∫ +∞

−∞
fX ,Y (x , y)dy , for x ∈ supp(X )

fY (y) =

∫ +∞

−∞
fX ,Y (x , y)dx , for y ∈ supp(Y )

The joint distribution function is: FX ,Y (x , y) =
∫ x
−∞

∫ y
−∞ fX ,Y (u, v)dudv .
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Defining Conditional Probabilities

Definition (Conditional Probability)

Let A and B be two events with P(B) 6= 0. The conditional probability of
event A given event B is defined to be P(A|B) = P(A ∩ B)/P(B).

Re-arranging terms, we find that: P(A ∩ B) = P(A|B)P(B).

Independence, i.e. A ⊥ B, implies that P(A) = P(A|B).

For pairwise disjoint events B1, . . . ,Bn satisfying
⋃n

i=1 Bi = Ω, write:

P(A) =
n∑

i=1

P(A ∩ Bi ) =
n∑

i=1

P(A|Bi )P(Bi )

This property is known as the law of total probability. It also implies what
is known as Bayes’ Rule: P(Bj |A) = P(A|Bj)P(Bj)/

∑n
i=1 P(A|Bi )P(Bi ).
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Conditional Mass/Density Functions

For discrete random variables X and Y , the conditional probability mass
function of Y given X equals pY |X (y |x) = P(Y = y |X = x), where:

P(Y = y |X = x) =
P(X = x ,Y = y)

P(X = x)

For continuous random variables X and Y , the conditional probability
density function of Y given X equals fY |X (y |x) = F ′Y |X (y |x), where:

fY |X (y |x) =
fX ,Y (x , y)

fX (x)
, for all x ∈ supp(X ), y ∈ supp(Y )
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Expected Value

The expectation (or the expected value) of a random variable X , denoted
by E (X ), is

∑
x xpX (x) for discrete X , or

∫
x xfX (x)dx for continuous X .

Note: for g : R→ R, the expectation E (g(X )) is defined similarly.

We say that E (X ) exists if E (|X |) <∞.

If X ≤ Y , then E (X ) ≤ E (Y ).

For any subset A ∈ supp(X ), we have E (I{X ∈ A}) = P(X ∈ A).

Theorem (Linearity of Expectation)

For random variables X and Y , and for constants a and b:

E (aX + bY ) = aE (X ) + bE (Y )
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Useful Inequalities

Theorem (Cauchy-Schwartz Inequality)

If E (X 2) <∞ and E (Y 2) <∞, then E (XY )2 ≤ E (X 2)E (Y 2), where
equality holds if and only if X = aY for some constant a.

Theorem (Jensen’s Inequality)

If E (X ) and E (g(X )) both exist, and g(·) is a convex function, then:

E (g(X )) ≥ g(E (X ))

Note: If g(·) is concave, then −g(·) is convex. So E (g(X )) ≤ g(E (X ))
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Conditional Expected Value

The conditional expectation of a random variable Y given X , E (Y |X ), is
equal to

∑
y YpY |X (y |x) for discrete Y , or

∫
y yfY (y)dy for continuous Y .

Definition (Mean Independence)

Y is mean independent of X if E (Y |X = x) = E (Y ) for x ∈ supp(X ).

In other words, mean independence guarantees that the conditional
expectation of Y given X does not depend on the value of X .

Note that Y ⊥ X implies mean independence, but not vice versa.
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Useful Properties

Theorem (Properties of Conditional Expectation)

The following must hold:

(i) Y = g(X )⇒ E (Y |X ) = g(X )

(ii) E (Y + Z |X ) = E (Y |X ) + E (Z |X )

(iii) E (g(X )Y |X ) = g(X )E (Y |X )

(iv) P(Y ≥ 0) = 1⇒ P(E [Y |X ] ≥ 0) = 1

(v) E (Y ) = E [E (Y |X )] (Law of Iterated Expectation)
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A Measure of Dispersion

If X k is integrable, then E (X k) is the kth moment of X . We can also
define E ((X − E (X ))k) as the kth central moment of X . Letting k = 2:

Var(X ) = E ((X − E (X ))2)

A useful way to re-write the variance is: Var(X ) = E (X 2)− E (X )2.

Var(X + c) = Var(X ) for any constant c .

Var(cX ) = c2Var(X ) for any constant c .

Theorem (Law of Total Variance)

For random variables X and Y , Var(Y ) = E (Var(Y |X )) + Var(E (Y |X )).
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A Measure of Joint Dispersion

The covariance between random variables X and Y is defined as:

Cov(X ,Y ) = E [(X − E (X ))(Y − E (Y ))]

A useful way to re-write it is: Cov(X ,Y ) = E (XY )− E (X )E (Y ).

For constants a, b, c , and d : Cov(aX + b, cY + d) = acCov(X ,Y ).

Mean independence, i.e. E (Y |X ) = E (Y ), implies Cov(X ,Y ) = 0.

Theorem (Variance of a Sum)

For any two random variables X and Y , we can write:

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )

Generally: Var(
∑n

i=1 Xi ) =
∑n

i=1 Var(Xi ) + 2
∑

1≤i≤j≤n Cov(Xi ,Xj).
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A Measure of Linear Dependence

The correlation between random variables X and Y equals:

ρ(X ,Y ) =
Cov(X ,Y )√

Var(X )Var(Y )

Often, ρ(X ,Y ) is used to measure the strength of a linear relationship.

The correlation ρ(X ,Y ) equals one if X is a linear function of Y .

By the Cauchy-Schwartz Inequality, Cov(X ,Y ) ∈ [−1, 1]. To see why:

|Cov(X ,Y )| ≤
√

Var(X )Var(Y ),

where equality holds iff X −E (X ) = a+ b(Y −E (Y )) for constants (a, b).
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