# Lecture 1 <br> Introduction to Probability Theory 

Oscar Volpe

9/27/2021
(1) Preliminaries

- Probability Measures
- Random Variables \& Vectors
(2) Distribution Functions
- Distributions of Single Variables
- Joint Distributions
- Conditional Distributions
(3) Moments of Random Variables
- Expectation
- Conditional Expectation
- Variances \& Covariances
(1) Preliminaries
- Probability Measures
- Random Variables \& Vectors
(2) Distribution Functions
- Distributions of Single Variables
- Joint Distributions
- Conditional Distributions
(3) Moments of Random Variables
- Expectation
- Conditional Expectation
- Variances \& Covariances


## Sample Spaces \& Events

The notion of randomness captures our uncertainty (or, rather, our ignorance) about a process. What is not seen as random is deterministic.

## Definition (Sample Space, Outcome, Event)

A sample space, denoted by $\Omega$, is a set of all possible outcomes. Each outcome is denoted by $\omega$. An event, denoted by $A$, is a subset of $\Omega$.

## Examples

- Coin Flips: $\Omega=\left\{\omega_{1}, \omega_{2}\right\}$, where $\omega_{1}=$ "Heads" and $\omega_{2}=$ "Tails".
- Test Scores: $\Omega=[0,100], \omega=85$ (outcome), $A=[85,90]$ (event).
- Fish in Lake Michigan: $\Omega=\mathbb{N}_{0}$ and $A=\{\omega \in \Omega: \omega>30$ million $\}$.


## Elementary Definitions

## Definition (Union, Intersection) <br> Let $A$ and $B$ be events in $\Omega$. The union $A \cup B$ is the event that $A$ and/or $B$ occurs. The intersection $A \cap B$ is the event that both $A$ and $B$ occur.

Note: unions/intersections are commutative, associative, and distributive.

## Definition (Complement)

The complement of $A$, denoted by $A^{c}$, is the event that $A$ does not occur.

## Definition (Empty Set, Disjoint)

The empty set, denoted by $\emptyset$, is the set containing no elements. Two sets $A$ and $B$ are disjoint if there are no outcomes in common, i.e. $A \cap B=\emptyset$.

## Probability Measures

We use probabilities to measure how likely events are to occur.

## Definition (Probability Measure)

A probability measure on $\Omega$ is a function $P: \Omega \rightarrow[0,1]$ satisfying:

- $P(\Omega)=1$
- $P(A) \geq 0$ for all $A \subseteq \Omega$.
- $P(A \cup B)=P(A)+P(B)$ for disjoint events $A$ and $B$.


## Some Properties

- $P\left(A^{c}\right)=1-P(A)$
- $P(\emptyset)=0$
- $A \subseteq B$ implies $P(A) \leq P(B)$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
(1) Preliminaries
- Probability Measures
- Random Variables \& Vectors
(2) Distribution Functions
- Distributions of Single Variables
- Joint Distributions
- Conditional Distributions
(3) Moments of Random Variables
- Expectation
- Conditional Expectation
- Variances \& Covariances


## Random Variables

## Definition (Random Variables)

A random variable is a function $X: \Omega \rightarrow \mathbb{R}$ mapping elements of a sample space to real numbers. Realizations of $X$ are denoted by lowercase letters.

## Example

You flip two coins. Let $X$ be the number of "Heads" that are observed:

- $\Omega=\{(H, H),(H, T),(T, H),(T, T)\}$
- $P(\omega)=0.25$ for all $\omega \in \Omega$
- $P(X=0)=0.25, P(X=1)=0.5$, and $P(X=2)=0.25$

A random vector is a function mapping elements of $\Omega$ onto $\mathbb{R}^{n}$.

- Example 1: $X=\left(X_{1}, X_{2}\right)$, where $X_{i}$ indicates if flip $i$ is "Heads".
- Example 2: $X=\left(X_{1}, \ldots, X_{n}\right)$ is a random sample, each observation $X_{i}$ counting the number of "Heads" from two consecutive coin flips.


## Discrete versus Continuous

The support of $X$, denoted as $\operatorname{supp}(X)$, is the set of values $X$ can take.

## Definition (Discrete Random Variable)

A random variable is discrete if its support has countably many elements.

## Example

$\overline{\text { A variable }}$ is Bernoulli (or binary) if has a support of $\{0,1\}$. If $X \sim \operatorname{Bernoulli}(p)$, then $X$ equals 1 with probability $p$, and $X$ equals 0 with probability $1-p$.

## Definition (Continuous Random Variable)

A random variable is continuous if its support has uncountably many elements.

## Example

A variable is uniformly distributed over an interval $[a, b]$ if its support is $[a, b]$ and if it takes any value in $[a, b]$ with equal probability. We write $X \sim$ Uniform $[a, b]$.
(1) Preliminaries

- Probability Measures
- Random Variables \& Vectors
(2) Distribution Functions
- Distributions of Single Variables
- Joint Distributions
- Conditional Distributions
(3) Moments of Random Variables
- Expectation
- Conditional Expectation
- Variances \& Covariances


## Discrete Distributions

The probability mass function (PMF) of a discrete random variable $X$ is given by $p_{X}: \mathbb{R} \rightarrow[0,1]$, where $p_{X}(x)=P(X=x)$. The cumulative distribution function (CDF) of $X$ is given by $F_{X}: \mathbb{R} \rightarrow[0,1]$, where:

$$
F_{X}(x)=P(X \leq x)=\sum_{j \leq x} P(X=j)=\sum_{j \leq x} p_{X}(j)
$$

## Example

The PMF of a Bernoulli $(p)$ random variable is:

$$
p_{X}(x)=p^{x}(1-p)^{x}= \begin{cases}p & \text { for } x=1 \\ 1-p & \text { for } x=0\end{cases}
$$

The CDF $F_{X}(x)$ is 0 for $x<0,1-p$ for $x \in[0,1)$, and 1 for $x \geq 1$.

## Continuous Distributions

The probability density function (PDF) $f_{X}(\cdot)$ of a continuous random variable $X$ is the derivative of its cumulative distribution function (CDF):

$$
f_{X}(x)=\frac{\partial F_{X}(x)}{\partial x}, \quad \text { where } F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} f_{X}(u) d u
$$

By the Fundamental Theorem of Calculus, we write:

$$
P(a \leq X \leq b)=P(X \leq b)-P(X \leq a)=F_{X}(b)-F_{X}(a)=\int_{a}^{b} f_{X}(x) d x
$$

Note: continuous distributions assign probability zero to any countable set.

## Uniform \& Normal Distributions

## The Uniform Distribution

The density and distribution functions of $X \sim$ Uniform $[a, b]$ are:

$$
f_{X}(x)=\left\{\begin{array}{ll}
\frac{1}{b-a} & \text { if } x \in[a, b] \\
0 & \text { if } x \notin[a, b]
\end{array} \quad \text { and } \quad F_{X}(x)= \begin{cases}0 & \text { if } x<a \\
\frac{x-a}{b-a} & \text { if } x \in[a, b] \\
1 & \text { if } x>b\end{cases}\right.
$$

## The Normal Distribution

A normal (or Gaussian) random variable $X$ with mean $\mu$ and variance $\sigma^{2}$, denoted by $X \sim N\left(\mu, \sigma^{2}\right)$, has a density function given by:

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

Note: any probability distribution is uniquely characterized by its CDF $F_{X}$.
(1) Preliminaries

- Probability Measures
- Random Variables \& Vectors
(2) Distribution Functions
- Distributions of Single Variables
- Joint Distributions
- Conditional Distributions
(3) Moments of Random Variables
- Expectation
- Conditional Expectation
- Variances \& Covariances


## Distributions of Random Vectors

The joint distribution function of random variables $X$ and $Y$ equals:

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y), \quad \text { for all } x, y \in \mathbb{R}
$$

Generally, a vector of random variables has the joint distribution function:

$$
F_{X}\left(x_{1}, \ldots, x_{n}\right)=P_{X}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right), \quad \text { for all } x_{1}, \ldots, x_{n} \in \mathbb{R}
$$

## Definition (Independence)

Any two random variables $X$ and $Y$ are independent, denoted by $X \perp Y$, if their joint distribution function equals the product of their marginal distribution functions, i.e. if $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$, for all $x, y \in \mathbb{R}$.

## Discrete Random Vectors

The joint probability mass function of discrete random variables $(X, Y)$ is:

$$
p_{X, Y}(x, y)=P(X=x, Y=y), \quad \text { for all } x, y \in \mathbb{R}
$$

## Example

Suppose $\operatorname{supp}(X)=\{0,1\}$ and $\operatorname{supp}(Y)=\{20,40\}$, with a joint PMF:

| $p_{X, Y}(x, y)$ | $X=0$ | $X=1$ |
| :---: | :---: | :---: |
| $Y=20$ | 0.3 | 0.2 |
| $Y=40$ | 0.25 | 0.25 |

- This table tells us $P(X=x, Y=y)$ for all $x, y$.
- We can also compute marginal probabilities $P(X=x)$ and $P(Y=y)$.


## Continuous Random Vectors

The joint probability density function of continuous random variables $(X, Y)$ is the cross-partial derivative of their distribution function:

$$
f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y), \quad \text { for all } x, y \in \mathbb{R}
$$

The marginal probability density functions of $X$ and $Y$ are given by:

$$
\begin{array}{ll}
f_{X}(x)=\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d y, & \text { for } x \in \operatorname{supp}(X) \\
f_{Y}(y)=\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d x, & \text { for } y \in \operatorname{supp}(Y)
\end{array}
$$

The joint distribution function is: $F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(u, v) d u d v$.
(1) Preliminaries

- Probability Measures
- Random Variables \& Vectors
(2) Distribution Functions
- Distributions of Single Variables
- Joint Distributions
- Conditional Distributions
(3) Moments of Random Variables
- Expectation
- Conditional Expectation
- Variances \& Covariances


## Defining Conditional Probabilities

## Definition (Conditional Probability)

Let $A$ and $B$ be two events with $P(B) \neq 0$. The conditional probability of event $A$ given event $B$ is defined to be $P(A \mid B)=P(A \cap B) / P(B)$.

- Re-arranging terms, we find that: $P(A \cap B)=P(A \mid B) P(B)$.
- Independence, i.e. $A \perp B$, implies that $P(A)=P(A \mid B)$.

For pairwise disjoint events $B_{1}, \ldots, B_{n}$ satisfying $\bigcup_{i=1}^{n} B_{i}=\Omega$, write:

$$
P(A)=\sum_{i=1}^{n} P\left(A \cap B_{i}\right)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

This property is known as the law of total probability. It also implies what is known as Bayes' Rule: $P\left(B_{j} \mid A\right)=P\left(A \mid B_{j}\right) P\left(B_{j}\right) / \sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)$.

## Conditional Mass/Density Functions

For discrete random variables $X$ and $Y$, the conditional probability mass function of $Y$ given $X$ equals $p_{Y \mid X}(y \mid x)=P(Y=y \mid X=x)$, where:

$$
P(Y=y \mid X=x)=\frac{P(X=x, Y=y)}{P(X=x)}
$$

For continuous random variables $X$ and $Y$, the conditional probability density function of $Y$ given $X$ equals $f_{Y \mid X}(y \mid x)=F_{Y \mid X}^{\prime}(y \mid x)$, where:

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}, \quad \text { for all } x \in \operatorname{supp}(X), y \in \operatorname{supp}(Y)
$$

(1) Preliminaries

- Probability Measures
- Random Variables \& Vectors
(2) Distribution Functions
- Distributions of Single Variables
- Joint Distributions
- Conditional Distributions
(3) Moments of Random Variables
- Expectation
- Conditional Expectation
- Variances \& Covariances


## Expected Value

The expectation (or the expected value) of a random variable $X$, denoted by $E(X)$, is $\sum_{x} x p_{X}(x)$ for discrete $X$, or $\int_{x} x f_{X}(x) d x$ for continuous $X$.

- Note: for $g: \mathbb{R} \rightarrow \mathbb{R}$, the expectation $E(g(X))$ is defined similarly.
- We say that $E(X)$ exists if $E(|X|)<\infty$.
- If $X \leq Y$, then $E(X) \leq E(Y)$.
- For any subset $A \in \operatorname{supp}(X)$, we have $E(\mathbb{I}\{X \in A\})=P(X \in A)$.


## Theorem (Linearity of Expectation)

For random variables $X$ and $Y$, and for constants $a$ and $b$ :

$$
E(a X+b Y)=a E(X)+b E(Y)
$$

## Useful Inequalities

Theorem (Cauchy-Schwartz Inequality)
If $E\left(X^{2}\right)<\infty$ and $E\left(Y^{2}\right)<\infty$, then $E(X Y)^{2} \leq E\left(X^{2}\right) E\left(Y^{2}\right)$, where equality holds if and only if $X=a Y$ for some constant $a$.

Theorem (Jensen's Inequality)
If $E(X)$ and $E(g(X))$ both exist, and $g(\cdot)$ is a convex function, then:

$$
E(g(X)) \geq g(E(X))
$$

Note: If $g(\cdot)$ is concave, then $-g(\cdot)$ is convex. So $E(g(X)) \leq g(E(X))$
(1) Preliminaries

- Probability Measures
- Random Variables \& Vectors
(2) Distribution Functions
- Distributions of Single Variables
- Joint Distributions
- Conditional Distributions
(3) Moments of Random Variables
- Expectation
- Conditional Expectation
- Variances \& Covariances


## Conditional Expected Value

The conditional expectation of a random variable $Y$ given $X, E(Y \mid X)$, is equal to $\sum_{y} Y p_{Y \mid X}(y \mid x)$ for discrete $Y$, or $\int_{y} y f_{Y}(y) d y$ for continuous $Y$.

## Definition (Mean Independence)

$Y$ is mean independent of $X$ if $E(Y \mid X=x)=E(Y)$ for $x \in \operatorname{supp}(X)$.

- In other words, mean independence guarantees that the conditional expectation of $Y$ given $X$ does not depend on the value of $X$.
- Note that $Y \perp X$ implies mean independence, but not vice versa.


## Useful Properties

## Theorem (Properties of Conditional Expectation)

The following must hold:
(i) $Y=g(X) \Rightarrow E(Y \mid X)=g(X)$
(ii) $E(Y+Z \mid X)=E(Y \mid X)+E(Z \mid X)$
(iii) $E(g(X) Y \mid X)=g(X) E(Y \mid X)$
(iv) $P(Y \geq 0)=1 \Rightarrow P(E[Y \mid X] \geq 0)=1$
(v) $E(Y)=E[E(Y \mid X)]$ (Law of Iterated Expectation)
(1) Preliminaries

- Probability Measures
- Random Variables \& Vectors
(2) Distribution Functions
- Distributions of Single Variables
- Joint Distributions
- Conditional Distributions
(3) Moments of Random Variables
- Expectation
- Conditional Expectation
- Variances \& Covariances


## A Measure of Dispersion

If $X^{k}$ is integrable, then $E\left(X^{k}\right)$ is the $k$ th moment of $X$. We can also define $E\left((X-E(X))^{k}\right)$ as the $k$ th central moment of $X$. Letting $k=2$ :

$$
\operatorname{Var}(X)=E\left((X-E(X))^{2}\right)
$$

A useful way to re-write the variance is: $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}$.

- $\operatorname{Var}(X+c)=\operatorname{Var}(X)$ for any constant $c$.
- $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$ for any constant $c$.


## Theorem (Law of Total Variance)

For random variables $X$ and $Y, \operatorname{Var}(Y)=E(\operatorname{Var}(Y \mid X))+\operatorname{Var}(E(Y \mid X))$.

## A Measure of Joint Dispersion

The covariance between random variables $X$ and $Y$ is defined as:

$$
\operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))]
$$

A useful way to re-write it is: $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$.

- For constants $a, b, c$, and $d: \operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y)$.
- Mean independence, i.e. $E(Y \mid X)=E(Y)$, implies $\operatorname{Cov}(X, Y)=0$.


## Theorem (Variance of a Sum)

For any two random variables $X$ and $Y$, we can write:

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

- Generally: $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{1 \leq i \leq j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$.


## A Measure of Linear Dependence

The correlation between random variables $X$ and $Y$ equals:

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Often, $\rho(X, Y)$ is used to measure the strength of a linear relationship.

- The correlation $\rho(X, Y)$ equals one if $X$ is a linear function of $Y$.

By the Cauchy-Schwartz Inequality, $\operatorname{Cov}(X, Y) \in[-1,1]$. To see why:

$$
|\operatorname{Cov}(X, Y)| \leq \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}
$$

where equality holds iff $X-E(X)=a+b(Y-E(Y))$ for constants $(a, b)$.

