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Three Steps of Causal Inference

Step 1: Write Down a Model

Define the causal relationship of interest. This requires you, the researcher,
to specify a counterfactual question (“What if. . . ?”). No data needed here.

Under your model, causal effects become target parameters.

Step 2: Identification

Given your model, what can you learn about the target parameters using
observed data? Identification maps the model and data to information
about target parameters. Essentially, what can you recover from data?

We say that a parameter is identified if, under the model assumptions,
alternative values of the parameter imply different distributions of the data.

Step 3: Estimation

In practice, we see finite samples drawn from the population distribution.

How can we use these samples to estimate the target parameters?
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Setup

Let Y ,U ∈ R and X ∈ Rk+1 with X0 = 1. Consider the linear model:

Y = X ′β + U

Suppose that the parameters β are given a causal interpretation.

Generally, we can always normalize β0 so that E (U) = 0.

However, we cannot always assume that E (XU) = 0.

Definition (Exogenous, Endogenous)

Consider the linear model Y = β0 + β1X1 + · · ·+ βkXk + U. Then:

Xj is exogenous if E (XjU) = 0.

Xj is endogenous if E (XjU) ̸= 0.

When Xj is endogenous, running OLS will not give us an estimate β̂j that
is consistent, unbiased, or efficient for βj . Our BLP assumptions will fail!
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Example 1: Omitted Variable Bias

Suppose that an organization implements a high-quality preschool program
for children in under-resourced households. Define the variables:

X1: a dummy variable for participation in the program

X2: the child’s socio-economic status

Y : earnings in adulthood

Assume eligibility for the program is negatively correlated with X2, but you
do not observe X2. Therefore, you can only estimate (2) among:

(1) Y = β0 + β1X1 + β2X2 + U

(2) Y = β̃0 + β1X1 + Ũ

Assume X1 is exogenous in (1), i.e. E (X1U) = 0. We cannot estimate β1
by running OLS on (2). Why? X1 is endogenous in (2), i.e. E (X1Ũ) ̸= 0!

As long as Cov(X1,X2) ̸= 0 and β2 ̸= 0, we have endogeneity bias.
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Example 2: Measurement Error

Suppose Y is earnings, X is ability, and X̃ is some “proxy” used to
measure ability, e.g. a test score. Suppose that the true model is:

Y = β0 + β1X + U,

and here X is exogenous, i.e. E (XU) = 0. You only observe X̃ , where:

X̃ = X + V , where: E (V ) = E (VU) = E (XV ) = 0

If we wanted to estimate β1 from Y = β0 + β1X̃ + Ũ, then we cannot use
ordinary least squares. Why? Because X̃ is going to be endogenous:

E (X̃ Ũ) = E ([X + V ][U − β1V ]) = Var(V )β1

As the variance of V rises, the degree of endogeneity bias increases.
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Example 3: Simultaneity

Consider a classic linear model of supply and demand:

Qd = βd
0 + βd

1P + Ud (Demand)

Qs = βs
0 + βs

1P + Us (Supply)

In equilibrium, Qd = Qs , which means that the equilibrium price P∗ equals:

P∗ =
(βs

0 − βd
0 ) + (Us − Ud)

βd
1 − βs

1

Clearly, price is endogenous in both models of demand and supply.

If we ran OLS, we could not estimate the elasticity of supply (βs
1) or

the elasticity of demand (−βd
1 ). Our BLP assumptions don’t apply!

These common issues lead us to use instrumental variables.
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Introduction to IV

Consider a simple linear regression model Y = β0 + β1X + U.

We wish to interpret β1 as the causal effect of X on Y .

Problem: X is endogenous, i.e. E (XU) ̸= 0. Cannot run OLS!

Suppose there exists an instrument Z ∈ R that satisfies:

(1) Relevance: Cov(Z ,X ) ̸= 0

(2) Validity: Cov(Z ,U) = 0

(3) Exclusion: Z only affects Y through X .

If we can find an instrument Z for X , then we can use it to solve for β1.

Cov(Z ,Y ) = β1Cov(Z ,X ) =⇒ β1 =
Cov(Z ,Y )

Cov(Z ,X )
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The IV Estimator

Given an i.i.d. sample {Yi ,Xi ,Zi}ni=1, we construct the IV estimator for β1.

β̂IV
1 =

1
n

∑n
i=1(Zi − Z̄n)(Yi − Ȳn)

1
n

∑n
i=1(Zi − Z̄n)(Xi − X̄n)

=

∑n
i=1(Zi − Z̄n)Yi∑n
i=1(Zi − Z̄n)Xi

Importantly, the instrumental variables estimator is consistent: β̂IV
1

p→ β1.

(i) Use the WLLN and CMT to show ̂Cov(Zi ,Yi )
p→ Cov(Zi ,Yi ).

(ii) Use the WLLN and CMT to show ̂Cov(Zi ,Xi )
p→ Cov(Zi ,Xi ).

(iii) Since f (a, b) = a/b is continuous for all b ̸= 0, the CMT implies:

β̂IV
1 =

̂Cov(Zi ,Yi )

̂Cov(Zi ,Xi )

p→ Cov(Zi ,Yi )

Cov(Zi ,Xi )
= β1

Note: we require that ̂Cov(Zi ,Xi ) is nonzero, i.e. relevance in the sample.
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Testing the IV Assumptions

Question. Can we test for instrument validity and exclusion?

In general, these conditions are not testable. You must argue why Z is
uncorrelated with the error term and why Z is not an omitted variable.

Thought Experiment: Is Z plausibly exogenous in the model? Is there
any realistic way Z can affect Y other than through its effect on X?

Question. Can we test for instrument relevance?

Yes. Run an OLS regression of X on Z , i.e. X = γ0 + γ1Z + ε. Then,
test whether the coefficient γ1 is significantly different from zero.

▶ Compute γ̂1 =
̂Cov(Zi ,Xi )

V̂ar(Zi )
and se(γ̂1).

▶ Test H0 : γ1 = 0 against H1 : γ1 ̸= 0, e.g. using a t-test.
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Strong vs. Weak Instruments

Suppose that Cov(Z ,X ) is small, i.e. there is low instrument relevance. In
this case, IV can perform poorly even for large samples. To see why, write:

β̂IV
1 =

̂Cov(Z ,Y )

̂Cov(Z ,X )
= β1 +

1
n

∑n
i=1(Zi − Z̄n)Ui

̂Cov(Z ,X )

By instrument exogeneity, 1
n

∑n
i=1(Zi − Z̄n)Ui

p→ 0. However, if Cov(Z ,X )
is close to zero, then there can be a great deal of bias even for large n.

This dilemma is known as the weak instruments problem.

If Z is not too relevant, then the IV can be worse than running OLS.

One solution to this problem might be to run an Anderson-Rubin Test.
Note that this test statistic does not suffer from weak instrument issues.
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Setup: Multiple Linear Regression

Suppose you have data about Y and explanatory variables X1, . . . ,Xk .
You decide to write down the following causal model relating Y to X .

Y = β0 + β1X1 + · · ·+ βkXk + U

= X ′β + U,

You suspect that some of your Xj ’s are endogenous in this model. Hence,

if you were to run OLS, your estimator β̂OLS
n would be inconsistent:

β̂OLS
n

p→ E (XX ′)E (XY ) = β + E (XX ′)−1E (XU) ̸= β
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IV Assumptions

Suppose that there exists a random vector Z ∈ Rℓ+1 satisfying:

(1) Validity: E (ZU) = 0

(2) Relevance/Rank: E (ZX ′) ∈ R(ℓ+1)×(k+1) has rank k + 1.

(3) E (ZZ ′) and E (ZX ′) exist

(4) No perfect collinearity in Z (i.e. E (ZZ ′) is invertible)

The components of Z are called instrumental variables. Note that any
exogenous component of X (including X0 = 1) should be included in Z .

Interpreting the Relevance/Rank Condition

The rank of a matrix is the number of linearly independent columns.

If E (ZX ′) has rank k + 1, then there must be at least as many valid,
relevant instruments as there are endogenous regressors.

A necessary condition for (2) is therefore that ℓ ≥ k (order condition).
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Exactly Identified vs. Over-Identified

We say that β is exactly identified whenever ℓ = k .

In this context, # instruments equals # variables in the model

Here, E (ZX ′) is a square, full-rank matrix (i.e. invertible).

When β is exactly identified, we can use the IV estimator!

We say that β is over-identified whenever ℓ > k .

In this context, # instruments exceeds # variables in the model

Here, E (ZX ′) is not a square matrix (so: not invertible).

When β is over-identified, we can use the TSLS estimator!
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Deriving the IV Estimator

Let Y = X ′β + U, where X ∈ Rk+1. Assume Z ∈ Rℓ+1 satisfies (1)-(4).

E (ZY ) = E (ZX ′)β + E (ZU) = E (ZX ′)β

If ℓ = k , then E (ZX ′) is invertible. Solving for β, we obtain:

β = E (ZX ′)−1E (ZY )

The IV estimator β̂IV
n can be solved for via the sample analogue principle.

1

n

n∑
i=1

Zi (Yi − X ′
i β̂

IV
n ) = 0 =⇒ β̂IV

n =
(1
n

n∑
i=1

ZiX
′
i

)−1(1
n

n∑
i=1

ZiYi

)
Note: we can use the WLLN and the CMT to prove that β̂IV

n
p→ β.

In general, the IV estimator is always going to be biased.
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Limiting Distribution of β̂IV
n

Assume that Var(ZU) exists. Then we can prove that:

√
n(β̂IV

n − β)
d→ N(0,Ω), where Ω = E (ZX ′)−1Var(ZU)E (ZX ′)−1

Also, we can consistently estimate Ω with Ω̂n = ÂnB̂nÂn, where:

Ân =
(
1
n

∑n
i=1 ZiX

′
i

)−1
, which

p→ E (ZX ′)−1

B̂n =
(
1
n

∑n
i=1 ZiZ

′
i (Ûi )

2
)−1

, which
p→ Var(ZU)

Use this approximation Ω̂n to compute test statistics and confidence
intervals, e.g. test whether effects are significant using the IV estimator.
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Motivating Two-Stage Least Squares

What do we do when ℓ > k? With more instruments than we need, the
matrix E (ZX ′) is not square. So, we can no longer invert it to solve for β.

Goal: use Z in some “optimal” way to extract as much information
about the endogenous X as possible (minimize Var(β̂IV

n |{Zi ,Xi}ni=1).

Strategy: run a least squares regression in two separate stages.
▶ First Stage: predict Xj (endogenous variable) from Z (instruments)
▶ Second Stage: regress Y on X using the predicted Xj ’s instead

Intuition: you are “extracting” the exogenous components of Xj that come
from Z , while retaining as much information about Xj as possible. Then,
regress Y on the fitted values of Xj , i.e. Xj predicted from (exogenous) Z .
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How TSLS Works

Suppose Y = X ′β + U, where Xj is endogenous in the model. You collect
data about Z , which is a valid instrument. For TSLS, do the following:

First Stage

Regress endogenous Xj on Z .

Collect fitted values {X̂ji}ni=1 from this regression

Second Stage

Regress Y on X , replacing Xj with X̂j .

The coefficient estimates are the TSLS estimators

Important: your exogenous components of X must be included in Z . So
you should put your controls in the first stage, as well as the second stage.

Oscar Volpe Lectures 11-13
11/1/2021, 11/3/2021, & 11/10/2021

25 / 28



Deriving the TSLS Estimand

Define Π so that BLP(X |Z ) = Π′Z . Thus, Π = E (ZZ ′)−1E (ZX ′). Write:

E (ZY ) = E (ZX ′)β =⇒ Π′E (ZY ) = Π′E (ZX ′)β

Note: Π′E (ZX ′) ∈ R(k+1)×(k+1) is a square matrix with rank k + 1.

Hence, under our IV assumptions, Π′E (ZX ′) will always be invertible.

When running TSLS, we are estimating the β, which equals:

β = [Π′E (ZX ′)]−1Π′E (ZY )

= [Π′E (ZZ ′)Π]−1Π′E (ZY )

Notice that these two expressions for β are equivalent.
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Deriving the TSLS Estimator

Our TSLS estimator has two equivalent representations. We write:

β̂TSLS
n =

(
1

n

n∑
i=1

Π̂′
nZiX

′
i

)−1(
1

n

n∑
i=1

Π̂′
nZiYi

)

=

(
1

n

n∑
i=1

Π̂′
nZiZ

′
i Π̂n

)−1(
1

n

n∑
i=1

Π̂′
nZiYi

)
,

where the estimator Π̂n is equal to
(
1
n

∑n
i=1 ZiZ

′
i

)−1(
1
n

∑n
i=1 ZiX

′
i

)
.

Interpretation: regress Xi on Zi to obtain Π̂′
nZi , then regress Yi on Π̂′

nZi .

Whenever ℓ = k, the IV and TSLS estimators are the same.
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Properties of β̂TSLS

n

Consistency

Just as before, the WLLN and CMT can be used to show β̂TSLS
n

p→ β.

In general, the TSLS estimator is not unbiased.

Limiting Distribution
Assume Var(ZU) exists. In this case, we can use the CLT to prove:

√
n(β̂IV

n − β)
d→ N(0,Ω),

where the variance is Ω = [Π′E (ZZ ′)Π]−1Π′Var(ZU)Π[Π′E (ZZ ′)Π]−1.

A natural estimator for Ω is Ω̂n = ÂnB̂nÂ
′
n, where:

▶ Ân =
(

1
n

∑n
i=1 Π̂

′
nZiZ

′
i Π̂n

)−1

Π̂′
n, which

p→ [Π′E(ZZ ′)Π]−1Π′

▶ B̂n =
(

1
n

∑n
i=1 ZiZ

′
i (Ûi )

2
)−1

, which
p→ Var(ZU)

We use Ω̂n when computing test statistics and confidence intervals.
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