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Notation

Suppose you want to understand the impact of a policy intervention D on
some outcome of interest Y . For simplicity, assume D is either 0 and 1.

D is our treatment (D = 1 if treated, D = 0 if untreated).

Y is our outcome, which is assumed to depend somehow on D.

We refer to Yd as the potential outcome in the event that D = d . Write:

Y =

{
Y0 if D = 0

Y1 if D = 1

For any individual, only one potential outcome is observed. For example,
we cannot see Y0 for someone who was treated, i.e. for whom D = 1.

We seek to draw inference about the counterfactuals (Yd for d ̸= D).

To understand the causal effect of treatment, we need to ask about
what might have happened in the scenarios that did not occur.
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Example: Free Preschool

Suppose the treatment D is a free, high-quality preschool education. Let
the outcome Y be earnings in adulthood. You collect data {Di ,Yi}ni=1.

Note: we observe Yi = YDi ,i , but we do not observe Yd ,i for d ̸= Di .

We generally assume that people will self-select into treatment.

Inutitively, families decide whether to enroll their children in preschool for
specific reasons. In this case, the treatment D is not chosen randomly.

Selection Bias: treatment D could depend on Yd .
▶ Maybe children from under-resourced families, i.e. for whom Yd is

already lower, are more likely to be enrolled in the preschool program.

Selection on the Gains: treatment D could depend on Y1 − Y0.
▶ Maybe children with better outside options, i.e. for whom Y1 − Y0 is

lower, would be less likely to be enrolled in the preschool program.

Oscar Volpe Lectures 14 & 15 11/15/2021 & 11/17/2021 5 / 30



1 Introduction to Treatment Effects
Potential Outcomes
Average Treatment Effects
Linear Causal Models

2 Random Assignment
The Selection Problem
Experiments

3 Selection on Observables

4 Instrumental Variables
IV Assumptions
Local Average Treatment Effect

Oscar Volpe Lectures 14 & 15 11/15/2021 & 11/17/2021 6 / 30



ATE, ATT, and ATU

For individual i , the treatment effect is Y1,i − Y0,i . We never observe this.
The average treatment effect (ATE) is the expectation of Y1,i − Y0,i .

ATE = E (Y1 − Y0)

Intuitively, ATE is the average causal effect of the intervention D on
everyone in the population. This differs from conditional treatment effects.

Avg. Treatment Effect on the Treated : ATT = E (Y1 − Y0|D = 1).

Avg. Treatment Effect on the Untreated : ATU = E (Y1 − Y0|D = 0).

Which of these effects is of greatest interest to the researcher?

Policy relevance depends on the context we are considering.

Perhaps we care most about how a program affects certain subgroups.
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Homogenous Treatment Effects

By the Law of Iterated Expectations, we know that:

ATE = P(D = 1)× ATT + P(D = 0)× ATU,

where P(D = 1) + P(D = 0) = 1. That is, the ATE is a weighted average
of the ATT and the ATU. If Y1 − Y0 equals some constant c , then:

ATE = E (Y1 − Y0) = c

ATT = E (Y1 − Y0|D = 1) = c

ATU = E (Y1 − Y0|D = 0) = c

So, if everybody has the same treatment effect, then ATE = ATT = ATU.

In this lecture, we assume heterogeneous treatment effects, i.e.
different individuals are affected differently by an intervention.

Hence, Y1,i − Y0,i need not equal Y1,j − Y0,j for two people i and j .
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Modeling Causal Effects

Let Y be an outcome, let D be some treatment, and let U represent all
unobserved determinants of Y . A causal model for the outcome is:

Y = g(D,U)

Under this model, the treatment effect equals g(1,U)− g(0,U).

Suppose that the causal model g is linear in D and U, i.e. that:

Y = α+ βD + U

As Y = Y0 + (Y1 − Y0)D, we can re-arrange this model so that:

Y = E (Y0)︸ ︷︷ ︸
α

+(Y1 − Y0)︸ ︷︷ ︸
β

D + Y0 − E (Y0)︸ ︷︷ ︸
U

Defining terms this way, we ensure that U has mean zero, i.e. E (U) = 0.
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Random Coefficient Model

Under heterogeneous treatment effects, Y1,i − Y0,i varies across i .

Y0,i = α+ Ui

Y0,i = α+ βi + Ui
=⇒ βi = Y1,i − Y0,i

So, βi is the treatment effect for individual i . We assume βi is random.

Yi = E (Y0)︸ ︷︷ ︸
α

+(Y1,i − Y0,i )︸ ︷︷ ︸
βi

Di + Y0,i − E (Y0)︸ ︷︷ ︸
Ui

This model is often referred to as the random coefficient model.

ATE = E (Y1,i − Y0,i ) = E (βi )

ATT = E (Y1,i − Y0,i |Di = 1) = E (βi |Di = 1)

ATU = E (Y1,i − Y0,i |Di = 0) = E (βi |Di = 0)
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Selection Bias

Try comparing the average outcomes between treated/untreated groups:

E(Yi |Di = 1)− E(Yi |Di = 0) = E(Y1,i − Y0,i |Di = 1)︸ ︷︷ ︸
ATT

+E(Y0,i |Di = 1)− E(Y0,i |Di = 0)︸ ︷︷ ︸
Selection Bias

= E(Y1,i − Y0,i |Di = 0)︸ ︷︷ ︸
ATU

+E(Y1,i |Di = 1)− E(Y1,i |Di = 0)︸ ︷︷ ︸
Selection Bias

This difference does not equal the ATT or ATU when Yd depends on D.

If Y0 ⊥ D, we get the ATT by comparing treated/untreated groups

If Y1 ⊥ D, we get the ATU by comparing treated/untreated groups

When Y0,Y1 ⊥ D, this difference gives us ATE = ATT = ATU. Otherwise,
if individuals “select into treatment” based on Yd , there is selection bias.

Note: selection bias means that D is endogenous in Y = α+βD +U.

An OLS regression of Y on D will not estimate the treatment effect.
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Example: Homogeneous Treatment Effects

Suppose treatment D is free preschool, and let Y denote future earnings.

All children receive the same benefits from preschool: Y1,i − Y0,i = c .

There is selection bias, whereby under-resourced children are more
likely to enroll in the program: E (Yi ,0|Di = 1) < E (Yi ,0|Di = 0).

Even with constant treatment effects, we cannot recover the value of c.

E (Yi,1|Di = 1)− E (Yi,0|Di = 0) < E (Yi,1 − Yi,0)

Comparing outcomes between treated/untreated groups underestimates c .
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An Experimental Setting

Under random assignment, D is independent of all potential outcomes.

Definition (Random Assignment)

Let Y be an outcome, and let D be some treatment. Let Yd denote the
potential outcome associated with the state D = d . The treatment is
randomly assigned if and only if Yd ⊥ D, for every d in the support of D.

If D is randomly administered at random, then selection bias disappears.

E(Yi |Di = 1)− E(Yi |Di = 0) = E(Y1,i |Di = 1)− E(Y0,i |Di = 0)

= E(Y1,i )− E(Y0,i )︸ ︷︷ ︸
ATE

, since Y0,i ,Y1,i ⊥ Di

random assign. =⇒ ATE = E (Y1,i −Y0,i ) = E (Y1,i −Y0,i |Di = 1) = ATT .

random assign. =⇒ ATE = E (Y1,i −Y0,i ) = E (Y1,i −Y0,i |Di = 0) = ATU.
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OLS Estimation with Random Assignment

Consider a simple linear regression model Yi = β0 + β1Di + Ui . Under a
best linear predictor (BLP) interpretation, we derive β1 to be:

β1 =
Cov(Yi ,Di )

Var(Di )
= E (Yi1|Di = 1)− E (Yi0|Di = 0)

Since Di is binary, we know that E (Yi |Di ) = BLP(Yi |Di ) = β0 + β1Di .

If Y0,i ,Y1,i ⊥ Di , then β1 equals ATE = ATT = ATU.

Given an i.i.d. sample {Yi ,Di}ni=1, write down the OLS estimator for β1.

β̂1 =
1
n

∑n
i=1(Di − D̄n)(Yi − Ȳn)
1
n

∑n
i=1(Di − D̄n)2

If random assignment holds, then β̂1 is both a consistent and unbiased
estimator for the ATE , which is also equal to the ATT and the ATU.
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Confounding Variables

Recovering average treatment effects in an experiment is straightforward.

In practice, it is often too costly/infeasible to run an experiment.

Agents sort into/out of treatment based on observed and unobserved
determinants of Y . We refer to these factors confounding variables.

Definition (Confounding Variable)

Let Y be an outcome, and let D be some treatment. We say X is a
confounding variable for the causal effect of D on Y if X ̸⊥ Y , X ̸⊥ D.

When there are confounding variables, treatment is not randomly assigned.

Suppose we observe all confounding variables and control for them.

In this case, we can still estimate the average treatment effects.
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Selection on Observable Features

Definition (Selection on Observables)

Let Y be an outcome, and let D be some treatment. Let X be a random
vector of observable features, and let Yd denote the potential outcome
associated with state D = d . Selection on observables is the assumption
that Yd ⊥ D|X = x for all x in the support of X , d in the support of D.

Intuitively, conditional on X , treatment D is as-good-as randomly assigned.

E(Yi |Di = 1,Xi = x)− E(Yi |Di = 0,Xi = x) = E(Y1,i |Xi = x)− E(Y0,i |Xi = x)︸ ︷︷ ︸
ATE(x)

ATE (x) = E (Y1,i − Y0,i |Xi = x) = E (Y1,i − Y0,i |Di = 1,Xi = x) = ATT (x)

ATE (x) = E (Y1,i − Y0,i |Xi = x) = E (Y1,i − Y0,i |Di = 0,Xi = x) = ATU(x)

Conditioning on Xi = x , we can recover the ATE , ATT , and ATU.

Oscar Volpe Lectures 14 & 15 11/15/2021 & 11/17/2021 20 / 30



OLS Estimation with Controls

Consider a linear regression model Yi = β0 + β1Di + X ′
i γ + Ui . Under a

best linear predictor (BLP) interpretation, we know that β1 satisfies:

β1 ≈ E (Yi |Di = 1,Xi = x)− E (Yi |Di = 0,Xi = x)

If Yi ,0,Yi ,1 ⊥ Di |Xi , then β1 will approximate the conditional average
treatment effect, i.e. ATE (x). We can estimate it with the OLS estimator.

Run an OLS regression of Yi on Di and Xi . Then β̂1 estimates ATE as a
weighted average of the ATE (x) = E (Y1,i − Y0,i |Xi = x) across values of x .

Another common approach is to “match” on different values of X .

Intuition: we have an experiment for a given value of X = x .

(1) Fix some X = x .
(2) Estimate ATE (x) = E (Yi |Di = 1,Xi = x)− E (Yi |Di = 0,Xi = x).
(3) Take ATE as the weighted average of ATE (x) across values of X = x .

This approach can suffer from the “curse of dimensionality”.
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Example: A Matching Estimator for the ATE

Suppose treatment D is free preschool and Y represents future earnings.
Let X indicate whether family income is below the federal poverty line.

Assume low-income children are more likely to enroll in the program,
but that selection bias depends only on X , so that Y0,Y1 ⊥ D|X .

Hence, we are assuming there is selection on observables.

To estimate the ATE from a sample {Yi ,Di ,Xi}ni=1, compute:

ÂTE =
(
Ȳ (Di=1,Xi=1)

n − Ȳ (Di=0,Xi=1)
n

)
X̄n +

(
Ȳ (Di=1,Xi=0)

n − Ȳ (Di=0,Xi=0)
n

)(
1− X̄n

)
To show ÂTE is a consistent estimator for ATE , note that:

ÂTE
p→

∑
x∈{0,1}

[
E(Yi |Di = 1,Xi = x)− E(Yi |Di = 0,Xi = x)

]
× P(Xi = x)

=
∑

x∈{0,1}

ATE(x)× P(Xi = x) = ATE
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Notation

Given outcome Yi and treatment Di , the random coefficients model is:

Yi = E (Y0)︸ ︷︷ ︸
α

+(Y1,i − Y0,i )︸ ︷︷ ︸
βi

Di + Y0,i − E (Y0)︸ ︷︷ ︸
Ui

Suppose that Di is not randomly assigned, so that Di is endogenous.

How do our IV assumptions transfer to the random coefficients model?

What does linear IV identify when treatment effects are heterogeneous?

Suppose Zi is an instrument for Di . For simplicity, assume Zi is binary.

Let Dz,i be the treatment status at instrument value Zi = z .

Let Yd ,z,i be the outcome at Di = d and Zi = z .
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IV Assumptions

For a binary treatment D and instrument Z , our IV assumptions are:

(1) Random Assignment: Yd ,z ,Dz ⊥ Z for all values of d and z
▶ In particular, the instrument Z must be assigned at random.

(2) Exclusion: Yd ,1 = Yd ,0

▶ The instrument Z only affects the outcome Y via the treatment D.
▶ Thus, Z is not an omitted variable in Y = α+ βD + U.

(3) Relevance/First Stage: E (D1 − D0) ̸= 0
▶ Z should have some effect on the average probability of treatment.

(4) Monotonicity: D1 ≥ D0 for all individuals i (or vice versa)
▶ Everyone affected by the instrument Z is affected in the same direction.
▶ Put simply, the impact of Z on D is uniform across all participants i .
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Deriving the IV Estimator

Consider a simple linear regression model Yi = β0 + β1Di + Ui , where Di

is endogenous. Given an i.i.d. sample {Yi ,Di ,Zi}ni=1, the IV estimator is:

β̂IV
1 =

1
n

∑n
i=1(Zi − Z̄n)(Yi − Ȳn)

1
n

∑n
i=1(Zi − Z̄n)(Di − D̄n)

If the IV assumptions hold, then β̂IV
1

p→ βIV
1 , where βIV

1 equals:

βIV
1 =

Cov(Yi ,Zi )

Cov(Di ,Zi )
= E (Y1,i − Y0,i |D1,i > D0,i )︸ ︷︷ ︸

LATE

Note that β̂IV
1 measures the local average treatment effect (LATE ).

LATE equals ATE among individuals for whom D1,i = 1 and D0,i = 0.

The average effect among those who enter treatment because Z = 1.
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Partitioning the Population

To better understand the setting, we distinguish between four groups:

Compliers: accept treatment iff Z = 1 (D1 = 1 and D0 = 0)
Always-Takers: always accept treatment (D1 = 1 and D0 = 1)
Never-Takers: never accept treatment (D1 = 0 and D0 = 0)
Defiers: accept treatment iff Z = 0 (D1 = 0 and D0 = 1)

Note: monotonicity assumes that there are no defiers in the population.

Table: Subgroups Observed in Data (Assuming Monotonicity)

Z = 0 Z = 1

D = 0 Never Takers & Compliers Never Takers

D = 1 Always Takers Always Takers & Compliers
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ATE among Compliers

The LATE measures the average treatment effect among the compliers.

βIV = E (Y1 − Y0|D1 > D0︸ ︷︷ ︸
compliers

)

If there is noncompliance, then this effect may not be especially relevant.

In general, LATE does not equal the ATE , ATT , or ATU.
▶ If there are no always takers, then LATE = ATT .
▶ If there are no never takers, then LATE = ATU.
▶ If there is full compliance, then LATE = ATE .

Note: if there are defiers, then we cannot even measure the LATE .

If Z is randomly assigned, we can measure the intention to treat (ITT ).

ITT = E (Y |Z = 1)− E (Y |Z = 0)

This tells us the average effect of Z on Y , which may be very relevant.
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Example: Estimating the LATE

Suppose treatment D is free preschool and Y is future earnings. Let Z
indicate whether households receive an informational brochure.

Suppose D is endogenous because there is selection bias.

Assume Z satisfies all of the instrumental variables assumptions.

Given an i.i.d. sample {Yi ,Di ,Zi}ni=1, you estimate β̂IV
1 , where:

β̂IV
1 =

1
n

∑n
i=1(Zi − Z̄n)(Yi − Ȳn)

1
n

∑n
i=1(Zi − Z̄n)(Di − D̄n)

Under the IV assumptions, β̂IV
1

p→ E (Y1,i − Y0,i |D1,i > D0,i ) = LATE .

β̂IV
1 estimates the average effect of preschool on future earnings for

those who entered the program because their family got a brochure.

It is often unclear whether the LATE is actually relevant. For
example, are compliers representative of the wider population?
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