Lectures 14 & 15 Heterogeneous Treatment Effects

Oscar Volpe

11/15/2021 & 11/17/2021

Oscar Volpe

Lectures 14 & 15

11/15/2021 & 11/17/2021 1/30

э

・ 何 ト ・ ヨ ト ・ ヨ ト

- Potential Outcomes
- Average Treatment Effects
- Linear Causal Models

Random Assignment

- The Selection Problem
- Experiments

3 Selection on Observables

Instrumental Variables

- IV Assumptions
- Local Average Treatment Effect

Potential Outcomes

- Average Treatment Effects
- Linear Causal Models

2) Random Assignment

- The Selection Problem
- Experiments

3 Selection on Observables

Instrumental Variables

- IV Assumptions
- Local Average Treatment Effect

(4) (E) (E)

Notation

Suppose you want to understand the impact of a policy intervention D on some outcome of interest Y. For simplicity, assume D is either 0 and 1.

- D is our treatment (D = 1 if treated, D = 0 if untreated).
- Y is our *outcome*, which is assumed to depend somehow on D.

We refer to Y_d as the *potential outcome* in the event that D = d. Write:

$$Y = \begin{cases} Y_0 & \text{if } D = 0\\ Y_1 & \text{if } D = 1 \end{cases}$$

For any individual, only one potential outcome is observed. For example, we cannot see Y_0 for someone who was treated, i.e. for whom D = 1.

- We seek to draw inference about the *counterfactuals* $(Y_d \text{ for } d \neq D)$.
- To understand the causal effect of treatment, we need to ask about what might have happened in the scenarios that did not occur.

Example: Free Preschool

Suppose the *treatment* D is a free, high-quality preschool education. Let the *outcome* Y be earnings in adulthood. You collect data $\{D_i, Y_i\}_{i=1}^n$.

- Note: we observe $Y_i = Y_{D_i,i}$, but we do not observe $Y_{d,i}$ for $d \neq D_i$.
- We generally assume that people will self-select into treatment.

Inutitively, families decide whether to enroll their children in preschool for specific reasons. In this case, the treatment D is not chosen randomly.

- Selection Bias: treatment D could depend on Y_d .
 - ► Maybe children from under-resourced families, i.e. for whom Y_d is already lower, are more likely to be enrolled in the preschool program.
- Selection on the Gains: treatment D could depend on $Y_1 Y_0$.
 - ► Maybe children with better outside options, i.e. for whom Y₁ Y₀ is lower, would be less likely to be enrolled in the preschool program.

イロト 不得 トイラト イラト 一日

Potential Outcomes

• Average Treatment Effects

Linear Causal Models

2 Random Assignment

- The Selection Problem
- Experiments

3 Selection on Observables

Instrumental Variables

- IV Assumptions
- Local Average Treatment Effect

★ ∃ ► < ∃ ►</p>

ATE, ATT, and ATU

For individual *i*, the treatment effect is $Y_{1,i} - Y_{0,i}$. We never observe this. The average treatment effect (ATE) is the expectation of $Y_{1,i} - Y_{0,i}$.

$$ATE = E(Y_1 - Y_0)$$

Intuitively, ATE is the average causal effect of the intervention D on everyone in the population. This differs from conditional treatment effects.

- Avg. Treatment Effect on the Treated: $ATT = E(Y_1 Y_0|D = 1)$.
- Avg. Treatment Effect on the Untreated: $ATU = E(Y_1 Y_0|D = 0)$.

Which of these effects is of greatest interest to the researcher?

- Policy relevance depends on the context we are considering.
- Perhaps we care most about how a program affects certain subgroups.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Homogenous Treatment Effects

By the Law of Iterated Expectations, we know that:

$$ATE = P(D = 1) \times ATT + P(D = 0) \times ATU$$
,

where P(D = 1) + P(D = 0) = 1. That is, the *ATE* is a weighted average of the *ATT* and the *ATU*. If $Y_1 - Y_0$ equals some constant c, then:

$$ATE = E(Y_1 - Y_0) = c$$

$$ATT = E(Y_1 - Y_0 | D = 1) = c$$

$$ATU = E(Y_1 - Y_0 | D = 0) = c$$

So, if everybody has the same treatment effect, then ATE = ATT = ATU.

- In this lecture, we assume *heterogeneous treatment effects*, i.e. different individuals are affected differently by an intervention.
- Hence, $Y_{1,i} Y_{0,i}$ need not equal $Y_{1,j} Y_{0,j}$ for two people *i* and *j*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Potential Outcomes
- Average Treatment Effects
- Linear Causal Models

2) Random Assignment

- The Selection Problem
- Experiments

3 Selection on Observables

Instrumental Variables

- IV Assumptions
- Local Average Treatment Effect

A B A A B A

Modeling Causal Effects

Let Y be an outcome, let D be some treatment, and let U represent all unobserved determinants of Y. A causal model for the outcome is:

$$Y = g(D, U)$$

Under this model, the treatment effect equals g(1, U) - g(0, U).

Suppose that the causal model g is linear in D and U, i.e. that:

$$Y = \alpha + \beta D + U$$

As $Y = Y_0 + (Y_1 - Y_0)D$, we can re-arrange this model so that:

Defining terms this way, we ensure that U has mean zero, i.e. E(U) = 0.

Random Coefficient Model

Under heterogeneous treatment effects, $Y_{1,i} - Y_{0,i}$ varies across *i*.

$$\begin{array}{ll} Y_{0,i} = \alpha + U_i \\ Y_{0,i} = \alpha + \beta_i + U_i \end{array} \implies \beta_i = Y_{1,i} - Y_{0,i} \end{array}$$

So, β_i is the treatment effect for individual *i*. We assume β_i is random.

$$Y_{i} = \underbrace{E(Y_{0})}_{\alpha} + \underbrace{(Y_{1,i} - Y_{0,i})}_{\beta_{i}} D_{i} + \underbrace{Y_{0,i} - E(Y_{0})}_{U_{i}}$$

This model is often referred to as the random coefficient model.

•
$$ATE = E(Y_{1,i} - Y_{0,i}) = E(\beta_i)$$

• $ATT = E(Y_{1,i} - Y_{0,i}|D_i = 1) = E(\beta_i|D_i = 1)$
• $ATU = E(Y_{1,i} - Y_{0,i}|D_i = 0) = E(\beta_i|D_i = 0)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- Potential Outcomes
- Average Treatment Effects
- Linear Causal Models

2 Random Assignment

- The Selection Problem
- Experiments

3 Selection on Observables

Instrumental Variables

- IV Assumptions
- Local Average Treatment Effect

Selection Bias

Try comparing the average outcomes between treated/untreated groups: $E(Y_i|D_i = 1) - E(Y_i|D_i = 0) = \underbrace{E(Y_{1,i} - Y_{0,i}|D_i = 1)}_{ATT} + \underbrace{E(Y_{0,i}|D_i = 1) - E(Y_{0,i}|D_i = 0)}_{\text{Selection Bias}} + \underbrace{E(Y_{1,i}|D_i = 1) - E(Y_{1,i}|D_i = 0)}_{\text{Selection Bias}}$

This difference does not equal the ATT or ATU when Y_d depends on D.

- If $Y_0 \perp D$, we get the ATT by comparing treated/untreated groups
- If $Y_1 \perp D$, we get the *ATU* by comparing treated/untreated groups

When Y_0 , $Y_1 \perp D$, this difference gives us ATE = ATT = ATU. Otherwise, if individuals "select into treatment" based on Y_d , there is selection bias.

- Note: selection bias means that D is endogenous in $Y = \alpha + \beta D + U$.
- An OLS regression of Y on D will not estimate the treatment effect.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: Homogeneous Treatment Effects

Suppose treatment D is free preschool, and let Y denote future earnings.

- All children receive the same benefits from preschool: $Y_{1,i} Y_{0,i} = c$.
- There is selection bias, whereby under-resourced children are more likely to enroll in the program: E(Y_{i,0}|D_i = 1) < E(Y_{i,0}|D_i = 0).

Even with constant treatment effects, we cannot recover the value of c.

$$E(Y_{i,1}|D_i = 1) - E(Y_{i,0}|D_i = 0) < E(Y_{i,1} - Y_{i,0})$$

Comparing outcomes between treated/untreated groups underestimates c.

- Potential Outcomes
- Average Treatment Effects
- Linear Causal Models

Random Assignment

- The Selection Problem
- Experiments

3 Selection on Observables

4 Instrumental Variables

- IV Assumptions
- Local Average Treatment Effect

An Experimental Setting

Under random assignment, D is independent of all potential outcomes.

Definition (Random Assignment)

Let Y be an outcome, and let D be some treatment. Let Y_d denote the potential outcome associated with the state D = d. The treatment is *randomly assigned* if and only if $Y_d \perp D$, for every d in the support of D.

If D is randomly administered at random, then selection bias disappears.

$$E(Y_i|D_i = 1) - E(Y_i|D_i = 0) = E(Y_{1,i}|D_i = 1) - E(Y_{0,i}|D_i = 0)$$

= $\underbrace{E(Y_{1,i}) - E(Y_{0,i})}_{ATE}$, since $Y_{0,i}, Y_{1,i} \perp D_i$

• random assign. $\implies ATE = E(Y_{1,i} - Y_{0,i}) = E(Y_{1,i} - Y_{0,i}|D_i = 1) = ATT.$

• random assign. $\implies ATE = E(Y_{1,i} - Y_{0,i}) = E(Y_{1,i} - Y_{0,i}|D_i = 0) = ATU.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

OLS Estimation with Random Assignment

Consider a simple linear regression model $Y_i = \beta_0 + \beta_1 D_i + U_i$. Under a best linear predictor (BLP) interpretation, we derive β_1 to be:

$$\beta_1 = \frac{\mathsf{Cov}(Y_i, D_i)}{\mathsf{Var}(D_i)} = E(Y_{i1}|D_i = 1) - E(Y_{i0}|D_i = 0)$$

• Since D_i is binary, we know that $E(Y_i|D_i) = BLP(Y_i|D_i) = \beta_0 + \beta_1 D_i$. • If $Y_{0,i}, Y_{1,i} \perp D_i$, then β_1 equals ATE = ATT = ATU.

Given an *i.i.d.* sample $\{Y_i, D_i\}_{i=1}^n$, write down the OLS estimator for β_1 .

$$\hat{\beta}_{1} = \frac{\frac{1}{n} \sum_{i=1}^{n} (D_{i} - \bar{D}_{n}) (Y_{i} - \bar{Y}_{n})}{\frac{1}{n} \sum_{i=1}^{n} (D_{i} - \bar{D}_{n})^{2}}$$

If random assignment holds, then $\hat{\beta}_1$ is both a consistent and unbiased estimator for the *ATE*, which is also equal to the *ATT* and the *ATU*.

- Potential Outcomes
- Average Treatment Effects
- Linear Causal Models

Random Assignment

- The Selection Problem
- Experiments

Selection on Observables

Instrumental Variables

- IV Assumptions
- Local Average Treatment Effect

★ ∃ ► < ∃ ►</p>

Confounding Variables

Recovering average treatment effects in an experiment is straightforward.

- In practice, it is often too costly/infeasible to run an experiment.
- Agents sort into/out of treatment based on observed and unobserved determinants of *Y*. We refer to these factors *confounding variables*.

Definition (Confounding Variable)

Let Y be an outcome, and let D be some treatment. We say X is a *confounding variable* for the causal effect of D on Y if $X \not\perp Y$, $X \not\perp D$.

When there are confounding variables, treatment is not randomly assigned.

- Suppose we observe all confounding variables and control for them.
- In this case, we can still estimate the average treatment effects.

< □ > < □ > < □ > < □ > < □ > < □ >

Selection on Observable Features

Definition (Selection on Observables)

Let Y be an outcome, and let D be some treatment. Let X be a random vector of observable features, and let Y_d denote the potential outcome associated with state D = d. Selection on observables is the assumption that $Y_d \perp D | X = x$ for all x in the support of X, d in the support of D.

Intuitively, conditional on X, treatment D is as-good-as randomly assigned.

$$E(Y_i|D_i = 1, X_i = x) - E(Y_i|D_i = 0, X_i = x) = \underbrace{E(Y_{1,i}|X_i = x) - E(Y_{0,i}|X_i = x)}_{ATE(x)}$$

•
$$ATE(x) = E(Y_{1,i} - Y_{0,i}|X_i = x) = E(Y_{1,i} - Y_{0,i}|D_i = 1, X_i = x) = ATT(x)$$

• $ATE(x) = E(Y_{1,i} - Y_{0,i}|X_i = x) = E(Y_{1,i} - Y_{0,i}|D_i = 0, X_i = x) = ATU(x)$

Conditioning on $X_i = x$, we can recover the ATE, ATT, and ATU.

< □ > < □ > < □ > < □ > < □ > < □ >

OLS Estimation with Controls

Consider a linear regression model $Y_i = \beta_0 + \beta_1 D_i + X'_i \gamma + U_i$. Under a best linear predictor (BLP) interpretation, we know that β_1 satisfies:

$$\beta_1 \approx E(Y_i | D_i = 1, X_i = x) - E(Y_i | D_i = 0, X_i = x)$$

If $Y_{i,0}, Y_{i,1} \perp D_i | X_i$, then β_1 will approximate the conditional average treatment effect, i.e. ATE(x). We can estimate it with the OLS estimator.

Run an OLS regression of Y_i on D_i and X_i. Then β̂₁ estimates ATE as a weighted average of the ATE(x) = E(Y_{1,i} - Y_{0,i}|X_i = x) across values of x.

Another common approach is to "match" on different values of X.

- Intuition: we have an experiment for a given value of X = x.
 - (1) Fix some X = x.
 - (2) Estimate $ATE(x) = E(Y_i|D_i = 1, X_i = x) E(Y_i|D_i = 0, X_i = x).$
 - (3) Take ATE as the weighted average of ATE(x) across values of X = x.
- This approach can suffer from the "curse of dimensionality".

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Example: A Matching Estimator for the ATE

Suppose treatment D is free preschool and Y represents future earnings. Let X indicate whether family income is below the federal poverty line.

- Assume low-income children are more likely to enroll in the program, but that selection bias depends only on X, so that $Y_0, Y_1 \perp D|X$.
- Hence, we are assuming there is *selection on observables*.

To estimate the ATE from a sample $\{Y_i, D_i, X_i\}_{i=1}^n$, compute:

$$\widehat{\mathsf{ATE}} = \big(\bar{Y}_n^{(D_i=1,X_i=1)} - \bar{Y}_n^{(D_i=0,X_i=1)}\big)\bar{X}_n + \big(\bar{Y}_n^{(D_i=1,X_i=0)} - \bar{Y}_n^{(D_i=0,X_i=0)}\big)\big(1 - \bar{X}_n\big)$$

To show \widehat{ATE} is a consistent estimator for ATE, note that:

$$\widehat{\mathsf{ATE}} \xrightarrow{p} \sum_{x \in \{0,1\}} \left[E(Y_i | D_i = 1, X_i = x) - E(Y_i | D_i = 0, X_i = x) \right] \times P(X_i = x)$$
$$= \sum_{x \in \{0,1\}} ATE(x) \times P(X_i = x) = ATE$$

- Potential Outcomes
- Average Treatment Effects
- Linear Causal Models

Random Assignment

- The Selection Problem
- Experiments

3 Selection on Observables

Instrumental Variables

- IV Assumptions
- Local Average Treatment Effect

Notation

Given outcome Y_i and treatment D_i , the random coefficients model is:

$$Y_{i} = \underbrace{E(Y_{0})}_{\alpha} + \underbrace{(Y_{1,i} - Y_{0,i})}_{\beta_{i}} D_{i} + \underbrace{Y_{0,i} - E(Y_{0})}_{U_{i}}$$

Suppose that D_i is not randomly assigned, so that D_i is endogenous.

- How do our IV assumptions transfer to the random coefficients model?
- What does linear IV identify when treatment effects are heterogeneous?

Suppose Z_i is an instrument for D_i . For simplicity, assume Z_i is binary.

- Let $D_{z,i}$ be the treatment status at instrument value $Z_i = z$.
- Let $Y_{d,z,i}$ be the outcome at $D_i = d$ and $Z_i = z$.

IV Assumptions

For a binary treatment D and instrument Z, our IV assumptions are:

(1) Random Assignment: $Y_{d,z}, D_z \perp Z$ for all values of d and z

• In particular, the instrument Z must be assigned at random.

(2) Exclusion:
$$Y_{d,1} = Y_{d,0}$$

- The instrument Z only affects the outcome Y via the treatment D.
- Thus, Z is not an omitted variable in $Y = \alpha + \beta D + U$.
- (3) Relevance/First Stage: $E(D_1 D_0) \neq 0$
 - ► Z should have some effect on the average probability of treatment.
- (4) Monotonicity: $D_1 \ge D_0$ for all individuals *i* (or vice versa)
 - Everyone affected by the instrument Z is affected in the same direction.
 - ▶ Put simply, the impact of Z on D is uniform across all participants i.

< □ > < 同 > < 回 > < 回 > < 回 >

Deriving the IV Estimator

Consider a simple linear regression model $Y_i = \beta_0 + \beta_1 D_i + U_i$, where D_i is endogenous. Given an *i.i.d.* sample $\{Y_i, D_i, Z_i\}_{i=1}^n$, the IV estimator is:

$$\hat{\beta}_{1}^{IV} = \frac{\frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \bar{Z}_{n}) (Y_{i} - \bar{Y}_{n})}{\frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \bar{Z}_{n}) (D_{i} - \bar{D}_{n})}$$

If the IV assumptions hold, then $\hat{\beta}_1^{IV} \xrightarrow{p} \beta_1^{IV}$, where β_1^{IV} equals:

$$\beta_{1}^{IV} = \frac{\text{Cov}(Y_{i}, Z_{i})}{\text{Cov}(D_{i}, Z_{i})} = \underbrace{E(Y_{1,i} - Y_{0,i} | D_{1,i} > D_{0,i})}_{LATE}$$

Note that $\hat{\beta}_1^{IV}$ measures the local average treatment effect (LATE).

- LATE equals ATE among individuals for whom $D_{1,i} = 1$ and $D_{0,i} = 0$.
- The average effect among those who enter treatment because Z = 1.

イロト 不得 トイヨト イヨト 二日

- Potential Outcomes
- Average Treatment Effects
- Linear Causal Models

Random Assignment

- The Selection Problem
- Experiments

3 Selection on Observables

Instrumental Variables

- IV Assumptions
- Local Average Treatment Effect

(B)

Partitioning the Population

To better understand the setting, we distinguish between four groups:

- Compliers: accept treatment iff Z = 1 ($D_1 = 1$ and $D_0 = 0$)
- Always-Takers: always accept treatment $(D_1 = 1 \text{ and } D_0 = 1)$
- Never-Takers: never accept treatment $(D_1 = 0 \text{ and } D_0 = 0)$
- Defiers: accept treatment iff Z = 0 ($D_1 = 0$ and $D_0 = 1$)

Note: monotonicity assumes that there are no defiers in the population.

Table: Subgroups Observed in Data (Assuming Monotonicity)

	Z = 0	Z = 1
D = 0	Never Takers & Compliers	Never Takers
D = 1	Always Takers	Always Takers & Compliers

ATE among Compliers

The LATE measures the average treatment effect among the compliers.

$$\beta^{IV} = E(Y_1 - Y_0 | \underbrace{D_1 > D_0}_{\text{compliers}})$$

If there is noncompliance, then this effect may not be especially relevant.

- In general, LATE does not equal the ATE, ATT, or ATU.
 - If there are no always takers, then LATE = ATT.
 - If there are no never takers, then LATE = ATU.
 - If there is full compliance, then LATE = ATE.
- Note: if there are defiers, then we cannot even measure the LATE.

If Z is randomly assigned, we can measure the *intention to treat* (ITT).

$$ITT = E(Y|Z = 1) - E(Y|Z = 0)$$

This tells us the average effect of Z on Y, which may be very relevant.

Example: Estimating the LATE

Suppose treatment D is free preschool and Y is future earnings. Let Z indicate whether households receive an informational brochure.

- Suppose D is endogenous because there is selection bias.
- Assume Z satisfies all of the instrumental variables assumptions.

Given an *i.i.d.* sample $\{Y_i, D_i, Z_i\}_{i=1}^n$, you estimate $\hat{\beta}_1^{IV}$, where:

$$\hat{\beta}_{1}^{IV} = \frac{\frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \bar{Z}_{n})(Y_{i} - \bar{Y}_{n})}{\frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \bar{Z}_{n})(D_{i} - \bar{D}_{n})}$$

Under the IV assumptions, $\hat{\beta}_1^{IV} \xrightarrow{p} E(Y_{1,i} - Y_{0,i} | D_{1,i} > D_{0,i}) = LATE$.

- $\hat{\beta}_1^{IV}$ estimates the average effect of preschool on future earnings for those who entered the program *because* their family got a brochure.
- It is often unclear whether the *LATE* is actually relevant. For example, are compliers representative of the wider population?