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@ Introduction to Treatment Effects
@ Potential Outcomes
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Notation

Suppose you want to understand the impact of a policy intervention D on
some outcome of interest Y. For simplicity, assume D is either 0 and 1.

o D is our treatment (D =1 if treated, D = 0 if untreated).

@ Y is our outcome, which is assumed to depend somehow on D.

We refer to Yy as the potential outcome in the event that D = d. Write:

v — Yo ifD:O
Y, ifD=1

For any individual, only one potential outcome is observed. For example,
we cannot see Yy for someone who was treated, i.e. for whom D = 1.

o We seek to draw inference about the counterfactuals (Yy for d # D).

@ To understand the causal effect of treatment, we need to ask about
what might have happened in the scenarios that did not occur.
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Example: Free Preschool

Suppose the treatment D is a free, high-quality preschool education. Let
the outcome Y be earnings in adulthood. You collect data {D;, Y;}7_;.

o Note: we observe Y; = Yp, ;, but we do not observe Yy ; for d # D;.
@ We generally assume that people will self-select into treatment.

Inutitively, families decide whether to enroll their children in preschool for
specific reasons. In this case, the treatment D is not chosen randomly.
@ Selection Bias: treatment D could depend on Y.
» Maybe children from under-resourced families, i.e. for whom Yy is
already lower, are more likely to be enrolled in the preschool program.
@ Selection on the Gains: treatment D could depend on Y; — Yj.

» Maybe children with better outside options, i.e. for whom Y; — Yj is
lower, would be less likely to be enrolled in the preschool program.
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@ Introduction to Treatment Effects

@ Average Treatment Effects
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ATE, ATT, and ATU

For individual /, the treatment effect is Y1 ; — Yp ;. We never observe this.
The average treatment effect (ATE) is the expectation of Y7 ; — Yy ;.

ATE = E(Y1 — Yo)

Intuitively, ATE is the average causal effect of the intervention D on
everyone in the population. This differs from conditional treatment effects.

o Avg. Treatment Effect on the Treated: ATT = E(Y1 — Yo|D =1).
o Avg. Treatment Effect on the Untreated: ATU = E(Y1 — Yo|D = 0).

Which of these effects is of greatest interest to the researcher?
@ Policy relevance depends on the context we are considering.

@ Perhaps we care most about how a program affects certain subgroups.
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Homogenous Treatment Effects

By the Law of Iterated Expectations, we know that:
ATE = P(D =1) x ATT + P(D =0) x ATU,

where P(D = 1)+ P(D = 0) = 1. That is, the ATE is a weighted average
of the ATT and the ATU. If Y1 — Yy equals some constant c, then:
ATE=E(Y1—Yy)=c¢
ATT = E(Yl — Y0|D = 1) =C
ATU=E(Y1 —Y|D=0)=c

So, if everybody has the same treatment effect, then ATE = ATT = ATU.

@ In this lecture, we assume heterogeneous treatment effects, i.e.
different individuals are affected differently by an intervention.

@ Hence, Y1 ; — Yo, need not equal Y;; — Yp for two people i and .
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@ Introduction to Treatment Effects

@ Linear Causal Models
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Modeling Causal Effects

Let Y be an outcome, let D be some treatment, and let U represent all
unobserved determinants of Y. A causal model for the outcome is:

Y =g(D,U)
Under this model, the treatment effect equals g(1, U) — g(0, U).
Suppose that the causal model g is linear in D and U, i.e. that:
Y=a+pD+U
As Y = Yy + (Y1 — Yo)D, we can re-arrange this model so that:

Y=E(Yo)+(Y1— Yo)D+ Yo— E(Yo)
—— —\ —_——

« B U

Defining terms this way, we ensure that U has mean zero, i.e. E(U) =0.
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Random Coefficient Model

Under heterogeneous treatment effects, Y;; — Yp ; varies across i.

Y07; =a+ U;

= Bi=Y.i— Yo
YO,i _ a—|—,5,- + U /81 1,i 0,i
So, f; is the treatment effect for individual i. We assume ; is random.

Yi = E(Yo) + (Y1, — Y0,i) Di + Yo, — E(Y0)
«@ Bi Ui

This model is often referred to as the random coefficient model.
o ATE = E(Y1,— Yo.)) = E(B))
@ ATT = E(\Y1,i— Y0ilDi=1)= E(8i|Di = 1)
@ ATU = E(Y1,;i — Yu,i|Di =0) = E(Bi|D; = 0)
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o Random Assignment

@ The Selection Problem
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Selection Bias

Try comparing the average outcomes between treated/untreated groups:

E(Yi|D; = 1) — E(Yi|Di = 0) = E(Y1 — You|D; = 1)+ E(Yo,|Di = 1) — E(Yo,,|D; = 0)

ATT Selection Bias
= E(YL,' — Y07;|Di = 0) + E(Yl’,'|D,' = 1) — E(Y17,'|D,' = 0)
ATU Selection Bias

This difference does not equal the ATT or ATU when Y, depends on D.
o If Yo L D, we get the ATT by comparing treated/untreated groups
@ If Y1 L D, we get the ATU by comparing treated/untreated groups

When Yy, Y1 L D, this difference gives us ATE = ATT = ATU. Otherwise,
if individuals “select into treatment” based on Yy, there is selection bias.

@ Note: selection bias means that D is endogenous in Y = a+ 8D + U.

@ An OLS regression of Y on D will not estimate the treatment effect.
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Example: Homogeneous Treatment Effects

Suppose treatment D is free preschool, and let Y denote future earnings.
@ All children receive the same benefits from preschool: Y7 ; — Y ; = c.

@ There is selection bias, whereby under-resourced children are more
likely to enroll in the program: E(Yio|D; =1) < E(Y;o|D; =0).

Even with constant treatment effects, we cannot recover the value of c.
E(Yi1|Di =1) — E(Yio|Di = 0) < E(Yi1 — Yio)

Comparing outcomes between treated/untreated groups underestimates c.
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o Random Assignment

@ Experiments
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An Experimental Setting

Under random assignment, D is independent of all potential outcomes.

Definition (Random Assignment)

Let Y be an outcome, and let D be some treatment. Let Y, denote the
potential outcome associated with the state D = d. The treatment is
randomly assigned if and only if Yy L D, for every d in the support of D.

If D is randomly administered at random, then selection bias disappears.
E(Yi|D; = 1) — E(Y;|D; = 0) = E(Y1.s|D; = 1) — E(Yo,,|D; = 0)
= E(YL,') — E(Y(),,')7 since Y()’,', Y17,' iR D,'
—_————
ATE
@ random assign. = ATE = E(Y1,,— Y0,;)) = E(Y1,i— Yo0,i|lDi=1) = ATT.
@ random assign. = ATE = E(Y1,,— Yo,;)) = E(Y1,i — Y0,i|D; = 0) = ATU.
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OLS Estimation with Random Assignment
Consider a simple linear regression model Y; = 5o + 51D; + U;. Under a
best linear predictor (BLP) interpretation, we derive (1 to be:

o COV(Y,‘7 D,)

= =E(Ya|D;=1) — E(Yio|D; =
L= oy = E(YalD = 1)~ E(YolDi = 0)

@ Since D; is binary, we know that E(Y;|D;) = BLP(Y;|D;) = Bo + 51D;.
@ If Yy;, Y1i L Dj, then By equals ATE = ATT = ATU.

Given an i.id. sample {Y}, D;}"_;, write down the OLS estimator for ;.

5 — 52D = Da)(Yi—Ya)
LT INT (D - Doy

If random assignment holds, then 31 is both a consistent and unbiased
estimator for the ATE, which is also equal to the ATT and the ATU.
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© Selection on Observables
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Confounding Variables

Recovering average treatment effects in an experiment is straightforward.
@ In practice, it is often too costly/infeasible to run an experiment.

@ Agents sort into/out of treatment based on observed and unobserved
determinants of Y. We refer to these factors confounding variables.

Definition (Confounding Variable)

Let Y be an outcome, and let D be some treatment. We say X is a
confounding variable for the causal effect of Don Y if X L Y, X L D.

When there are confounding variables, treatment is not randomly assigned.
@ Suppose we observe all confounding variables and control for them.

@ In this case, we can still estimate the average treatment effects.
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Selection on Observable Features

Definition (Selection on Observables)

Let Y be an outcome, and let D be some treatment. Let X be a random
vector of observable features, and let Y, denote the potential outcome

associated with state D = d. Selection on observables is the assumption
that Yy L D|X = x for all x in the support of X, d in the support of D.

Intuitively, conditional on X, treatment D is as-good-as randomly assigned.

E(Y,|D, = 1,X,' = X) — E(Y,|D, = O,X,' = X) = E(Y1,,'|X,' = X) — E(Yo,,'|X,' = X)

ATE(x)

o ATE(X) = E(Yl’,' — Yo’,'|X,' = X) = E(Y17; — YOJlDf = 1,X,' = X) = ATT(X)
o ATE(X) = E(YL,' — Y07,'|X,' = X) = E(YL,' — Y07;|D,' = O,X,' = X) = ATU(X)

Conditioning on X; = x, we can recover the ATE, ATT, and ATU.
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OLS Estimation with Controls

Consider a linear regression model Y; = 8o + 51D; + X,-’7 + U;. Under a
best linear predictor (BLP) interpretation, we know that f3; satisfies:

61 ~ E(\/,lD, = l,X,' :X) — E(Y,|D, = O7X,' = X)

If Yio,Yi1 L Di|Xi, then 31 will approximate the conditional average
treatment effect, i.e. ATE(x). We can estimate it with the OLS estimator.

@ Run an OLS regression of Y; on D; and X;. Then 31 estimates ATE as a
weighted average of the ATE(x) = E(Y1,; —

Y0,i|Xi = x) across values of x.
Another common approach is to “match” on different values of X.
@ Intuition: we have an experiment for a given value of X = x.
(1) Fix some X = x.
(2) Estimate ATE(x) = E(Y;|D; =1,X; = x) — E(Y;|D; =0, X; = x).
(3) Take ATE as the weighted average of ATE(x) across values of X = x.
@ This approach can suffer from the “curse of dimensionality”.
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Example: A Matching Estimator for the ATE

Suppose treatment D is free preschool and Y represents future earnings.
Let X indicate whether family income is below the federal poverty line.

@ Assume low-income children are more likely to enroll in the program,
but that selection bias depends only on X, so that Yy, Y7 L D|X.

@ Hence, we are assuming there is selection on observables.

To estimate the ATE from a sample {Y;, D;, X;}!_;, compute:

A/-I'-\E _ (\—/ISD,-:I,X,-:l) o V(D,-:O,X,-:l)))—(n + (VISD,-:LX,-:O) 7 \—,ISD,-:O,X,-:O)) (1 _ xn)

To show ATE is a consistent estimator for ATE, note that:

ATES 37 [E(YiDi = 1,X = x) — E(Yi|D; = 0, X = x)] x P(X; = x)
xe{0,1}

= Y ATE(x) x P(Xi = x) = ATE
x€{0,1}
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@ Instrumental Variables
@ |V Assumptions
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Notation

Given outcome Y; and treatment D;, the random coefficients model is:

Yi = E(Yo) + (Y1,i — Y0.1) Di + Yo,i — E(Y0)
——

a Bi Ui

Suppose that D; is not randomly assigned, so that D; is endogenous.
@ How do our IV assumptions transfer to the random coefficients model?

@ What does linear |V identify when treatment effects are heterogeneous?

Suppose Z; is an instrument for D;. For simplicity, assume Z; is binary.
o Let D, ; be the treatment status at instrument value Z; = z.
@ Let Yy, ; be the outcome at D; = d and Z; = z.
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IV Assumptions

For a binary treatment D and instrument Z, our IV assumptions are:
(1) Random Assignment: Yy, D, L Z for all values of d and z
> In particular, the instrument Z must be assigned at random.
(2) Exclusion: Yy1 = Yy
» The instrument Z only affects the outcome Y via the treatment D.
» Thus, Z is not an omitted variable in Y = a + 8D + U.
(3) Relevance/First Stage: E(D; — Dy) #0
» Z should have some effect on the average probability of treatment.
(4) Monotonicity: D; > Dy for all individuals i (or vice versa)

» Everyone affected by the instrument Z is affected in the same direction.
» Put simply, the impact of Z on D is uniform across all participants i.
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Deriving the IV Estimator

Consider a simple linear regression model Y; = 5y + 51D; + U;, where D;
is endogenous. Given an i.i.d. sample {Y;, D;, Z;}"_,, the IV estimator is:

v 25ra(Zi = Z)(Yi = Vi)
1 — —

%Z?ﬂ(zf - n)(Di - Dn)

If the IV assumptions hold, then 3]V RS BIY, where 81V equals:

Cov(Yi, Z)
V= 2 DT — E(Yy;— Yo|D1i > Do
1= Cou(Dr. 2) (Y1,i = Y0,i|Dvi > Do,i)

LATE

Note that 3!Y measures the local average treatment effect (LATE).
@ LATE equals ATE among individuals for whom D; ; = 1 and Dy ; = 0.

@ The average effect among those who enter treatment because Z = 1.
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@ Instrumental Variables

@ Local Average Treatment Effect
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Partitioning the Population

To better understand the setting, we distinguish between four groups:

o Compliers: accept treatment iff Z =1 (D; =1 and Dy = 0)
o Always-Takers: always accept treatment (D; =1 and Dy = 1)
o Never-Takers: never accept treatment (D; = 0 and Dy = 0)

o Defiers: accept treatment iff Z =0 (D; =0 and Dy = 1)

Note: monotonicity assumes that there are no defiers in the population.

Table: Subgroups Observed in Data (Assuming Monotonicity)

D = 0 | Never Takers & Compliers Never Takers
D=1 Always Takers Always Takers & Compliers
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ATE among Compliers

The LATE measures the average treatment effect among the compliers.

BY = E(Y1 — Yo| D1 > Dy)
N—_——

compliers

If there is noncompliance, then this effect may not be especially relevant.
@ In general, LATE does not equal the ATE, ATT, or ATU.

> If there are no always takers, then LATE = ATT.
» |f there are no never takers, then LATE = ATU.
> If there is full compliance, then LATE = ATE.

@ Note: if there are defiers, then we cannot even measure the LATE.

If Z is randomly assigned, we can measure the intention to treat (ITT).
ITT = E(Y|Z =1)— E(Y|Z =0)

This tells us the average effect of Z on Y, which may be very relevant.
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Example: Estimating the LATE

Suppose treatment D is free preschool and Y is future earnings. Let Z
indicate whether households receive an informational brochure.

@ Suppose D is endogenous because there is selection bias.

@ Assume Z satisfies all of the instrumental variables assumptions.
Given an i.id. sample {Y}, D;, Z;}"_,, you estimate BV where:

)

AV %27:1(21' - Zn)(Yi
1 — n >
%Zi:1(Zi — Z,)(Di
Under the IV assumptions, Q{V LN E(Y1,i— Y0,i|D1,i > Do) = LATE.
° 3{‘/ estimates the average effect of preschool on future earnings for

those who entered the program because their family got a brochure.

@ It is often unclear whether the LATE is actually relevant. For
example, are compliers representative of the wider population?

-y,
- D,
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