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Terminology

Consider an i.i.d. sample {Xi}ni=1, where Xi ∼ F . Suppose that F depends
on some (unknown) parameter θ. Our goal is to find a good estimate for θ.

Question: Under the assumed distribution F , which choice of θ makes
the observed data X1, . . . ,Xn most likely to have occurred in nature?

Answering this question gives us the maximum likelihood estimator θ̂n.

Definition (Likelihood Function)

The likelihood, denoted ℓn(θ), is the joint density of X1, . . . ,Xn under θ
evaluated at the realized values x1, . . . , xn. Thus, ℓn(θ) =

∏n
i=1 fθ(xi ).

Definition (Log Likelihood Function)

The log likelihood Ln(θ) is the natural log of ℓn(θ), so Ln(θ) = log(ℓn(θ)).
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Solving for the MLE

We choose θ̂n to maximize the likelihood of having observed the data.

Definition (Maximum Likelihood Estimator)

The maximum likelihood estimator (MLE) equals θ̂n ∈ argmaxθ∈Θℓn(θ).

Since log(·) is monotonic, we can equivalently write θ̂n ∈ argmaxθ∈ΘLn(θ).

Select θ̂n to maximize ℓn(θ) or Ln(θ). Choose whatever is easier.

Note: Ln(θ) =
∑n

i=1 log fθ(xi ). Working with sums can be simpler!

Importantly, a maximizer of ℓn(θ) need not exist and may not be unique.

If θ̂n does not exist, then pick a “near” maximizer.

If θ̂n is not unique, then choose any maximizer.
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Example: A Biased Coin

Suppose X1, . . . ,Xn
i.i.d.∼ Bernoulli(θ), where θ ∈ (0, 1). Then, ℓn(θ) equals:

ℓn(θ) =
n∏

i=1

fθ(xi ) =
n∏

i=1

θxi (1− θ)1−xi = θnx̄n(1− θ)n(1−x̄n)

The log likelihood function Ln(θ) is given by:

Ln(θ) =
n∑

i=1

log fθ(xi ) = n × [log(θ)x̄n + log(1− θ)(1− x̄n)]

To solve for θ̂n, we can take first-order and second-order conditions.

FOC: ∂Ln(θ)
∂θ = x̄n

θ − 1−x̄n
1−θ = 0

SOC: ∂2Ln(θ)
∂θ2

= − x̄n
θ2

− 1−x̄n
(1−θ)2

< 0

These two conditions imply that θ̂n = x̄n is the unique ML estimator for θ.

Oscar Volpe Lectures 16 & 17 11/29/2021 & 12/01/2021 6 / 25



1 The Likelihood Function
Unconditional Likelihood Functions
Conditional Likelihood Functions

2 Properties of MLE
Score and Information Matrix
Cramér-Rao Lower Bound
Asymptotic Distribution

3 Inference

Oscar Volpe Lectures 16 & 17 11/29/2021 & 12/01/2021 7 / 25



Conditioning on Data

You have an i.i.d. sample {Yi ,Xi}ni=1, where Yi |Xi ∼ FYi |Xi
. Let FYi |Xi

depend on some (unknown) parameter θ. Your goal is to estimate θ.

Definition (Conditional Likelihood Function)

The conditional likelihood ℓn(θ|x) is the joint density of {Yi}ni=1 given
{Xi}ni=1 under θ evaluated at {yi , xi}ni=1. Thus, ℓn(θ|x) =

∏n
i=1 fθ(yi |xi ).

Definition (Log Likelihood Function)

The conditional log likelihood is given by Ln(θ|x) = log(ℓn(θ|x)).

As before, the maximum likelihood estimator is the maximizer of ℓn(θ|x).
With conditional MLE, θ̂n depends on {yi}ni=1 as well as {xi}ni=1.

Again, a maximizer of log(ℓn(θ|x)) may not always exist or be unique.

An unconditional MLE is just a special case of a conditional MLE.
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Example: Linear Regression

You collect i.i.d. data {Yi ,Xi}ni=1, where you assume Yi = X ′
i β + Ui .

Suppose Ui ∼ N(0, σ2). In this case, distribution of Yi given Xi equals:

fβ,σ2(Yi |Xi ) =
1√
2πσ2

exp
[
− 1

2σ2
(Yi − X ′

i β)
2
]

The conditional log-likelihood function for θ = (β, σ2)′ is given by:

Ln(θ|{Xi}ni=1) = −n

2

[
log(2π) + log(σ2)

]
− 1

2σ2

n∑
i=1

(Yi − X ′
i β)

2

Taking first-order and second-order conditions, the MLE for θ equals:

θ̂n =

[
β̂n

σ̂2

]
=

[(∑n
i=1 XiX

′
i

)−1 ∑n
i=1 XiYi

1
n

∑n
i=1(Yi − X ′

i β̂n)
2

]
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The Score

Definition (Score)

The score is the first derivative of the log likelihood: s(θ|x) = ∂ log fθ(y |x)
∂θ .

Note: if θ has multiple dimensions, then s(θ|x) is a column vector.

We will use the score later on when testing restrictions about θ.

One property of the score is that E [s(θ|x)] = 0. To see why, write:

E [s(θ|x)] =
∫

∂ log fθ(y |x)
∂θ

fθ(y |x)dy =

∫ ∂fθ(y |x)
∂θ

fθ(y |x)
fθ(y |x)dy =

∫
∂fθ(y |x)

∂θ
dy

Since
∫
fθ(y |x)dy = 1, under weak conditions:

∫ ∂fθ(y |x)
∂θ dy = ∂

∂θ1 = 0.
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The Fisher Information

The Fisher information matrix is equal to the variance of the score.

It measures how much information (Yi ,Xi ) carries about θ.

If this matrix is “large”, then the sample draws of (Xi ,Yi ) will be
more informative, and the ML estimator of θ becomes more precise.

Definition (Fisher Information Matrix)

The Fisher information matrix is defined as I(θ) = E [s(θ|x)s(θ|x)′]

One useful property is that I(θ) = E [s(θ|x)s(θ|x)′] = −E
[∂2 log fθ(y |x)

∂θ∂θ′

]
.

To see why, recall that 0 =
∫ ∂ log fθ(y |x)

∂θ fθ(y |x)dy . Differentiate w.r.t. θ′.

0 =

∫
∂2 log fθ(y |x)

∂θ∂θ′
fθ(y |x)dy︸ ︷︷ ︸

E
[

∂2 log fθ (y|x)
∂θ∂θ′

] +

∫
∂ log fθ(y |x)

∂θ

∂fθ(y |x)
∂θ′

fθ(y |x)
fθ(y |x)dy︸ ︷︷ ︸

I(θ)
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Information Inequality

Given a sample {Yi ,Xi}ni=1, suppose θ̂n is an unbiased estimator for θ.
Then, the variance of this estimator is bounded from below by I(θ)−1.

Theorem (Cramér-Rao Lower Bound)

Let θ̂n be an estimator of θ satisfying E (θ̂n) = θ. Then Var(θ̂n) ≥ I(θ)−1.

This inequality shows how I(θ) relates to an estimator’s precision.

A “smaller” I(θ) is associated with greater variability of θ̂n.

An unbiased estimator with variance I(θ)−1 will be efficient.

The proof of this result relies on the Cauchy-Schwartz Inequality.
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A Useful Result

Theorem (Delta Method)

Let {Xn}nn=1 and X be random vectors, and c a constant, in Rk . Let τn be

a sequence of constants such that τn → ∞ and τn(Xn − c)
d→ X . Then,

for any continuous function g : Rk → Rm, τn(g(Xn)− g(c))
d→ Dg(c)X .

Here, Dg(c) is an m × k matrix of partials of g(·) evaluated at c .
▶ Note: if g : R → R, then Dg(c) = g ′(c).

To prove it, take a first-order Taylor expansion of g(Xn) about c .

Important Special Case
The application of this theorem most relevant to us states that:

√
n(θ̂n − θ) → N(0,Σ) =⇒

√
n(g(θ̂n)− g(θ)) → N(0,Dg(θ)ΣDg(θ)′)

We will use this result to derive the limiting distribution of the MLE.
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Asymptotic Distribution of the MLE (Part 1)

You have an i.i.d. sample {Yi ,Xi}ni=1, where Yi |Xi ∼ FYi |Xi
. Let FYi |Xi

depend on some (unknown) parameter θ that you want to estimate.

Theorem (Asymptotic Normality)

Suppose that θ̂n is the MLE of θ. Then
√
n(θ̂n − θ)

d→ N(0, I(θ)−1).

Proof of the Theorem

Let sn(θ|x) = 1
n

∑n
i=1

∂ log fθ(yi |xi )
∂θ and Hn(θ|x) = 1

n

∑n
i=1

∂2 log fθ(yi |xi )
∂θ∂θ′ .

Applying the Central Limit Theorem, we know that:

√
nsn(θ|x)

d→ N(0,E [s(θ|x)s(θ|x)′]) d
= N(0, I(θ))

Note that θ̂n solves sn(θ|x) = 0. A Taylor approximation around θ gives us:

0 = sn(θ̂n) ≈ sn(θ) + Hn(θ|x)(θ̂n − θ)
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Asymptotic Distribution of the MLE (Part 2)

As sn(θ) ≈ −Hn(θ|x)[θ̂n − θ], we know
√
n(θ̂n − θ) ≈ −

√
nHn(θ|x)−1sn(θ).

√
n(θ̂n − θ) ≈ −

√
nHn(θ|x)−1sn(θ)

d→ N(0, I(θ)−1I(θ)I(θ)−1)
d
= N(0, I(θ)−1)

The line above follows from the Delta Method. So, the theorem is true.

As n → ∞, θ̂n is distributed normally with mean 0 and variance I(θ)−1.

By the Cramér-Rao Lower Bound, the MLE is asymptotically efficient.
It has the smallest asymptotic variance among all unbiased estimators.

This observation helps to justify our use of maximum likelihood.
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Example Revisited: A Biased Coin

Suppose X1, . . . ,Xn
i.i.d.∼ Bernoulli(θ), where θ ∈ (0, 1). We showed θ̂n = x̄n

is the maximum likelihood estimator of θ. We compute s(θ) and I(θ) as:

s(θ) =
∂ log fθ(x)

∂θ
=

x

θ
− 1− x

1− θ

I(θ) = −E
[∂2 log fθ(x)

∂θ2

]
= E

[ x

θ2
+

1− x

(1− θ)2

]
=

1

θ(1− θ)

By our previous result, the limiting distribution of θ̂n = X̄n is equal to:

√
n(θ̂n − θ)

d→ N(0, θ(1− θ))

Recall that Var(Xi ) = θ(1− θ). Since θ̂n is the sample mean of Xi , this
result could have also been derived by applying the Central Limit Theorem.
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Example Revisited: Linear Regression

Let {Yi ,Xi}ni=1 be an i.i.d., where Yi = X ′
i β + Ui and Ui ∼ N(0, σ2). We

showed that the maximum likelihood estimator of θ equals:

θ̂n =

[
β̂n

σ̂2

]
=

[(∑n
i=1 XiX

′
i

)−1 ∑n
i=1 XiYi

1
n

∑n
i=1(Yi − X ′

i β̂n)
2

]

The score and Fisher information matrix of θ are given by:

s(θ|x) =
[

1
σ2 (xy − xx ′β)

− 1
2σ2 +

1
2σ4 (y − x ′β)2

]
I(θ) = E

[
1
σ2 xx

′ 1
σ4 (xy − xx ′β)

1
σ4 (xy − xx ′β) − 1

2σ4 +
1
σ6 (y − x ′β)2

]
=

[
1
σ2E (xx

′) 0
0 1

2σ4

]

So, as n → ∞, we find that:
√
n(θ̂n − θ)

d→ N
(
0,

[
σ2E (xx ′)−1 0

0 2σ4

])
.

Note: σ2E (xx ′)−1 is the asymptotic variance of the OLS estimator β̂n
with homoskedastic errors, and asymptotic variance of σ̂2 is 2σ4.
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Hypothesis Testing Setup

Suppose θ ∈ Rk , and let g : Rk → Rp be continuously differentiable. We
wish to test a restriction of the form H0 : g(θ) = 0 vs. H1 : g(θ) ̸= 0.

Let θ̃n be the (constrained) maximizer of ℓn(θ) among θ satisfying H0.

Under H0, we expect that θ̃n should be “close” to θ̂n.

To assess H0 vs. H1, we introduce three types of tests.

(1) Wald Test: compare g(θ̂n) with zero
▶ If H0 holds, then g(θ) = 0. So, g(θ̂n) should be “close” to zero.

(2) Lagrange Multiplier Test: compare ∂Ln(θ̃n)
∂θ with zero

▶ If H0 holds, then θ̃n is the maximizer of Ln(θ). So,
∂Ln(θ̃n)

∂θ ≈ 0.

(3) Likelihood Ratio Test: compare Ln(θ̂n) with Ln(θ̃n)
▶ If H0 holds, then the likelihood functions for the constrained and

unconstrained maximizers should be similar, i.e. Ln(θ̂n) ≈ Ln(θ̃n).
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Wald Test

We know that
√
n(θ̂n − θ)

d→ N(0, I(θ)−1). By the Delta Method:

√
n(g(θ̂n)− g(θ))

d→ N(0,Dg(θ)I(θ)−1Dg(θ)′)

Under H0, we should expect ng(θ̂n)[Dg(θ)I(θ)−1Dg(θ)′]−1g(θ̂n)
d→ χ2

p.

Therefore, we choose Tn = ng(θ̂n)Σ̂
−1g(θ̂n) as a test statistic, where:

Σ̂ = Dg(θ̂n)
(
− 1

n

n∑
i=1

∂2 log fθ̂n(yi |xi )
∂θ∂θ′

)−1

Dg(θ̂n)
′

WLLN and CMT imply that Σ̂ is consistent for Dg(θ)I(θ)−1Dg(θ)′.

Our test is I{Tn > cn}, where cn is the (1− α)th quantile of a χ2
p.
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Lagrange Multiplier Test

Step 1. Choose θ̃n to maximize Ln(θ) such that f (θ) = 0.

Write down the FOC for the Lagrangian: sn(θ̃n|x)− ∂g(θ̃n)
∂θ λn = 0.

Pre-multiply by ∂g(θ̃n)
∂θ I(θ)−1 and solve for λn.

Step 2. By the Central Limit Theorem and the Delta Method:

√
nλn =

√
n
[∂g(θ̃n)

∂θ
I(θ)−1 ∂g(θ̃n)

∂θ

]−1 ∂g(θ̃n)

∂θ
I(θ)−1sn(θ̃n|x)

d→ N(0,
[∂g(θ̃n)

∂θ
I(θ)−1 ∂g(θ̃n)

∂θ

]−1

)

Step 3. Derive the Lagrange Multiplier Test statistic to be:

Tn = nsn(θ̃n|x)′
(
− 1

n

n∑
i=1

∂2 log fθ̃n(yi |xi )
∂θ∂θ′

)−1

sn(θ̃n|x)

Our test is I{Tn > cn}, where cn is the (1− α)th quantile of a χ2
p.
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Likelihood Ratio Test

If H0 is true, then ℓn(θ̃n) = ℓn(θ̂n). So, under H0, we should expect:

ℓn(θ̂n)

ℓn(θ̃n)
≈ 1 ⇐⇒ Ln(θ̂n)− Ln(θ̃n) ≈ 0

It can be shown that 2[Ln(θ̂n)− Ln(θ̃n)]
d→ χ2

p. So, choose Tn as:

Tn = 2[Ln(θ̂n)− Ln(θ̃n)]

Our test is I{Tn > cn}, where cn is the (1− α)th quantile of a χ2
p.

By the Neyman-Pearson Lemma, the likelihood ratio test is uniformly
most powerful for simple hypothesis tests H0 : θ = c vs. H1 : θ ̸= c .

For this reason, likelihood ratio tests are often quite convenient.
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