Lectures 16 & 17 Maximum Likelihood Estimation

Oscar Volpe

11/29/2021 & 12/01/2021

Oscar Volpe

Lectures 16 & 17

11/29/2021 & 12/01/2021 1/25

3

★ ∃ ► < ∃ ►</p>

< 47 ▶

- Unconditional Likelihood Functions
- Conditional Likelihood Functions

2 Properties of MLE

- Score and Information Matrix
- Cramér-Rao Lower Bound
- Asymptotic Distribution

Unconditional Likelihood Functions

• Conditional Likelihood Functions

Properties of MLE

- Score and Information Matrix
- Cramér-Rao Lower Bound
- Asymptotic Distribution

3 Inference

★ ∃ ► < ∃ ►</p>

Terminology

Consider an *i.i.d.* sample $\{X_i\}_{i=1}^n$, where $X_i \sim F$. Suppose that F depends on some (unknown) parameter θ . Our goal is to find a good estimate for θ .

- Question: Under the assumed distribution F, which choice of θ makes the observed data X₁,..., X_n most likely to have occurred in nature?
- Answering this question gives us the maximum likelihood estimator $\hat{\theta}_n$.

Definition (Likelihood Function)

The *likelihood*, denoted $\ell_n(\theta)$, is the joint density of X_1, \ldots, X_n under θ evaluated at the realized values x_1, \ldots, x_n . Thus, $\ell_n(\theta) = \prod_{i=1}^n f_{\theta}(x_i)$.

Definition (Log Likelihood Function)

The log likelihood $\mathcal{L}_n(\theta)$ is the natural log of $\ell_n(\theta)$, so $\mathcal{L}_n(\theta) = \log(\ell_n(\theta))$.

イロト 不得 トイラト イラト 一日

Solving for the MLE

We choose $\hat{\theta}_n$ to maximize the likelihood of having observed the data.

Definition (Maximum Likelihood Estimator)

The maximum likelihood estimator (MLE) equals $\hat{\theta}_n \in \operatorname{argmax}_{\theta \in \Theta} \ell_n(\theta)$.

Since $\log(\cdot)$ is monotonic, we can equivalently write $\hat{\theta}_n \in \operatorname{argmax}_{\theta \in \Theta} \mathcal{L}_n(\theta)$.

- Select $\hat{\theta}_n$ to maximize $\ell_n(\theta)$ or $\mathcal{L}_n(\theta)$. Choose whatever is easier.
- Note: $\mathcal{L}_n(\theta) = \sum_{i=1}^n \log f_{\theta}(x_i)$. Working with sums can be simpler!

Importantly, a maximizer of $\ell_n(\theta)$ need not exist and may not be unique.

- If $\hat{\theta}_n$ does not exist, then pick a "near" maximizer.
- If $\hat{\theta}_n$ is not unique, then choose any maximizer.

< 回 > < 三 > < 三 >

Example: A Biased Coin

Suppose $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim}$ Bernoulli(θ), where $\theta \in (0, 1)$. Then, $\ell_n(\theta)$ equals:

$$\ell_n(\theta) = \prod_{i=1}^n f_\theta(x_i) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i} = \theta^{n\bar{x}_n} (1-\theta)^{n(1-\bar{x}_n)}$$

The log likelihood function $\mathcal{L}_n(\theta)$ is given by:

$$\mathcal{L}_n(heta) = \sum_{i=1}^n \log f_{ heta}(x_i) = n imes [\log(heta) ar{x}_n + \log(1- heta)(1-ar{x}_n)]$$

To solve for $\hat{\theta}_n$, we can take first-order and second-order conditions. • $FOC: \frac{\partial \mathcal{L}_n(\theta)}{\partial \theta} = \frac{\bar{x}_n}{\theta} - \frac{1-\bar{x}_n}{1-\theta} = 0$ • $SOC: \frac{\partial^2 \mathcal{L}_n(\theta)}{\partial \theta^2} = -\frac{\bar{x}_n}{\theta^2} - \frac{1-\bar{x}_n}{(1-\theta)^2} < 0$

These two conditions imply that $\hat{\theta}_n = \bar{x}_n$ is the unique ML estimator for θ .

• Unconditional Likelihood Functions

Conditional Likelihood Functions

Properties of MLE

- Score and Information Matrix
- Cramér-Rao Lower Bound
- Asymptotic Distribution

3 Inference

★ ∃ ► < ∃ ►</p>

Conditioning on Data

You have an *i.i.d.* sample $\{Y_i, X_i\}_{i=1}^n$, where $Y_i|X_i \sim F_{Y_i|X_i}$. Let $F_{Y_i|X_i}$ depend on some (unknown) parameter θ . Your goal is to estimate θ .

Definition (Conditional Likelihood Function)

The conditional likelihood $\ell_n(\theta|x)$ is the joint density of $\{Y_i\}_{i=1}^n$ given $\{X_i\}_{i=1}^n$ under θ evaluated at $\{y_i, x_i\}_{i=1}^n$. Thus, $\ell_n(\theta|x) = \prod_{i=1}^n f_\theta(y_i|x_i)$.

Definition (Log Likelihood Function)

The conditional log likelihood is given by $\mathcal{L}_n(\theta|x) = \log(\ell_n(\theta|x))$.

As before, the maximum likelihood estimator is the maximizer of $\ell_n(\theta|x)$.

- With conditional MLE, $\hat{\theta}_n$ depends on $\{y_i\}_{i=1}^n$ as well as $\{x_i\}_{i=1}^n$.
- Again, a maximizer of $log(\ell_n(\theta|x))$ may not always exist or be unique.
- An unconditional MLE is just a special case of a conditional MLE.

Example: Linear Regression

You collect *i.i.d.* data $\{Y_i, X_i\}_{i=1}^n$, where you assume $Y_i = X'_i\beta + U_i$. Suppose $U_i \sim N(0, \sigma^2)$. In this case, distribution of Y_i given X_i equals:

$$f_{eta,\sigma^2}(Y_i|X_i) = rac{1}{\sqrt{2\pi\sigma^2}}\exp\left[-rac{1}{2\sigma^2}(Y_i-X_i'eta)^2
ight]$$

The conditional log-likelihood function for $\theta = (\beta, \sigma^2)'$ is given by:

$$\mathcal{L}_n(\theta|\{X_i\}_{i=1}^n) = -\frac{n}{2} \left[\log(2\pi) + \log(\sigma^2)\right] - \frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - X'_i\beta)^2$$

Taking first-order and second-order conditions, the MLE for θ equals:

$$\hat{\theta}_n = \begin{bmatrix} \hat{\beta}_n \\ \hat{\sigma}^2 \end{bmatrix} = \begin{bmatrix} \left(\sum_{i=1}^n X_i X_i' \right)^{-1} \sum_{i=1}^n X_i Y_i \\ \frac{1}{n} \sum_{i=1}^n (Y_i - X_i' \hat{\beta}_n)^2 \end{bmatrix}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Unconditional Likelihood Functions
- Conditional Likelihood Functions

2 Properties of MLE

• Score and Information Matrix

- Cramér-Rao Lower Bound
- Asymptotic Distribution

3 Inference

(B)

The Score

Definition (Score)

The score is the first derivative of the log likelihood: $s(\theta|x) = \frac{\partial \log f_{\theta}(y|x)}{\partial \theta}$.

- *Note:* if θ has multiple dimensions, then $s(\theta|x)$ is a column vector.
- We will use the score later on when testing restrictions about θ .

One property of the score is that $E[s(\theta|x)] = 0$. To see why, write:

$$E[s(\theta|x)] = \int \frac{\partial \log f_{\theta}(y|x)}{\partial \theta} f_{\theta}(y|x) dy = \int \frac{\frac{\partial f_{\theta}(y|x)}{\partial \theta}}{f_{\theta}(y|x)} f_{\theta}(y|x) dy = \int \frac{\partial f_{\theta}(y|x)}{\partial \theta} dy$$

Since $\int f_{\theta}(y|x)dy = 1$, under weak conditions: $\int \frac{\partial f_{\theta}(y|x)}{\partial \theta}dy = \frac{\partial}{\partial \theta}1 = 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Fisher Information

The Fisher information matrix is equal to the variance of the score.

- It measures how much information (Y_i, X_i) carries about θ .
- If this matrix is "large", then the sample draws of (X_i, Y_i) will be more informative, and the ML estimator of θ becomes more precise.

Definition (Fisher Information Matrix)

The Fisher information matrix is defined as $\mathcal{I}(\theta) = E[s(\theta|x)s(\theta|x)']$

One useful property is that $\mathcal{I}(\theta) = E[s(\theta|x)s(\theta|x)'] = -E\left[\frac{\partial^2 \log f_{\theta}(y|x)}{\partial \theta \partial \theta'}\right].$ To see why, recall that $0 = \int \frac{\partial \log f_{\theta}(y|x)}{\partial \theta} f_{\theta}(y|x) dy$. Differentiate w.r.t. θ' .

$$0 = \underbrace{\int \frac{\partial^2 \log f_{\theta}(y|x)}{\partial \theta \partial \theta'} f_{\theta}(y|x) dy}_{E\left[\frac{\partial^2 \log f_{\theta}(y|x)}{\partial \theta \partial \theta'}\right]} + \underbrace{\int \frac{\partial \log f_{\theta}(y|x)}{\partial \theta} \frac{\frac{\partial f_{\theta}(y|x)}{\partial \theta'}}{f_{\theta}(y|x)} f_{\theta}(y|x) dy}_{\mathcal{I}(\theta)}$$

- Unconditional Likelihood Functions
- Conditional Likelihood Functions

2 Properties of MLE

- Score and Information Matrix
- Cramér-Rao Lower Bound
- Asymptotic Distribution

3 Inference

э

A B A A B A

Information Inequality

Given a sample $\{Y_i, X_i\}_{i=1}^n$, suppose $\hat{\theta}_n$ is an unbiased estimator for θ . Then, the variance of this estimator is bounded from below by $\mathcal{I}(\theta)^{-1}$.

Theorem (Cramér-Rao Lower Bound)

Let $\hat{\theta}_n$ be an estimator of θ satisfying $E(\hat{\theta}_n) = \theta$. Then $Var(\hat{\theta}_n) \ge \mathcal{I}(\theta)^{-1}$.

This inequality shows how $\mathcal{I}(\theta)$ relates to an estimator's precision.

- A "smaller" $\mathcal{I}(\theta)$ is associated with greater variability of $\hat{\theta}_n$.
- An unbiased estimator with variance $\mathcal{I}(\theta)^{-1}$ will be *efficient*.
- The proof of this result relies on the Cauchy-Schwartz Inequality.

- Unconditional Likelihood Functions
- Conditional Likelihood Functions

2 Properties of MLE

- Score and Information Matrix
- Cramér-Rao Lower Bound
- Asymptotic Distribution

3 Inference

э

★ ∃ ► < ∃ ►</p>

A Useful Result

Theorem (Delta Method)

Let $\{X_n\}_{n=1}^n$ and X be random vectors, and c a constant, in \mathbb{R}^k . Let τ_n be a sequence of constants such that $\tau_n \to \infty$ and $\tau_n(X_n - c) \xrightarrow{d} X$. Then, for any continuous function $g : \mathbb{R}^k \to \mathbb{R}^m$, $\tau_n(g(X_n) - g(c)) \xrightarrow{d} Dg(c)X$.

- Here, Dg(c) is an m× k matrix of partials of g(·) evaluated at c.
 Note: if g : ℝ → ℝ, then Dg(c) = g'(c).
- To prove it, take a first-order Taylor expansion of $g(X_n)$ about c.

Important Special Case

The application of this theorem most relevant to us states that:

$$\sqrt{n}(\hat{\theta}_n - \theta) \rightarrow N(0, \Sigma) \implies \sqrt{n}(g(\hat{\theta}_n) - g(\theta)) \rightarrow N(0, Dg(\theta)\Sigma Dg(\theta)')$$

We will use this result to derive the limiting distribution of the MLE.

Asymptotic Distribution of the MLE (Part 1)

You have an *i.i.d.* sample $\{Y_i, X_i\}_{i=1}^n$, where $Y_i|X_i \sim F_{Y_i|X_i}$. Let $F_{Y_i|X_i}$ depend on some (unknown) parameter θ that you want to estimate.

Theorem (Asymptotic Normality)

Suppose that $\hat{\theta}_n$ is the MLE of θ . Then $\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\rightarrow} N(0, \mathcal{I}(\theta)^{-1})$.

Proof of the Theorem

Let $s_n(\theta|x) = \frac{1}{n} \sum_{i=1}^n \frac{\partial \log f_\theta(y_i|x_i)}{\partial \theta}$ and $H_n(\theta|x) = \frac{1}{n} \sum_{i=1}^n \frac{\partial^2 \log f_\theta(y_i|x_i)}{\partial \theta \partial \theta'}$. Applying the Central Limit Theorem, we know that:

$$\sqrt{n}s_n(\theta|x) \stackrel{d}{\rightarrow} N(0, E[s(\theta|x)s(\theta|x)']) \stackrel{d}{=} N(0, \mathcal{I}(\theta))$$

Note that $\hat{\theta}_n$ solves $s_n(\theta|x) = 0$. A Taylor approximation around θ gives us:

$$0 = s_n(\hat{\theta}_n) \approx s_n(\theta) + H_n(\theta|x)(\hat{\theta}_n - \theta)$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Asymptotic Distribution of the MLE (Part 2)

As
$$s_n(\theta) \approx -H_n(\theta|x)[\hat{\theta}_n - \theta]$$
, we know $\sqrt{n}(\hat{\theta}_n - \theta) \approx -\sqrt{n}H_n(\theta|x)^{-1}s_n(\theta)$.
 $\sqrt{n}(\hat{\theta}_n - \theta) \approx -\sqrt{n}H_n(\theta|x)^{-1}s_n(\theta)$
 $\stackrel{d}{\to} N(0, \mathcal{I}(\theta)^{-1}\mathcal{I}(\theta)\mathcal{I}(\theta)^{-1}) \stackrel{d}{=} N(0, \mathcal{I}(\theta)^{-1})$

The line above follows from the Delta Method. So, the theorem is true.

As $n \to \infty$, $\hat{\theta}_n$ is distributed normally with mean 0 and variance $\mathcal{I}(\theta)^{-1}$.

- By the Cramér-Rao Lower Bound, the MLE is asymptotically efficient. It has the smallest asymptotic variance among all unbiased estimators.
- This observation helps to justify our use of maximum likelihood.

Example Revisited: A Biased Coin

Suppose $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim}$ Bernoulli(θ), where $\theta \in (0, 1)$. We showed $\hat{\theta}_n = \bar{x}_n$ is the maximum likelihood estimator of θ . We compute $s(\theta)$ and $\mathcal{I}(\theta)$ as:

$$s(\theta) = \frac{\partial \log f_{\theta}(x)}{\partial \theta} = \frac{x}{\theta} - \frac{1-x}{1-\theta}$$
$$\mathcal{I}(\theta) = -E\left[\frac{\partial^2 \log f_{\theta}(x)}{\partial \theta^2}\right] = E\left[\frac{x}{\theta^2} + \frac{1-x}{(1-\theta)^2}\right] = \frac{1}{\theta(1-\theta)}$$

By our previous result, the limiting distribution of $\hat{\theta}_n = \bar{X}_n$ is equal to:

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\rightarrow} N(0, \theta(1 - \theta))$$

Recall that $Var(X_i) = \theta(1 - \theta)$. Since $\hat{\theta}_n$ is the sample mean of X_i , this result could have also been derived by applying the Central Limit Theorem.

Example Revisited: Linear Regression

Let $\{Y_i, X_i\}_{i=1}^n$ be an *i.i.d.*, where $Y_i = X'_i\beta + U_i$ and $U_i \sim N(0, \sigma^2)$. We showed that the maximum likelihood estimator of θ equals:

$$\hat{\theta}_n = \begin{bmatrix} \hat{\beta}_n \\ \hat{\sigma}^2 \end{bmatrix} = \begin{bmatrix} \left(\sum_{i=1}^n X_i X_i' \right)^{-1} \sum_{i=1}^n X_i Y_i \\ \frac{1}{n} \sum_{i=1}^n (Y_i - X_i' \hat{\beta}_n)^2 \end{bmatrix}$$

The score and Fisher information matrix of θ are given by:

$$s(\theta|x) = \begin{bmatrix} \frac{1}{\sigma^2}(xy - xx'\beta) \\ -\frac{1}{2\sigma^2} + \frac{1}{2\sigma^4}(y - x'\beta)^2 \end{bmatrix}$$
$$\mathcal{I}(\theta) = E\begin{bmatrix} \frac{1}{\sigma^2}xx' & \frac{1}{\sigma^4}(xy - xx'\beta) \\ \frac{1}{\sigma^4}(xy - xx'\beta) & -\frac{1}{2\sigma^4} + \frac{1}{\sigma^5}(y - x'\beta)^2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sigma^2}E(xx') & 0 \\ 0 & \frac{1}{2\sigma^4} \end{bmatrix}$$

So, as $n \to \infty$, we find that: $\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} N\left(0, \begin{bmatrix} \sigma^2 E(xx')^{-1} & 0\\ 0 & 2\sigma^4 \end{bmatrix}\right).$

• Note: $\sigma^2 E(xx')^{-1}$ is the asymptotic variance of the OLS estimator $\hat{\beta}_n$ with homoskedastic errors, and asymptotic variance of $\hat{\sigma}^2$ is $2\sigma^4$.

- Unconditional Likelihood Functions
- Conditional Likelihood Functions

Properties of MLE

- Score and Information Matrix
- Cramér-Rao Lower Bound
- Asymptotic Distribution

3 Inference

э

A B A A B A

Hypothesis Testing Setup

Suppose $\theta \in \mathbb{R}^k$, and let $g : \mathbb{R}^k \to \mathbb{R}^p$ be continuously differentiable. We wish to test a restriction of the form $H_0 : g(\theta) = 0$ vs. $H_1 : g(\theta) \neq 0$.

- Let $\tilde{\theta}_n$ be the (constrained) maximizer of $\ell_n(\theta)$ among θ satisfying H_0 .
- Under H_0 , we expect that $\tilde{\theta}_n$ should be "close" to $\hat{\theta}_n$.

To assess H_0 vs. H_1 , we introduce three types of tests.

- (1) Wald Test: compare $g(\hat{\theta}_n)$ with zero
 - ▶ If H_0 holds, then $g(\theta) = 0$. So, $g(\hat{\theta}_n)$ should be "close" to zero.
- (2) Lagrange Multiplier Test: compare $\frac{\partial \mathcal{L}_n(\tilde{\theta}_n)}{\partial \theta}$ with zero
 - If H_0 holds, then $\tilde{\theta}_n$ is the maximizer of $\mathcal{L}_n(\theta)$. So, $\frac{\partial \mathcal{L}_n(\tilde{\theta}_n)}{\partial \theta} \approx 0$.
- (3) Likelihood Ratio Test: compare $\mathcal{L}_n(\hat{\theta}_n)$ with $\mathcal{L}_n(\tilde{\theta}_n)$
 - If H₀ holds, then the likelihood functions for the constrained and unconstrained maximizers should be similar, i.e. L_n(θ̂_n) ≈ L_n(θ̃_n).

・ロト ・ 日本・ ・ 日本・

Wald Test

We know that $\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\rightarrow} N(0, \mathcal{I}(\theta)^{-1})$. By the Delta Method:

$$\sqrt{n}(g(\hat{\theta}_n) - g(\theta)) \stackrel{d}{\to} N(0, Dg(\theta)\mathcal{I}(\theta)^{-1}Dg(\theta)')$$

Under H_0 , we should expect $ng(\hat{\theta}_n)[Dg(\theta)\mathcal{I}(\theta)^{-1}Dg(\theta)']^{-1}g(\hat{\theta}_n) \xrightarrow{d} \chi_{\rho}^2$. Therefore, we choose $T_n = ng(\hat{\theta}_n)\hat{\Sigma}^{-1}g(\hat{\theta}_n)$ as a test statistic, where:

$$\hat{\Sigma} = Dg(\hat{\theta}_n) \Big(-\frac{1}{n} \sum_{i=1}^n \frac{\partial^2 \log f_{\hat{\theta}_n}(y_i|x_i)}{\partial \theta \partial \theta'} \Big)^{-1} Dg(\hat{\theta}_n)'$$

WLLN and CMT imply that Σ̂ is consistent for Dg(θ)I(θ)⁻¹Dg(θ)'.
Our test is I{T_n > c_n}, where c_n is the (1 − α)th quantile of a χ²_n.

Lagrange Multiplier Test

Step 1. Choose $\tilde{\theta}_n$ to maximize $\mathcal{L}_n(\theta)$ such that $f(\theta) = 0$.

- Write down the FOC for the Lagrangian: $s_n(\tilde{\theta}_n|x) \frac{\partial g(\tilde{\theta}_n)}{\partial \theta}\lambda_n = 0.$
- Pre-multiply by $\frac{\partial g(\hat{\theta}_n)}{\partial \theta} \mathcal{I}(\theta)^{-1}$ and solve for λ_n .

Step 2. By the Central Limit Theorem and the Delta Method:

$$\begin{split} \sqrt{n}\lambda_n &= \sqrt{n} \Big[\frac{\partial g(\tilde{\theta}_n)}{\partial \theta} \mathcal{I}(\theta)^{-1} \frac{\partial g(\tilde{\theta}_n)}{\partial \theta} \Big]^{-1} \frac{\partial g(\tilde{\theta}_n)}{\partial \theta} \mathcal{I}(\theta)^{-1} s_n(\tilde{\theta}_n | x) \\ & \stackrel{d}{\to} N(0, \Big[\frac{\partial g(\tilde{\theta}_n)}{\partial \theta} \mathcal{I}(\theta)^{-1} \frac{\partial g(\tilde{\theta}_n)}{\partial \theta} \Big]^{-1}) \end{split}$$

Step 3. Derive the Lagrange Multiplier Test statistic to be:

$$T_n = n s_n(\tilde{\theta}_n | x)' \Big(-\frac{1}{n} \sum_{i=1}^n \frac{\partial^2 \log f_{\tilde{\theta}_n}(y_i | x_i)}{\partial \theta \partial \theta'} \Big)^{-1} s_n(\tilde{\theta}_n | x)$$

Our test is $\mathbb{I}\{T_n > c_n\}$, where c_n is the $(1 - \alpha)$ th quantile of a χ^2_p .

Likelihood Ratio Test

If H_0 is true, then $\ell_n(\tilde{\theta}_n) = \ell_n(\hat{\theta}_n)$. So, under H_0 , we should expect: $\frac{\ell_n(\hat{\theta}_n)}{\ell_n(\tilde{\theta}_n)} \approx 1 \quad \Longleftrightarrow \quad \mathcal{L}_n(\hat{\theta}_n) - \mathcal{L}_n(\tilde{\theta}_n) \approx 0$

It can be shown that $2[\mathcal{L}_n(\hat{\theta}_n) - \mathcal{L}_n(\tilde{\theta}_n)] \xrightarrow{d} \chi_p^2$. So, choose T_n as:

$$T_n = 2[\mathcal{L}_n(\hat{\theta}_n) - \mathcal{L}_n(\tilde{\theta}_n)]$$

Our test is $\mathbb{I}\{T_n > c_n\}$, where c_n is the $(1 - \alpha)$ th quantile of a χ^2_p .

- By the Neyman-Pearson Lemma, the likelihood ratio test is uniformly most powerful for simple hypothesis tests H₀ : θ = c vs. H₁ : θ ≠ c.
- For this reason, likelihood ratio tests are often quite convenient.

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの