Lectures 2 & 3 Properties of Estimators

Oscar Volpe

9/29/2021 & 10/4/2021

Oscar Volpe

Lectures 2 & 3

9/29/2021 & 10/4/2021 1/28

(日) (四) (日) (日) (日)

э

- Random Samples
- Method of Moments
- The Bias-Variance Trade-off

2 Asymptotic Properties

- Consistency of Estimators
- Continuous Mapping Theorem
- Central Limit Theorem

3 Appendix

Random Samples

- Method of Moments
- The Bias-Variance Trade-off

Asymptotic Properties

- Consistency of Estimators
- Continuous Mapping Theorem
- Central Limit Theorem

3 Appendix

Drawing Data

When we collect data, we are observing the realizations of random vectors.

Definition (Sample)

A sample of size *n*, denoted by $\{X_i\}_{i=1}^n$, is a collection of random vectors.

- Note: the sampling process may be characterized in a variety of ways.
- When we take independent draws from a population, the resulting sample will be (on average) representative of the sample space.

Definition (Independent and Identically Distributed)

A sample $\{X_i\}_{i=1}^n$ is independent and identically distributed (i.i.d.) if elements of the $\{X_i\}_{i=1}^n$ are mutually independent and are all distributed according to the same distribution, i.e. $X_i \perp X_j$ and $F_{X_i} = F_{X_i}$ for all $i \neq j$.

イロト 不得 トイラト イラト 一日

Defining an Estimator

Our goal is to use data to say something about the *true* features of the wider population. To accomplish this task, we construct *estimators*.

Definition (Estimator, Estimate)

Given a sample $\{X_i\}_{i=1}^n$ and an unknown parameter θ in the population, an *estimator* for θ , denoted by $\hat{\theta}_n$, is a function of $\{X_i\}_{i=1}^n$ used to learn about θ . We call the realization of $\hat{\theta}_n$ an *estimate* of θ .

- The target parameter (or estimand) is object we wish to estimate.
- Given data $\{X_i\}_{i=1}^n$, we might want to estimate the population mean, the population variance, or even the entire distribution function.
- Important Distinction: the target parameter θ versus the estimator $\hat{\theta}_n$.

5 / 28

- Random Samples
- Method of Moments
- The Bias-Variance Trade-off

Asymptotic Properties

- Consistency of Estimators
- Continuous Mapping Theorem
- Central Limit Theorem

3 Appendix

Sample Analogue Principle

Suppose we know some properties that are satisfied for the "true parameter" in the population. If we can find a parameter value in the sample that causes the sample to mimic the properties of the population, we might use this parameter value to estimate the true parameter.

Suppose we have a sample $\{X_i\}_{i=1}^n$ drawn from distribution F. The sample analogue principle tells us we can estimate $\theta(F)$ using $\hat{\theta}_n = \theta(\hat{F}_n)$, where:

$$\hat{F}_n(t) = rac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \leq t)$$

We call $\hat{F}_n(t)$ the *empirical distribution function*, as it approximates F(t) by computing the proportion of draws that satisfy the condition $X_i \leq t$.

- The sample analogue principle gives us a "natural" estimator of θ .
- We compute the estimator by acting as if $\hat{F}_n = F$.

7 / 28

Method of Moments

In practice, the *sample analogue principle* suggests estimating parameters using sample averages. It leads to what we call the "Method of Moments".

- Step 1: write θ in terms of population moments: E(X), $E(X^2)$, etc.
- Step 2: replace the population moments with sample averages

The Sample Mean

Given a sample $\{X_i\}_{i=1}^n$, a natural estimator for E(X) is \bar{X}_n , where:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

We call this quantity the sample mean of X. Similarly, a natural estimator for $E(X^k)$ is $\frac{1}{n}\sum_{i=1}^n X_i^k$. These are all method of moments estimators.

Estimating the Variance

Any parameter θ that can be expressed in terms of population moments has a *method of moments* estimator, e.g. $g(\bar{X}_n)$ approximates g(E(X)).

- This gives us an estimator for a wide variety of target parameters.
- Example: you have a sample $\{X_i, Y_i, Z_i\}_{i=1}^n$ and $\theta = E(XY^2Z^3)$ is your target parameter. An estimator is $\hat{\theta}_n^{MOM} = \frac{1}{n} \sum_{i=1}^n X_i Y_i^2 Z_i^3$.

What is method of moments estimator for $Var(X) = E((X - E(X))^2)$?

$$\hat{\theta}_n^{\mathsf{MoM}} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}_n^2$$

Is $\hat{\theta}_n^{MoM}$ the "best" estimator for Var(X)? What do we mean by "best"?

Finite-Sample Properties

Definition (Bias)

Let θ be some target parameter. The *bias* of an estimator $\hat{\theta}_n$ for θ equals:

$$\mathsf{Bias}(\hat{ heta}_n) = E(\hat{ heta}_n) - heta$$

- We say that $\hat{\theta}_n$ is *unbiased* if $\text{Bias}(\hat{\theta}_n) = 0$.
- We call the sign of $Bias(\hat{\theta}_n)$ the "direction of bias".

Definition (Precision)

The variance of an estimator $\hat{\theta}_n$ is $Var(\hat{\theta}_n)$, and the precision of an estimator is the reciprocal of its variance, i.e. $Precision(\hat{\theta}_n) = 1/Var(\hat{\theta}_n)$.

- Even for small samples, it is often desirable to have precise estimators.
- Let $\hat{\theta}_n$ and $\tilde{\theta}_n$ be unbiased estimators. We say that $\hat{\theta}_n$ is more efficient than $\tilde{\theta}_n$ if it has higher precision, i.e. lower variance, than $\tilde{\theta}_n$.

The Sample Variance

We can show that $\hat{\theta}_n^{MoM} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ is biased downward. Where \hat{X}_n

The Sample Variance

An unbiased estimate of the Var(X) is the sample variance s_n^2 , where:

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

In this case, the method of moments estimator is not most desirable.

- Dividing by n-1 instead of n is called "Bessel's correction".
- Similarly, the sample covariance $s_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X}_n)(Y_i \bar{Y}_n)$ will give you an unbiased estimator for the covariance $\theta = \text{Cov}(X, Y)$.

- Random Samples
- Method of Moments
- The Bias-Variance Trade-off

Asymptotic Properties

- Consistency of Estimators
- Continuous Mapping Theorem
- Central Limit Theorem

3 Appendix

э

Mean Squared Error

What properties would it be "nice" for an estimator to have?

1 Low Bias:
$$\mathbb{E}[\hat{\theta}_n] \approx \theta$$

2 High Precision/Low Variance: $E[(\hat{\theta}_n - E[\hat{\theta}_n])^2]$ "small"

In practice, when fitting models, we often encounter trade-offs.

$$MSE(\hat{\theta}_n) = \mathbb{E}[(\hat{\theta}_n - \theta)^2]$$

= $\mathbb{E}[\hat{\theta}_n^2] + \theta^2 - 2\mathbb{E}[\hat{\theta}_n]\theta$
= $\underbrace{\mathbb{E}[\hat{\theta}_n^2] - \mathbb{E}[\hat{\theta}_n]^2}_{Variance} + \underbrace{\theta^2 - 2\mathbb{E}[\hat{\theta}_n]\theta + \mathbb{E}[\hat{\theta}_n]^2}_{Bias^2}$

- 2

Visualizing the Trade-off

Visualizing the Bias-Variance Trade-off

- The left is oversmoothed high bias, low variance
- The right is **undersmoothed** low bias, high variance
- (What does "too much/little" mean? Here we use "eyeball optimality")

Diagram from A. Torgovitsky.

- Random Samples
- Method of Moments
- The Bias-Variance Trade-off

2 Asymptotic Properties

- Consistency of Estimators
- Continuous Mapping Theorem
- Central Limit Theorem

3 Appendix

Convergence in Probability

Definition (Convergence in Probability)

A sequence of random vectors $\{X_i\}_{i=1}^n$ converges in probability to X, denoted by $X_n \xrightarrow{p} X$, if, for all $\varepsilon > 0$, $P(|X_n - X| > \varepsilon) \to 0$ as $n \to \infty$.

If an estimator $\hat{\theta}_n$ converges in probability to θ , i.e. if $\hat{\theta}_n \xrightarrow{p} \theta$, then we say that $\hat{\theta}_n$ is a *consistent* estimator of θ . This is an *asymptotic property*.

- Intuitively, $\hat{\theta}_n$ is *consistent* if it gets "closer" (in a \xrightarrow{p} sense) to θ when the sample size *n* becomes larger. For large samples, this is desirable.
- \xrightarrow{p} differs from other types of convergence, such as *a.s. convergence*, *convergence in q_{th} moment*, and *convergence in distribution*.

Markov's Inequality

Theorem (Markov's Inequality)

For any random variable X, $P(|X| > \varepsilon) \leq \frac{E(|X|^q)}{\varepsilon^q}$ for all $q, \varepsilon > 0$.

- Notice that Markov's inequality places an upper bound on the probability that |X| > ε in terms of the moments of |X|.
- Use it constructing confidence regions for $\hat{\theta}_n$ or to show $\hat{\theta}_n \xrightarrow{p} \theta$.

Application (WLLN)

Let $\{X_i\}_{i=1}^n$ be i.i.d. random variables with mean μ and variance σ^2 . Then:

$$P(|\bar{X}_n - \mu| > \varepsilon) \le \frac{E(|\bar{X}_n - \mu|^2)}{\varepsilon^2}$$

= $\frac{E(\sum_{i=1}^n (X_i - \mu)^2 + \sum_{i=1}^n \sum_{j \ne i} (X_i - \mu)(X_j - \mu))}{n^2 \varepsilon^2}$
= $\frac{n \operatorname{Var}(X_i)}{n^2 \varepsilon^2} = \frac{\sigma^2}{n \varepsilon^2} \to 0, \quad \text{as } n \to \infty$

Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)

Let $\{X_i\}_{i=1}^n$ be a sample of *i.i.d.* random variables. If E(X) exists, then the sample mean \bar{X}_n is a consistent estimator for E(X), *i.e.* $\bar{X}_n \xrightarrow{p} X$.

- *Important Result:* as long as the sample is i.i.d., the sample mean will tend toward the *true* mean as the sample size becomes larger.
- There is also a Strong Law of Large Numbers, stating: $\bar{X}_n \stackrel{a.s.}{\to} E(X)$.
- The WLLN implies that $\frac{1}{n} \sum_{i=1}^{n} g(X_i) \xrightarrow{p} E(g(X_i))$ if $E(g(X_i))$ exists, since functions of i.i.d. random variables are also going to be i.i.d..
- The WLLN is even more powerful when combined with the Continuous Mapping Theorem (see the next section).

< □ > < □ > < □ > < □ > < □ > < □ >

- Random Samples
- Method of Moments
- The Bias-Variance Trade-off

Asymptotic Properties Consistency of Estimators

• Continuous Mapping Theorem

• Central Limit Theorem

3 Appendix

э

Theorem Statement

Theorem (CMT for $\stackrel{p}{\rightarrow}$)

Let $\theta_1, \ldots, \theta_k$ be unknown parameters in the population. Let $\{X_i\}_{i=1}^n$ be a sample, and let $\hat{\theta}_n^{(1)}, \ldots, \hat{\theta}_n^{(k)}$ be estimators for $\theta_1, \ldots, \theta_k$ (respectively). If the function g is continuous over the support of $(\theta_1, \ldots, \theta_k)$, then:

$$\hat{\theta}_n^{(1)} \xrightarrow{p} \theta_1, \dots, \hat{\theta}_n^{(k)} \xrightarrow{p} \theta_k \implies g(\hat{\theta}_n^{(1)}, \dots, \hat{\theta}_n^{(k)}) \xrightarrow{p} g(\theta_1, \dots, \theta_k)$$

Example

We can show $\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X}_n)^2$ is consistent for Var(X) using the CMT.

$$\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X}_{n})^{2} = \frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-\bar{X}_{n}^{2}, \text{ where: } \frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \xrightarrow{p} E(X^{2})$$
$$\bar{X}_{n} \xrightarrow{p} E(X)$$

Since $g(y, z) = y - z^2$ is a continuous function, the continuous mapping theorem guarantees that $\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}_n^2 \xrightarrow{p} E(X^2) - E(X)^2 = Var(X)$.

20 / 28

Finite-Sample vs. Asymptotic Properties

Suppose $\{X_i\}_{i=1}^n$ are iid random variables generated from F.

- Q1. Is \bar{X}_n unbiased for $\mathbb{E}[X]$? Is it consistent?
- Q2. Is $\frac{X_1+X_2}{2}$ unbiased for $\mathbb{E}[X]$? Is it consistent?
- Q3. Is \bar{X}_n^{-1} unbiased for $\mathbb{E}[X]^{-1}$? Is it consistent?
- Q4. Is $g(\bar{X}_n)$ unbiased for g(E(X))? Is it consistent?
- Q5. Is $\frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X}_n)^2$ unbiased for Var[X]? Is it consistent?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Random Samples
- Method of Moments
- The Bias-Variance Trade-off

2 Asymptotic Properties

- Consistency of Estimators
- Continuous Mapping Theorem
- Central Limit Theorem

3 Appendix

э

Limiting Distributions

Definition (Convergence in Distribution)

A sequence of random vectors $\{X_i\}_{i=1}^n$ converges in distribution to X, denoted by $X_n \xrightarrow{d} X$, if, for all x at which $P(X \le x)$ is continuous:

$$P(X_n \le x) o P(X \le x)$$
 as $n \to \infty$

• Important Note: \xrightarrow{p} implies \xrightarrow{d} , but \xrightarrow{d} does not imply \xrightarrow{p} .

• As a counterexample, let $X \sim N(0,1)$ and $X_n = -X$.

• $\stackrel{d}{\rightarrow}$ is useful for deriving the asymptotic distributions of estimators.

Useful Properties

•
$$X_n \xrightarrow{d} X$$
 and $Y_n \xrightarrow{p} X_n$ implies $Y_n \xrightarrow{d} X$.

• $X_n \xrightarrow{d} c$ implies $X_n \xrightarrow{p} c$ if c is a constant.

Theorem Statement: Univariate Case

Theorem (Central Limit Theorem)

Let $\{X_i\}_{i=1}^n$ be a sample of *i.i.d.* random variables. If $Var(X) < \infty$, then:

$$\sqrt{n}(\bar{X}_n - E(X)) \stackrel{d}{\rightarrow} N(0, Var(X))$$

- For "large" samples, $\sqrt{n}(\bar{X}_n E(X))$ is approximately normally distributed, regardless of what the initial distribution of X_i is.
- Extremely useful for deriving the limiting distributions of estimators.
- Even more powerful when used with *Slutsky's theorem* (next slide).
- We say that $\hat{\theta}_n$ is a \sqrt{n} -consistent estimator for θ if:

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\rightarrow} N(0, \sigma^2),$$

for some σ^2 , which we call the *asymptotic variance* of $\hat{\theta}_n$.

Continuous Mapping Theorem for $\stackrel{d}{\rightarrow}$

Theorem (CMT for $\stackrel{d}{\rightarrow}$)

Let θ be an unknown parameter in the population. Let $\{X_i\}_{i=1}^n$ be a sample, and let $\hat{\theta}_n$ be an estimator for θ . If the function g is continuous over the support of θ , then $\hat{\theta}_n \xrightarrow{d} \theta$ implies that $g(\hat{\theta}_n) \xrightarrow{d} g(\theta)$.

• Importantly, note that marginal $\stackrel{d}{\rightarrow}$ does not imply joint $\stackrel{d}{\rightarrow}$.

An important special case of this theorem is Slutsky's theorem:

Theorem (Slutsky's Theorem)

Suppose $\hat{\theta}_n^{(1)} \xrightarrow{d} X$ and $\hat{\theta}_n^{(2)} \xrightarrow{d} c$ for some constant $c \neq 0$. Then:

 $\hat{\theta}_n^{(1)} + \hat{\theta}_n^{(2)} \xrightarrow{d} X + c, \quad \hat{\theta}_n^{(1)} \hat{\theta}_n^{(2)} \xrightarrow{d} Xc, \quad \hat{\theta}_n^{(1)} / \hat{\theta}_n^{(2)} \xrightarrow{d} X/c$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Theorem Statement: Multivariate Case

Theorem (Multivariate Central Limit Theorem)

Let $\{X_i\}_{i=1}^n$ be a sample of *i.i.d.* random vectors in \mathbb{R}^k . Suppose that the variance-covariance matrix $\Sigma \in \mathbb{R}^{k \times k}$ exists. Then:

$$\sqrt{n}(\bar{X}_n - E(X)) \stackrel{d}{\rightarrow} N(\mathbf{0}, \Sigma)$$

Note. This theorem is particularly useful when we look at linear models:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \cdots + \beta_k X_{ik} + U_i,$$

where each coefficient β_j is estimated by an estimator $\hat{\beta}_j$. The multivariate Central Limit Theorem allows us to derive the limiting distribution:

$$\sqrt{n}(\hat{\beta}-\beta) \stackrel{d}{\rightarrow} N(\mathbf{0},V),$$

where $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k)' \in \mathbb{R}^{k+1}$ and $\beta = (\beta_0, \beta_1, \dots, \beta_k)' \in \mathbb{R}^{k+1}$.

- Random Samples
- Method of Moments
- The Bias-Variance Trade-off

Asymptotic Properties

- Consistency of Estimators
- Continuous Mapping Theorem
- Central Limit Theorem

3 Appendix

э

Bessel's Correction

1

We show that $E(\hat{\theta}_n^{\text{MoM}}) = \left(\frac{n-1}{n}\right) \operatorname{Var}(X_i)$, so $\hat{\theta}_n^{\text{MoM}}$ is downward biased. Setting $s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 = \frac{n}{n-1} \hat{\theta}_n^{\text{MoM}}$, we have $E(s_n^2) = \operatorname{Var}(X_i)$.

$$E(\hat{\theta}_{n}^{\mathsf{MOM}}) = E\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X}_{n})^{2}\right) = \frac{1}{n}\sum_{i=1}^{n}E\left((X_{i}-\bar{X}_{n})^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left((X_{i}-E(X_{i})-(\bar{X}_{n}-E(X_{i})))^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left((X_{i}-E(X_{i}))^{2}-2(X_{i}-E(X_{i}))(\bar{X}_{n}-E(X_{i}))+(\bar{X}_{n}-E(X_{i}))^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\operatorname{Var}(X_{i}) - \frac{2}{n}\sum_{i=1}^{n}E\left((X_{i}-E(X_{i}))(\bar{X}_{n}-E(X_{i})))+\frac{1}{n}\sum_{i=1}^{n}E\left((\bar{X}_{n}-E(X_{i}))^{2}\right)$$

$$= \frac{n}{n}\operatorname{Var}(X_{i}) - E\left((\bar{X}_{n}-E(X_{i}))\frac{2}{n}\sum_{i=1}^{n}(X_{i}-E(X_{i}))\right) + \frac{n}{n}E\left((\bar{X}_{n}-E(X_{i}))^{2}\right)$$

$$= \operatorname{Var}(X_{i}) - E\left((\bar{X}_{n}-E(X_{i}))^{2}\right) = \operatorname{Var}(X_{i}) - \operatorname{Var}(\bar{X}_{n}) = \operatorname{Var}(X_{i}) - \frac{1}{n}\operatorname{Var}(X_{i})$$

Oscar Volpe

9/29/2021 & 10/4/2021 28/28