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Drawing Data

When we collect data, we are observing the realizations of random vectors.

Definition (Sample)

A sample of size n, denoted by {Xi}ni=1, is a collection of random vectors.

Note: the sampling process may be characterized in a variety of ways.

When we take independent draws from a population, the resulting
sample will be (on average) representative of the sample space.

Definition (Independent and Identically Distributed)

A sample {Xi}ni=1 is independent and identically distributed (i.i.d.) if
elements of the {Xi}ni=1 are mutually independent and are all distributed
according to the same distribution, i.e. Xi ⊥ Xj and FXi

= FXj
for all i ̸= j .
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Defining an Estimator

Our goal is to use data to say something about the true features of the
wider population. To accomplish this task, we construct estimators.

Definition (Estimator, Estimate)

Given a sample {Xi}ni=1 and an unknown parameter θ in the population,

an estimator for θ, denoted by θ̂n, is a function of {Xi}ni=1 used to learn

about θ. We call the realization of θ̂n an estimate of θ.

The target parameter (or estimand) is object we wish to estimate.

Given data {Xi}ni=1, we might want to estimate the population mean,
the population variance, or even the entire distribution function.

Important Distinction: the target parameter θ versus the estimator θ̂n.
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Sample Analogue Principle

Suppose we know some properties that are satisfied for the “true
parameter” in the population. If we can find a parameter value in the
sample that causes the sample to mimic the properties of the population,
we might use this parameter value to estimate the true parameter.

Suppose we have a sample {Xi}ni=1 drawn from distribution F . The sample

analogue principle tells us we can estimate θ(F ) using θ̂n = θ(F̂n), where:

F̂n(t) =
1

n

n∑
i=1

I(Xi ≤ t)

We call F̂n(t) the empirical distribution function, as it approximates F (t)
by computing the proportion of draws that satisfy the condition Xi ≤ t.

The sample analogue principle gives us a “natural” estimator of θ.

We compute the estimator by acting as if F̂n = F .
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Method of Moments

In practice, the sample analogue principle suggests estimating parameters
using sample averages. It leads to what we call the “Method of Moments”.

Step 1: write θ in terms of population moments: E (X ), E (X 2), etc.

Step 2: replace the population moments with sample averages

The Sample Mean

Given a sample {Xi}ni=1, a natural estimator for E (X ) is X̄n, where:

X̄n =
1

n

n∑
i=1

Xi

We call this quantity the sample mean of X . Similarly, a natural estimator
for E (X k) is 1

n

∑n
i=1 X

k
i . These are all method of moments estimators.
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Estimating the Variance

Any parameter θ that can be expressed in terms of population moments
has a method of moments estimator, e.g. g(X̄n) approximates g(E (X )).

This gives us an estimator for a wide variety of target parameters.

Example: you have a sample {Xi ,Yi ,Zi}ni=1 and θ = E (XY 2Z 3) is

your target parameter. An estimator is θ̂MoM
n = 1

n

∑n
i=1 XiY

2
i Z

3
i .

What is method of moments estimator for Var(X ) = E ((X − E (X ))2)?

θ̂MoM
n =

1

n

n∑
i=1

(Xi − X̄n)
2 =

1

n

n∑
i=1

X 2
i − X̄ 2

n

Is θ̂MoM
n the “best” estimator for Var(X )? What do we mean by “best”?
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Finite-Sample Properties

Definition (Bias)

Let θ be some target parameter. The bias of an estimator θ̂n for θ equals:

Bias(θ̂n) = E (θ̂n)− θ

We say that θ̂n is unbiased if Bias(θ̂n) = 0.

We call the sign of Bias(θ̂n) the “direction of bias”.

Definition (Precision)

The variance of an estimator θ̂n is Var(θ̂n), and the precision of an
estimator is the reciprocal of its variance, i.e. Precision(θ̂n) = 1/Var(θ̂n).

Even for small samples, it is often desirable to have precise estimators.

Let θ̂n and θ̃n be unbiased estimators. We say that θ̂n is more
efficient than θ̃n if it has higher precision, i.e. lower variance, than θ̃n.
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The Sample Variance

We can show that θ̂MoM
n = 1

n

∑n
i=1(Xi − X̄n)

2 is biased downward. Why ?

The Sample Variance
An unbiased estimate of the Var(X ) is the sample variance s2n , where:

s2n =
1

n − 1

n∑
i−1

(Xi − X̄n)
2

In this case, the method of moments estimator is not most desirable.

Dividing by n − 1 instead of n is called “Bessel’s correction”.

Similarly, the sample covariance sXY = 1
n−1

∑n
i−1(Xi − X̄n)(Yi − Ȳn)

will give you an unbiased estimator for the covariance θ = Cov(X ,Y ).
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Mean Squared Error

What properties would it be “nice” for an estimator to have?

1 Low Bias: E[θ̂n] ≈ θ

2 High Precision/Low Variance: E [(θ̂n − E [θ̂n])
2] “small”

In practice, when fitting models, we often encounter trade-offs.

MSE (θ̂n) = E[(θ̂n − θ)2]

= E[θ̂2n] + θ2 − 2E[θ̂n]θ

= E[θ̂2n]− E[θ̂n]2︸ ︷︷ ︸
Variance

+ θ2 − 2E[θ̂n]θ + E[θ̂n]2︸ ︷︷ ︸
Bias2
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Visualizing the Trade-off

Visualizing the Bias-Variance Trade-off

Diagram from A. Torgovitsky.
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Convergence in Probability

Definition (Convergence in Probability)

A sequence of random vectors {Xi}ni=1 converges in probability to X ,

denoted by Xn
p→ X , if, for all ε > 0, P(|Xn − X | > ε) → 0 as n → ∞.

If an estimator θ̂n converges in probability to θ, i.e. if θ̂n
p→ θ, then we say

that θ̂n is a consistent estimator of θ. This is an asymptotic property.

Intuitively, θ̂n is consistent if it gets “closer” (in a
p→ sense) to θ when

the sample size n becomes larger. For large samples, this is desirable.
p→ differs from other types of convergence, such as a.s. convergence,
convergence in qth moment, and convergence in distribution.
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Markov’s Inequality

Theorem (Markov’s Inequality)

For any random variable X , P(|X | > ε) ≤ E(|X |q)
εq for all q, ε > 0.

Notice that Markov’s inequality places an upper bound on the
probability that |X | > ε in terms of the moments of |X |.
Use it constructing confidence regions for θ̂n or to show θ̂n

p→ θ.

Application (WLLN)

Let {Xi}ni=1 be i.i.d. random variables with mean µ and variance σ2. Then:

P(|X̄n − µ| > ε) ≤ E (|X̄n − µ|2)
ε2

=
E
(∑n

i=1(Xi − µ)2 +
∑n

i=1

∑
j ̸=i (Xi − µ)(Xj − µ)

)
n2ε2

=
nVar(Xi )

n2ε2
=

σ2

nε2
→ 0, as n → ∞
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Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)

Let {Xi}ni=1 be a sample of i.i.d. random variables. If E (X ) exists, then

the sample mean X̄n is a consistent estimator for E (X ), i.e. X̄n
p→ X.

Important Result: as long as the sample is i.i.d., the sample mean will
tend toward the true mean as the sample size becomes larger.

There is also a Strong Law of Large Numbers, stating: X̄n
a.s.→ E (X ).

The WLLN implies that 1
n

∑n
i=1 g(Xi )

p→ E (g(Xi )) if E (g(Xi )) exists,
since functions of i.i.d. random variables are also going to be i.i.d..

The WLLN is even more powerful when combined with the
Continuous Mapping Theorem (see the next section).
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Theorem Statement

Theorem (CMT for
p→)

Let θ1, . . . , θk be unknown parameters in the population. Let {Xi}ni=1 be a

sample, and let θ̂
(1)
n , . . . , θ̂

(k)
n be estimators for θ1, . . . , θk (respectively). If

the function g is continuous over the support of (θ1, . . . , θk), then:

θ̂
(1)
n

p→ θ1, . . . , θ̂
(k)
n

p→ θk =⇒ g(θ̂
(1)
n , . . . , θ̂

(k)
n )

p→ g(θ1, . . . , θk)

Example

We can show 1
n

∑n
i=1(Xi − X̄n)

2 is consistent for Var(X ) using the CMT.

1

n

n∑
i=1

(Xi − X̄n)
2 =

1

n

n∑
i=1

X 2
i − X̄ 2

n , where:

1

n

n∑
i=1

X 2
i

p→ E(X 2)

X̄n
p→ E(X )

Since g(y , z) = y − z2 is a continuous function, the continuous mapping

theorem guarantees that 1
n

∑n
i=1 X

2
i − X̄ 2

n
p→ E (X 2)− E (X )2 = Var(X ).
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Finite-Sample vs. Asymptotic Properties

Suppose {Xi}ni=1 are iid random variables generated from F .

Q1. Is X̄n unbiased for E[X ]? Is it consistent?

Q2. Is X1+X2
2 unbiased for E[X ]? Is it consistent?

Q3. Is X̄−1
n unbiased for E[X ]−1? Is it consistent?

Q4. Is g(X̄n) unbiased for g(E (X ))? Is it consistent?

Q5. Is 1
n

∑n
i=1(Xi − X̄n)

2 unbiased for Var[X ]? Is it consistent?
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Limiting Distributions

Definition (Convergence in Distribution)

A sequence of random vectors {Xi}ni=1 converges in distribution to X ,

denoted by Xn
d→ X , if, for all x at which P(X ≤ x) is continuous:

P(Xn ≤ x) → P(X ≤ x) as n → ∞

Important Note:
p→ implies

d→, but
d→ does not imply

p→.
▶ As a counterexample, let X ∼ N(0, 1) and Xn = −X .

d→ is useful for deriving the asymptotic distributions of estimators.

Useful Properties

Xn
d→ X and Yn

p→ Xn implies Yn
d→ X .

Xn
d→ c implies Xn

p→ c if c is a constant.
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Theorem Statement: Univariate Case

Theorem (Central Limit Theorem)

Let {Xi}ni=1 be a sample of i.i.d. random variables. If Var(X ) < ∞, then:

√
n(X̄n − E (X ))

d→ N(0,Var(X ))

For “large” samples,
√
n(X̄n − E (X )) is approximately normally

distributed, regardless of what the initial distribution of Xi is.

Extremely useful for deriving the limiting distributions of estimators.

Even more powerful when used with Slutsky’s theorem (next slide).

We say that θ̂n is a
√
n-consistent estimator for θ if:

√
n(θ̂n − θ)

d→ N(0, σ2),

for some σ2, which we call the asymptotic variance of θ̂n.
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Continuous Mapping Theorem for
d→

Theorem (CMT for
d→)

Let θ be an unknown parameter in the population. Let {Xi}ni=1 be a

sample, and let θ̂n be an estimator for θ. If the function g is continuous

over the support of θ, then θ̂n
d→ θ implies that g(θ̂n)

d→ g(θ).

Importantly, note that marginal
d→ does not imply joint

d→.

An important special case of this theorem is Slutsky’s theorem:

Theorem (Slutsky’s Theorem)

Suppose θ̂
(1)
n

d→ X and θ̂
(2)
n

d→ c for some constant c ̸= 0. Then:

θ̂
(1)
n + θ̂

(2)
n

d→ X + c , θ̂
(1)
n θ̂

(2)
n

d→ Xc, θ̂
(1)
n /θ̂

(2)
n

d→ X/c
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Theorem Statement: Multivariate Case

Theorem (Multivariate Central Limit Theorem)

Let {Xi}ni=1 be a sample of i.i.d. random vectors in Rk . Suppose that the
variance-covariance matrix Σ ∈ Rk×k exists. Then:

√
n(X̄n − E (X ))

d→ N(0,Σ)

Note. This theorem is particularly useful when we look at linear models:

Yi = β0 + β1Xi1 + · · ·+ βkXik + Ui ,

where each coefficient βj is estimated by an estimator β̂j . The multivariate
Central Limit Theorem allows us to derive the limiting distribution:

√
n(β̂ − β)

d→ N(0,V ),

where β̂ = (β̂0, β̂1, . . . , β̂k)
′ ∈ Rk+1 and β = (β0, β1, . . . , βk)

′ ∈ Rk+1.
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Bessel’s Correction

We show that E (θ̂MoM
n ) =

(
n−1
n

)
Var(Xi ), so θ̂MoM

n is downward biased.

Setting s2n = 1
n−1

∑n
i−1(Xi − X̄n)

2 = n
n−1 θ̂

MoM
n , we have E (s2n) = Var(Xi ).

E(θ̂MoM
n ) = E

( 1

n

n∑
i=1

(Xi − X̄n)
2
)
=

1

n

n∑
i=1

E
(
(Xi − X̄n)

2
)

=
1

n

n∑
i=1

E
(
(Xi − E(Xi )− (X̄n − E(Xi )))

2
)

=
1

n

n∑
i=1

E
(
(Xi − E(Xi ))

2 − 2(Xi − E(Xi ))(X̄n − E(Xi )) + (X̄n − E(Xi ))
2
)

=
1

n

n∑
i=1

Var(Xi )−
2

n

n∑
i=1

E
(
(Xi − E(Xi ))(X̄n − E(Xi ))

)
+

1

n

n∑
i=1

E
(
(X̄n − E(Xi ))

2
)

=
n

n
Var(Xi )− E

(
(X̄n − E(Xi ))

2

n

n∑
i=1

(Xi − E(Xi ))
)
+

n

n
E
(
(X̄n − E(Xi ))

2
)

= Var(Xi )− E
(
(X̄n − E(Xi ))

2
)
= Var(Xi )− Var(X̄n) = Var(Xi )−

1

n
Var(Xi )

Go Back
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