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Frequentist versus Bayesian Inference

Frequentist Approach
To test hypotheses, one must model what has not occurred.

Verify/reject hypotheses about a model that is assumed to be true.

Must design your experiment and stopping rule before you test

“No isolated experiment, however significant in itself, can suffice for the

experimental demonstration of any natural phenomenon; for the ‘one chance in a

million’ will undoubtedly occur, with no less and no more than its appropriate

frequency, however surprised we may be that it should occur to us.”

-Ronald Fisher, 1935

Bayesian Approach
Use prior information in conjunction with new data in your sample.

All model parameters are assumed to be random variables.

Start with a prior, and then update your beliefs based on likelihoods.
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Null Hypotheses & Alternative Hypotheses

Let θ be an unknown parameter in the population. Suppose you wish to
test whether θ equals or lies above/below some value using data {Xi}ni=1.
You write down a null hypothesis (H0) and an alternative hypothesis (H1).

Example 1 (One-Sided Test). H0 : θ ≤ (≥)c and H1 : θ > (<)c .

Example 2 (Two-Sided Test). H0 : θ = c and H1 : θ 6= c .

Idea
Given data {Xi}ni=1, is there sufficient evidence to reject H0 in favor of H1?

If so, then we can “reject” the null hypothesis.

If not, then we “fail to reject” the null hypothesis.
I Importantly, we do not “accept” H0. There is just not enough evidence

to rule out the possibility of H0. Think of H0 as signifying “no effect”.
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Significance Level

Given this setup, we are susceptible to two types of errors:

Type-I Error: reject the null hypothesis when it is true

Type-II Error: fail to reject the null hypothesis when it is false

Reject H0 Fail to Reject H0

H0 True Type-I Error Correct
H0 False Correct Type-II Error

The consensus is generally that false positives are worse than false
negatives, i.e. that Type-I Error is typically worse than Type-II Error.

Definition (Significance Level)

The significance level of a test of H0 against H1 is the probability of
incorrectly rejecting H0, and it is denoted by α = P(reject H0|H0 true).

Oscar Volpe Lecture 4 10/6/2021 6 / 21



1 Hypothesis Testing
Frequentism
Test Statistics
Distributional Properties

2 Confidence Regions
Finite Sample Coverage
Asymptotic Confidence Intervals

Oscar Volpe Lecture 4 10/6/2021 7 / 21



Constructing a Test

Let β denote the probability of failing to reject H0 when H1 is true. We say
that a test has “high power” if there is a small probability of Type-II Error.

Definition (Power of a Test)

The power of a test of H0 against H1 is the probability of rejecting a false
H0 under a specific alternative H1, i.e. π = 1− β = P(reject H0|H1 true)

We restrict our attention to tests of the form φn = I{Tn > cn}.
Tn is our test statistic (constructed from data)

cn is the critical value (our notion of “large”)

Intuition: if the test statistic Tn is larger than some critical value cn, then
we reject the null hypothesis in favor of H1; otherwise, we fail to reject H0.
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Rejection Rules

Definition (Test Statistic)

Let θ be an unknown parameter, and let {Xi}ni=1 be a sample. A test
statistic Tn is a function of {Xi}ni=1 used to test an hypothesis about θ.

We “reject” H0 when Tn > cn(α). Otherwise, we “fail to reject” H0.

Definition (p-value)

The p-value is the smallest significance level α at which the null
hypothesis would be rejected, i.e. p̂n = inf{α ∈ (0, 1) : Tn > cn(α)}.

In other words, the p-value is the probability, under H0, that a future
experiment would produce a test statistic value that is at least at
extreme as that which is observed in the current experiment.

Small p̂n implies that such an extreme outcome is unlikely under H0.
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Using Asymptotic Theory for Testing

Consider an i.i.d. sample {Xi}ni=1 with mean µ, variance σ2, and n “large”.
By the Central Limit Theorem and Slutsky’s theorem, we write:

√
n(X̄n − µ)

d→ N(0, σ2) ⇒ Tn =

√
n(X̄n − µ)

sn

d→ N(0, 1)

We let Φ(·) denote the cumulative distribution function of Z ∼ N(0, 1).
Since the limiting distribution of Tn is N(0, 1), we can write:

FTn(z1−α) = P
(√n(X̄n − µ)

sn
≤ z1−α

)
→ P(Z ≤ z1−α) = Φ(z1−α) = 1− α,

where z1−α = Φ−1(1− α) is the (1− α)th quantile of a standard normal.

For “large” samples, we can use the N(0, 1) distribution as an
approximation for the distribution of Tn (see next two slides).
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Example 1: One-Sided Test for E (X ) = µ

Suppose X1, . . . ,Xn
iid∼ P on R and σ2 = Var(Xi ) <∞. We seek to test:

H0 : µ ≤ c versus HA : µ > c

By the Central Limit Theorem and Slutsky’s theorem, we write:

√
n(X̄n − c)

d→ N(0, σ2) ⇒
√
n(X̄n − c)

sn

d→ N(0, 1),

under the null hypothesis H0. Therefore, we have:

Tn =

√
n(X̄n − c)

sn

d→ N(0, 1) and cn = Φ−1(1− α) = z1−α

Thus, we define our test to be: φn = I{Tn > cn}.
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Example 2: Two-Sided Test for E (X ) = µ

Suppose X1, . . . ,Xn
iid∼ P on R and σ2 = Var(Xi ) <∞. We seek to test:

H0 : µ = c versus HA : µ 6= c

Following the same steps as before, under the null hypothesis H0, we have:

Tn =

√
n(X̄n − c)

sn

d→ N(0, 1) and cn = Φ−1(1− α

2
) = z1−α

2

Thus, we define our test to be: φn = I{|Tn| > cn}.
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Computing p-values

The p-value for a one-sided test is:

p̂n = inf{α ∈ (0, 1) :

√
n(X̄n − c)

sn
> z1−α}

= inf{α ∈ (0, 1) : α > 1− Φ(

√
n(X̄n − c)

sn
)}

= 1− Φ(

√
n(X̄n − c)

sn
)

The p-value for a two-sided test is:

p̂n = inf{α ∈ (0, 1) :

√
n(|X̄n − c |)

sn
> z1−α

2
}

= 2
[
1− Φ(

√
n(|X̄n − c |)

sn
)
]
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A Multidimensional Hypothesis

Suppose X1, . . . ,Xn
iid∼ P on Rk and let Σ <∞ be the k × k (invertible)

variance-covariance matrix. We want to test the following hypothesis:

H0 : µ = 0 versus HA : µ 6= 0

By the CLT and the CMT, we write:

√
n(X̄n − µ)

d→ Z ∼ N(0,Σ), where Z ′Σ−1Z ∼ χ2
k

⇒ n(X̄n − µ)′Σ−1(X̄n − µ) ∼ χ2
k

⇒ n(X̄n − µ)′Σ̂−1(X̄n − µ) ∼ χ2
k ,

where Σ̂ = 1
n−1

∑n
i=1[Xi − X̄n][Xi − X̄n]′ and Σ̂

P→ Σ. Then, under H0:

Tn = n(X̄n)′Σ̂−1(X̄n)
d→ χ2

k

Let φn = I{Tn > cn}, where cn = ck,1−α is the (1− α)th quantile of χ2
k .
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Student t-Distributions

For smaller samples, these normal approximations are often inadequate.

When {Xi}ni=1
i.i.d.∼ N(µ, σ2) and n is small, then the test statistic Tn

follows a student t-distribution with n − 1 degrees of freedom:

Tn =

√
n(X̄n − c)

sn
∼ tn−1

We set the critical value to cn = tn−1,1−α, and we reject when Tn > cn.

We can compute p-values similarly, using tn−1 instead of N(0, 1).

The difference between tn−1 and N(0, 1) vanishes as n→∞.
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Coverage Probabilities

Definition (Confidence Interval)

A (1− α)-level confidence interval for θ is the set of values θ∗ for which
the null hypothesis H0 : θ = θ∗ is not rejected at significance level α.

For finite samples, choose the confidence interval Cn so that:

P(θ ∈ Cn) ≥ 1− α

We call P(θ ∈ Cn) the coverage probability of Cn.

We want Cn as small as possible so that this inequality holds, given α.
I Exact coverage occurs when P(θ ∈ Cn) = 1− α.

Same idea generalizes for multidimensional θ (i.e. confidence regions).

A (1− α)-level asymptotic confidence interval : P(µ ∈ Cn)→ 1− α.
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Example: Exact Finite Sample Coverage

Suppose X1, . . . ,Xn
i.i.d.∼ N(µ, σ2). We want to compute an interval Cn

with coverage probability P(µ ∈ Cn) = 1− α. We know that:

Tn =

√
n(X̄n − c)

sn
∼ tn−1

Let us define the confidence interval to be:

Cn =
[
X̄n − tn−1,1−α

2

sn√
n
, X̄n + tn−1,1−α

2

sn√
n

]
We can now show that:

P(µ ∈ Cn) = P

(√
n|X̄n − µ|

sn
≤ tn−1,1−α

2

)
= 1− α
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Example: An Asymptotic Confidence Interval

Suppose X1, . . . ,Xn ∈ R is an i.i.d. sample. We want to compute Cn so
that P(µ ∈ Cn)→ 1− α as n→∞. By the CLT and Slutsky’s theorem:

√
n(X̄n − µ)

d→ N(0, σ2) ⇒
√
n(X̄n − µ)

sn

d→ N(0, 1)

Let us define the following terms:

Cn = [X̄n − zn, X̄n + zn], where zn = z1−α
2

sn√
n

We can now show that:

P(µ ∈ Cn) = P(X̄n − zn ≤ µ ≤ X̄n + zn) = P

(
|X̄n − µ| ≤ z1−α

2

sn√
n

)
= P

(√
n|X̄n − µ|

sn
≤ z1−α

2

)
→ P(|Z | ≤ z1−α

2
) = 1− P(|Z | > z1−α

2
) = 1− α
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