Lecture 4 Statistical Inference on the Sample Mean

Oscar Volpe

10/6/2021

scar		

(日) (四) (日) (日) (日)

Hypothesis Testing

- Frequentism
- Test Statistics
- Distributional Properties

2 Confidence Regions

- Finite Sample Coverage
- Asymptotic Confidence Intervals

< ∃ ▶

• Frequentism

- Test Statistics
- Distributional Properties

Confidence Regions

- Finite Sample Coverage
- Asymptotic Confidence Intervals

(4) (5) (4) (5)

< 行

Frequentist versus Bayesian Inference

Frequentist Approach

To test hypotheses, one must model what has not occurred.

- Verify/reject hypotheses about a model that is assumed to be *true*.
- Must design your experiment and stopping rule before you test

"No isolated experiment, however significant in itself, can suffice for the experimental demonstration of any natural phenomenon; for the 'one chance in a million' will undoubtedly occur, with no less and no more than its appropriate frequency, however surprised we may be that it should occur to us."

-Ronald Fisher, 1935

< ロ > < 同 > < 回 > < 回 >

Bayesian Approach

Use prior information in conjunction with new data in your sample.

- All model parameters are assumed to be random variables.
- Start with a *prior*, and then update your beliefs based on likelihoods.

Null Hypotheses & Alternative Hypotheses

Let θ be an unknown parameter in the population. Suppose you wish to test whether θ equals or lies above/below some value using data $\{X_i\}_{i=1}^n$. You write down a *null hypothesis* (H_0) and an *alternative hypothesis* (H_1).

- Example 1 (One-Sided Test). $H_0: \theta \leq (\geq)c$ and $H_1: \theta > (<)c$.
- Example 2 (Two-Sided Test). $H_0: \theta = c$ and $H_1: \theta \neq c$.

Idea

Given data $\{X_i\}_{i=1}^n$, is there sufficient evidence to reject H_0 in favor of H_1 ?

- If so, then we can "reject" the null hypothesis.
- If not, then we "fail to reject" the null hypothesis.
 - ► Importantly, we do not "accept" H₀. There is just not enough evidence to rule out the possibility of H₀. Think of H₀ as signifying "no effect".

イロト 不得 トイラト イラト 一日

Significance Level

Given this setup, we are susceptible to two types of errors:

- Type-I Error: reject the null hypothesis when it is true
- Type-II Error: fail to reject the null hypothesis when it is false

	Reject H_0	Fail to Reject H_0
<i>H</i> ₀ True	Type-I Error	Correct
H_0 False	Correct	Type-II Error

The consensus is generally that false positives are worse than false negatives, i.e. that *Type-I Error* is typically worse than *Type-II Error*.

Definition (Significance Level)

The significance level of a test of H_0 against H_1 is the probability of incorrectly rejecting H_0 , and it is denoted by $\alpha = P(\text{reject } H_0|H_0 \text{ true})$.

イロト イヨト イヨト イヨト

- Frequentism
- Test Statistics
- Distributional Properties

2 Confidence Regions

- Finite Sample Coverage
- Asymptotic Confidence Intervals

(4) (3) (4) (4) (4)

< 行

Constructing a Test

Let β denote the probability of failing to reject H_0 when H_1 is true. We say that a test has "high power" if there is a small probability of *Type-II Error*.

Definition (Power of a Test)

The *power* of a test of H_0 against H_1 is the probability of rejecting a false H_0 under a specific alternative H_1 , i.e. $\pi = 1 - \beta = P$ (reject $H_0|H_1$ true)

We restrict our attention to tests of the form $\phi_n = \mathbb{I}\{T_n > c_n\}$.

- *T_n* is our *test statistic* (constructed from data)
- *c_n* is the *critical value* (our notion of "large")

Intuition: if the test statistic T_n is larger than some critical value c_n , then we reject the null hypothesis in favor of H_1 ; otherwise, we fail to reject H_0 .

イロト イポト イヨト イヨト

Rejection Rules

Definition (Test Statistic)

Let θ be an unknown parameter, and let $\{X_i\}_{i=1}^n$ be a sample. A *test statistic* T_n is a function of $\{X_i\}_{i=1}^n$ used to test an hypothesis about θ .

We "reject" H_0 when $T_n > c_n(\alpha)$. Otherwise, we "fail to reject" H_0 .

Definition (p-value)

The *p*-value is the smallest significance level α at which the null hypothesis would be rejected, i.e. $\hat{p}_n = \inf\{\alpha \in (0,1) : T_n > c_n(\alpha)\}.$

- In other words, the *p*-value is the probability, under *H*₀, that a future experiment would produce a test statistic value that is *at least at extreme* as that which is observed in the current experiment.
- Small \hat{p}_n implies that such an extreme outcome is unlikely under H_0 .

A D N A B N A B N A B N

Hypothesis Testing

- Frequentism
- Test Statistics
- Distributional Properties

- Finite Sample Coverage
- Asymptotic Confidence Intervals

→ 3 → 4 3

< 行

Using Asymptotic Theory for Testing

Consider an i.i.d. sample $\{X_i\}_{i=1}^n$ with mean μ , variance σ^2 , and *n* "large". By the Central Limit Theorem and Slutsky's theorem, we write:

$$\sqrt{n}(\bar{X}_n-\mu) \stackrel{d}{\rightarrow} N(0,\sigma^2) \quad \Rightarrow T_n = \frac{\sqrt{n}(\bar{X}_n-\mu)}{s_n} \stackrel{d}{\rightarrow} N(0,1)$$

We let $\Phi(\cdot)$ denote the cumulative distribution function of $Z \sim N(0, 1)$. Since the limiting distribution of T_n is N(0, 1), we can write:

$$F_{\mathcal{T}_n}(z_{1-\alpha}) = P\Big(\frac{\sqrt{n}(\bar{X}_n - \mu)}{s_n} \le z_{1-\alpha}\Big) \to P(Z \le z_{1-\alpha}) = \Phi(z_{1-\alpha}) = 1 - \alpha,$$

where $z_{1-\alpha} = \Phi^{-1}(1-\alpha)$ is the $(1-\alpha)$ th quantile of a standard normal.

• For "large" samples, we can use the N(0, 1) distribution as an approximation for the distribution of T_n (see next two slides).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example 1: One-Sided Test for $E(X) = \mu$

Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P$ on \mathbb{R} and $\sigma^2 = Var(X_i) < \infty$. We seek to test: $H_0: \mu \leq c$ versus $H_A: \mu > c$

By the Central Limit Theorem and Slutsky's theorem, we write:

$$\sqrt{n}(\bar{X}_n-c)\stackrel{d}{
ightarrow} N(0,\sigma^2) \quad \Rightarrow rac{\sqrt{n}(\bar{X}_n-c)}{s_n} \stackrel{d}{
ightarrow} N(0,1),$$

under the null hypothesis H_0 . Therefore, we have:

$${\mathcal T}_n = rac{\sqrt{n}(ar{X}_n-c)}{s_n} \stackrel{d}{
ightarrow} {\mathcal N}(0,1) \quad ext{and} \quad c_n = \Phi^{-1}(1-lpha) = z_{1-lpha}$$

Thus, we define our test to be: $\phi_n = \mathbb{I}\{T_n > c_n\}$.

イロト イヨト イヨト

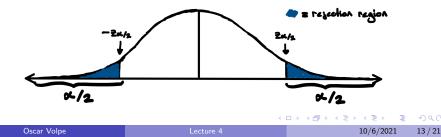
Example 2: Two-Sided Test for $E(X) = \mu$

Suppose
$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P$$
 on \mathbb{R} and $\sigma^2 = Var(X_i) < \infty$. We seek to test:
 $H_0: \mu = c$ versus $H_A: \mu \neq c$

Following the same steps as before, under the null hypothesis H_0 , we have:

$${T}_n=rac{\sqrt{n}(ar{X}_n-c)}{s_n}\stackrel{d}{
ightarrow} {N}(0,1) \quad ext{and} \quad c_n=\Phi^{-1}(1-rac{lpha}{2})=z_{1-rac{lpha}{2}}$$

Thus, we define our test to be: $\phi_n = \mathbb{I}\{|T_n| > c_n\}$.



Computing *p*-values

The *p*-value for a one-sided test is:

$$\begin{split} \hat{p}_n &= \inf\{\alpha \in (0,1) : \frac{\sqrt{n}(\bar{X}_n - c)}{s_n} > z_{1-\alpha}\} \\ &= \inf\{\alpha \in (0,1) : \alpha > 1 - \Phi(\frac{\sqrt{n}(\bar{X}_n - c)}{s_n})\} \\ &= 1 - \Phi(\frac{\sqrt{n}(\bar{X}_n - c)}{s_n}) \end{split}$$

The *p*-value for a two-sided test is:

$$\hat{p}_{n} = \inf\{\alpha \in (0,1) : \frac{\sqrt{n}(|\bar{X}_{n} - c|)}{s_{n}} > z_{1-\frac{\alpha}{2}}\} \\ = 2\left[1 - \Phi(\frac{\sqrt{n}(|\bar{X}_{n} - c|)}{s_{n}})\right]$$

Oscar Volpe

<=> ■ ○ へ ○ 10/6/2021 14/21

< □ > < 同 > < 回 > < Ξ > < Ξ

A Multidimensional Hypothesis

Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P$ on \mathbb{R}^k and let $\Sigma < \infty$ be the $k \times k$ (invertible) variance-covariance matrix. We want to test the following hypothesis:

$$\mathit{H}_{\mathsf{0}}:\,\mu=\mathbf{0}$$
 versus $\mathit{H}_{\mathsf{A}}:\,\mu
eq\mathbf{0}$

By the CLT and the CMT, we write:

$$\begin{split} \sqrt{n}(\bar{X}_n - \mu) &\stackrel{d}{\to} Z \sim N(0, \Sigma), \quad \text{where } Z' \Sigma^{-1} Z \sim \chi_k^2 \\ &\Rightarrow n(\bar{X}_n - \mu)' \Sigma^{-1}(\bar{X}_n - \mu) \sim \chi_k^2 \\ &\Rightarrow n(\bar{X}_n - \mu)' \hat{\Sigma}^{-1}(\bar{X}_n - \mu) \sim \chi_k^2, \end{split}$$

where $\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} [X_i - \bar{X}_n] [X_i - \bar{X}_n]'$ and $\hat{\Sigma} \xrightarrow{P} \Sigma$. Then, under H_0 :

$$T_n = n(\bar{X}_n)'\hat{\Sigma}^{-1}(\bar{X}_n) \stackrel{d}{\to} \chi_k^2$$

Let $\phi_n = \mathbb{I}\{T_n > c_n\}$, where $c_n = c_{k,1-\alpha}$ is the $(1-\alpha)$ th quantile of χ_k^2 .

Student *t*-Distributions

For smaller samples, these normal approximations are often inadequate. When $\{X_i\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ and *n* is small, then the test statistic T_n follows a student *t*-distribution with n-1 degrees of freedom:

$$T_n = \frac{\sqrt{n}(\bar{X}_n - c)}{s_n} \sim t_{n-1}$$

We set the critical value to $c_n = t_{n-1,1-\alpha}$, and we reject when $T_n > c_n$.

- We can compute *p*-values similarly, using t_{n-1} instead of N(0,1).
- The difference between t_{n-1} and N(0,1) vanishes as $n \to \infty$.

Hypothesis Testing

- Frequentism
- Test Statistics
- Distributional Properties

2 Confidence Regions

- Finite Sample Coverage
- Asymptotic Confidence Intervals

→ Ξ →

Coverage Probabilities

Definition (Confidence Interval)

A $(1 - \alpha)$ -level *confidence interval* for θ is the set of values θ^* for which the null hypothesis $H_0: \theta = \theta^*$ is not rejected at significance level α .

For finite samples, choose the confidence interval C_n so that:

$$P(\theta \in C_n) \geq 1 - \alpha$$

We call $P(\theta \in C_n)$ the coverage probability of C_n .

- We want C_n as small as possible so that this inequality holds, given α .
 - Exact coverage occurs when $P(\theta \in C_n) = 1 \alpha$.
- Same idea generalizes for multidimensional θ (i.e. *confidence regions*).
- A (1α) -level asymptotic confidence interval: $P(\mu \in C_n) \rightarrow 1 \alpha$.

イロト イポト イヨト イヨト

Example: Exact Finite Sample Coverage

Suppose $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$. We want to compute an interval C_n with coverage probability $P(\mu \in C_n) = 1 - \alpha$. We know that:

$$T_n = rac{\sqrt{n}(ar{X}_n - c)}{s_n} \sim t_{n-1}$$

Let us define the confidence interval to be:

$$C_n = \left[\bar{X}_n - t_{n-1,1-\frac{\alpha}{2}} \frac{s_n}{\sqrt{n}}, \bar{X}_n + t_{n-1,1-\frac{\alpha}{2}} \frac{s_n}{\sqrt{n}}\right]$$

We can now show that:

$$P(\mu \in C_n) = P\left(\frac{\sqrt{n}|\bar{X}_n - \mu|}{s_n} \le t_{n-1,1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

Hypothesis Testing

- Frequentism
- Test Statistics
- Distributional Properties

2 Confidence Regions

- Finite Sample Coverage
- Asymptotic Confidence Intervals

→ Ξ →

Example: An Asymptotic Confidence Interval

Suppose $X_1, \ldots, X_n \in \mathbb{R}$ is an i.i.d. sample. We want to compute C_n so that $P(\mu \in C_n) \to 1 - \alpha$ as $n \to \infty$. By the CLT and Slutsky's theorem:

$$\sqrt{n}(\bar{X}_n-\mu) \stackrel{d}{\rightarrow} N(0,\sigma^2) \quad \Rightarrow \frac{\sqrt{n}(\bar{X}_n-\mu)}{s_n} \stackrel{d}{\rightarrow} N(0,1)$$

Let us define the following terms:

$$C_n = [\bar{X}_n - z_n, \bar{X}_n + z_n], \text{ where } z_n = z_{1-\frac{\alpha}{2}} \frac{s_n}{\sqrt{n}}$$

We can now show that:

$$P(\mu \in C_n) = P(\bar{X}_n - z_n \le \mu \le \bar{X}_n + z_n) = P\left(|\bar{X}_n - \mu| \le z_{1-\frac{\alpha}{2}} \frac{s_n}{\sqrt{n}}\right)$$
$$= P\left(\frac{\sqrt{n}|\bar{X}_n - \mu|}{s_n} \le z_{1-\frac{\alpha}{2}}\right) \to P(|Z| \le z_{1-\frac{\alpha}{2}}) = 1 - P(|Z| > z_{1-\frac{\alpha}{2}}) = 1 - \alpha$$

Oscar Volpe

10/6/2021 21/21

< ∃ > < ∃