Lectures 5 \& 6
 Simple Linear Regression

Oscar Volpe

$10 / 11 / 2021 \& 10 / 13 / 2021$

(1) Interpretation of Least Squares

- Predictive Interpretation
- Causal Interpretation
(2) Least Squares Estimators
- OLS Estimation
- Goodness of Fit
(3) Properties of OLS
- Unbiasedness
- Consistency
- Gauss-Markov Theorem
(4) Example: Hypothesis Testing for OLS
(1) Interpretation of Least Squares
- Predictive Interpretation
- Causal Interpretation
(2) Least Squares Estimators
- OLS Estimation
- Goodness of Fit
(3) Properties of OLS
- Unbiasedness
- Consistency
- Gauss-Markov Theorem

4 Example: Hypothesis Testing for OLS

Motivation

Suppose that we have data $\left\{X_{i}, Y_{i}\right\}_{i=1}^{n}$ on Y and X. We may want to:

- predict Y_{i} from X_{i}
- understand how X_{i} causes Y_{i}

In either case, we call X_{i} the independent variable (regressor). We call Y_{i} the dependent variable (regressand). A simple linear model is:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+U_{i}
$$

where β_{0} is the intercept and β_{1} is the slope coefficient for this model.
The error term U_{i} exists because $\left(X_{i}, Y_{i}\right)$ do not lie on a straight line.

- Why not? Omitted regressors, mis-measurement, nonlinearities, etc.
- How we interpret coefficients $\left(\beta_{0}, \beta_{1}\right)$ and error U_{i} depends on how we define the linear model, i.e. is it causal or purely predictive?

Best Linear Predictor

Suppose we want the best linear predictor of Y given X. We minimize:

$$
\operatorname{MSE}\left(b_{0}, b_{1}\right)=E\left(\left[Y-\left(b_{0}+b_{1} X\right)\right]^{2}\right)
$$

Since this problem is convex in b_{0} and b_{1}, we take first order conditions:

$$
\begin{aligned}
& \frac{\partial \operatorname{MSE}\left(b_{0}, b_{1}\right)}{\partial b_{0}}=-2 E\left(Y-b_{0}-b_{1} X\right)=0 \\
& \frac{\partial \operatorname{MSE}\left(b_{0}, b_{1}\right)}{\partial b_{1}}=-2 E\left(X\left[Y-b_{0}-b_{1} X\right]\right)=0
\end{aligned}
$$

The solution $\left(\beta_{0}, \beta_{1}\right)$ to this problem corresponds to the intercept and slope of the best linear predictor of Y given X. See the next slide!

- Note: we do not assume that $E(Y \mid X)$ is linear. The solution does give us the best linear approximation to the conditional expectation.

Solving for $\left(\beta_{0}, \beta_{1}\right)$

We have two optimality conditions:

$$
\begin{aligned}
& \frac{\partial \operatorname{MSE}\left(b_{0}, b_{1}\right)}{\partial b_{0}}=-2 E\left(Y-b_{0}-b_{1} X\right)=0 \\
& \frac{\partial \operatorname{MSE}\left(b_{0}, b_{1}\right)}{\partial b_{1}}=-2 E\left(X\left[Y-b_{0}-b_{1} X\right]\right)=0
\end{aligned}
$$

Solving the first equation, we obtain an expression for β_{0} :

$$
\beta_{0}=E(Y)-\beta_{1} E(X)
$$

Plugging this into the second equation, we can solve for β_{1} :

$$
\begin{aligned}
& E\left(X\left[Y-E(Y)-\beta_{1}(X-E(X))\right]\right)=0 \\
& \quad \Rightarrow \beta_{1}=\frac{E(X[Y-E(Y)])}{E(X[X-E(X)])}=\frac{E(X Y)-E(X) E(Y)}{E\left(X^{2}\right)-E(X) E(X)}=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}
\end{aligned}
$$

Error Restrictions

Noting that $U=Y-\beta_{0}-\beta_{1} X$, our first order conditions imply:

$$
\begin{aligned}
E(U)=E\left(Y-\beta_{0}-\beta_{1} X\right) & =0 \\
E(X U)=E\left(X\left[Y-\beta_{0}-\beta_{1} X\right]\right) & =0
\end{aligned}
$$

So, if we interpret $\beta_{0}+\beta_{1} X$ as the best linear predictor (BLP) of Y, then:

$$
E(U)=0 \quad \text { and } \quad E(X U)=0
$$

So, X and U are uncorrelated: $\operatorname{Cov}(X, U)=E(X U)-E(X) E(U)=0$.

- Under these assumptions, we say $\beta_{0}+\beta_{1} X=\operatorname{BLP}(Y \mid X)$.
- Importantly, BLP does not imply best predictor of Y given X, which would come from minimizing the mean squared error $E\left([Y-g(X)]^{2}\right)$.

Special Case: Linear Conditional Expectation

What if $E(Y \mid X)$ is actually a linear function of X ? In this case, we write:

$$
E(Y \mid X)=\beta_{0}+\beta_{1} X
$$

Note: this is a far stronger requirement than best linear predictor. The implication of this second interpretation would be that:

$$
E(U \mid X)=E\left(Y-\left[\beta_{0}+\beta_{1} X\right] \mid X\right)=E(Y \mid X)-E(Y \mid X)=0
$$

Using the Law of Iterated Expectations, we can show that:

$$
E(U)=0 \quad \text { and } \quad E(X U)=0
$$

The conditional moment restriction $E(U \mid X)=0$ is stronger than both unconditional moment restrictions for the best linear predictor case.

- Note: if X is binary, then $E(Y \mid X)$ can be written as a linear function. In general, though, $E(Y \mid X)$ is not linear, so $E(Y \mid X) \neq \operatorname{BLP}(Y \mid X)$.
(1) Interpretation of Least Squares
- Predictive Interpretation
- Causal Interpretation
(2) Least Squares Estimators
- OLS Estimation
- Goodness of Fit
(3) Properties of OLS
- Unbiasedness
- Consistency
- Gauss-Markov Theorem
(4) Example: Hypothesis Testing for OLS

Defining Causal Relationships

Assume that $Y=g(X, U)$, where X is some observed determinant of Y. If we assume the relationship is linear, i.e. $g(X, U)=\beta_{0}+\beta_{1} X+U$, then:

$$
\frac{\partial g(X, U)}{\partial X}=\beta_{1}
$$

in which case β_{1} is interpreted as the causal effect of X on Y.
Here, $E(U)$ need not equal zero, but we can normalize it so that it is zero:

$$
\beta_{0}^{(\text {new })}=\beta_{0}+E(U) \quad \text { and } \quad U^{(\text {new })}=U-E(U)
$$

Do we need to assume something about $E(X U), E(U)$, or $E(U \mid X)$? No.

- Defining a causal relationship between Y and X is a mental exercise.
- Writing down the causal model $Y=g(X, U)$ is a thought experiment.

Three Steps of Causal Inference

Step 1: Write Down a Model

- Define the causal relationship of interest. This requires you, the researcher, to specify a counterfactual question ("What if. . . ?"). No data needed here.
- Under your model, causal effects become target parameters.

Step 2: Identification

- Given your model, what can you learn about the target parameters using observed data? Identification maps the model and data to information about target parameters. Essentially, what can you recover from data?
- We say that a parameter is identified if, under the model assumptions, alternative values of the parameter imply different distributions of the data.

Step 3: Estimation

- In practice, we see finite samples drawn from the population distribution.
- How can we use these samples to estimate the target parameters?
(1) Interpretation of Least Squares
- Predictive Interpretation
- Causal Interpretation
(2) Least Squares Estimators
- OLS Estimation
- Goodness of Fit
(3) Properties of OLS
- Unbiasedness
- Consistency
- Gauss-Markov Theorem
(4) Example: Hypothesis Testing for OLS

Solving for the BLP

Suppose that we have an i.i.d. sample $\left\{X_{i}, Y_{i}\right\}_{i=1}^{n}$ of Y and X. Using this data, we solve a sample analogue of the least-squares problem:

$$
\begin{equation*}
\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right) \in \underset{b_{0}, b_{1}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2} \tag{1}
\end{equation*}
$$

Solving this minimization problem gives us an estimator for β_{1} :

$$
\hat{\beta}_{1}=\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(Y_{i}-\bar{Y}_{n}\right)}{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}_{n}\right)}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)\left(Y_{i}-\bar{Y}_{n}\right)}{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}=\frac{\left.\widehat{\operatorname{Cov}\left(X_{i}, Y_{i}\right.}\right)}{\left.\widehat{\operatorname{Var}\left(X_{i}\right.}\right)}
$$

The corresponding estimator for β_{0} is $\hat{\beta}_{0}=\bar{Y}_{n}-\hat{\beta}_{1} \bar{X}_{n}$.

- $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are called the ordinary least squares (OLS) estimators.
- These estimators satisfy the first order conditions of problem (1).

Residuals

The optimality conditions from the ordinary least squares problem are:

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right) & =0 \\
\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right) & =0
\end{aligned}
$$

We define $\hat{U}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}$ to be the i th residual. It follows that:

$$
\frac{1}{n} \sum_{i=1}^{n} \hat{U}_{i}=0 \quad \text { and } \quad \frac{1}{n} \sum_{i=1}^{n} X_{i} \hat{U}_{i}=0
$$

Define the predicted value (or fitted value) of Y_{i} to be $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$.

- Note: the residuals $\left\{\hat{U}_{i}\right\}_{i=1}^{n}$ are given by $\hat{U}_{i}=Y_{i}-\hat{Y}_{i}$.
- We can plot the fitted regression line against the realizations of Y_{i}.

Interpreting OLS Coefficients

Notice that β_{1} is proportional to the correlation between X and Y :

$$
\beta_{1}=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}=\sqrt{\frac{\operatorname{Var}(Y)}{\operatorname{Var}(X)}} \times \rho(X, Y)
$$

The more correlated X and Y are, the larger the slope β_{1} will be.

Example

Suppose Y_{i} is income and X_{i} is years of schooling. You estimate:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+U_{i}
$$

under the BLP assumptions. You obtain the OLS estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$.

- A one unit increase in X_{i} is associated with an estimated $\hat{\beta}_{1}$ increase in Y_{i}. Importantly, $\hat{\beta}_{1}$ does not estimate a causal effect of X_{i} on Y_{i}.
- If $\beta_{1}>1$, then the correlation between X_{i} and Y_{i} should be positive.
(1) Interpretation of Least Squares
- Predictive Interpretation
- Causal Interpretation
(2) Least Squares Estimators
- OLS Estimation
- Goodness of Fit
(3) Properties of OLS
- Unbiasedness
- Consistency
- Gauss-Markov Theorem

4 Example: Hypothesis Testing for OLS

Coefficient of Determination

Suppose we want to measure how well $\left\{\hat{Y}_{i}\right\}_{i=1}^{n}$ approximates $\left\{Y_{i}\right\}_{i=1}^{n}$.
The coefficient of determination (or R-squared) is defined to be:

$$
R^{2}=1-\frac{\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}}=1-\frac{\frac{1}{n} \sum_{i=1}^{n} \hat{U}_{i}^{2}}{\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}}
$$

We can also write $R^{2}=\frac{\mathrm{ESS}}{\mathrm{TSS}}=1-\frac{\mathrm{SSR}}{\mathrm{TSS}}$, where:

- TSS $=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}$
- $\mathrm{ESS}=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}_{n}\right)^{2}$
- SSR $=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\sum_{i=1}^{n} \hat{U}_{i}^{2}$

Intuitively, if the model fits the data well, then much of the variation in Y_{i} is captured by the variation in \hat{Y}_{i}. In this case, the R-squared is large.

Decomposing the TSS

Note that we can decompose the total sum of squares (TSS) as:

$$
\begin{aligned}
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2} & =\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}_{n}+\hat{U}_{i}\right)^{2} \\
& =\underbrace{\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}_{n}\right)^{2}}_{\text {ESS }}+2 \sum_{i=1}^{n} \hat{U}_{i}\left(\hat{Y}_{i}-\bar{Y}_{n}\right)+\underbrace{\sum_{i=1}^{n} \hat{U}_{i}^{2}}_{\text {SSR }}
\end{aligned}
$$

Note that the middle term equals zero under the BLP assumptions, since:

$$
\sum_{i=1}^{n} \hat{U}_{i}\left(\hat{Y}_{i}-\bar{Y}_{n}\right)=\hat{\beta}_{0} \sum_{i=1}^{n} \hat{U}_{i}+\hat{\beta}_{1} \sum_{i=1}^{n} X_{i} \hat{U}_{i}-\bar{Y}_{n} \sum_{i=1}^{n} \hat{U}_{i}=0
$$

It follows that TSS $=\mathrm{ESS}+\mathrm{SSR}$, which implies: $R^{2}=\frac{\mathrm{ESS}}{\mathrm{TSS}}=1-\frac{\mathrm{SSR}}{\mathrm{TSS}}$.

Interpreting the R-Squared Term

In the simple linear regression model, $0 \leq R^{2} \leq 1$.

- $R^{2}=1$ if $\mathrm{SSR}=0$, i.e. all data points lie on a line.
- $R^{2}=0$ if ESS $=0$, i.e. X_{i} does not help us to predict Y_{i}.
- $R^{2}=0 \Longrightarrow \hat{\beta}_{1}=0$, i.e. the sample correlation between X and Y is zero.

Importantly, R-squared does not tell us anything about the causal relationship between X and Y. It simply measures goodness of fit.

- Recall that causality is entirely based on assumptions that you make.
- We should be very careful when interpreting the R-squared term. particularly if there is concern about the BLP assumptions holding.

Example: Regression through the Origin

Given data $\left\{X_{i}, Y_{i}\right\}_{i=1}^{n}$, consider the model without an intercept:

$$
Y_{i}=\beta X_{i}+U_{i}
$$

To solve for β under the least-squares interpretation, minimize:

$$
\operatorname{MSE}(b)=E\left([Y-b X]^{2}\right)
$$

You can show $\beta=\frac{E(X Y)}{E\left(X^{2}\right)}$. A method of moments (MoM) estimator is:

$$
\hat{\beta}_{n}=\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}}{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}}=\frac{\sum_{i=1}^{n} X_{i} Y_{i}}{\sum_{i=1}^{n} X_{i}^{2}}
$$

It is possible that this model fits worse than the "constant only" model, where $Y_{i}=\beta+U_{i}$. So, we can have $R^{2}<0$ if we measure R-squared by:

$$
R^{2}=1-\frac{\mathrm{SSR}}{\mathrm{TSS}}=1-\frac{\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{n} X_{i}\right)^{2}}{\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}}
$$

(1) Interpretation of Least Squares

- Predictive Interpretation
- Causal Interpretation
(2) Least Squares Estimators
- OLS Estimation
- Goodness of Fit
(3) Properties of OLS
- Unbiasedness
- Consistency
- Gauss-Markov Theorem

4 Example: Hypothesis Testing for OLS

Unbiasedness of $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$

Consider our ordinary least squares (OLS) estimators for β_{1} and β_{0} :

$$
\hat{\beta}_{1}=\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(Y_{i}-\bar{Y}_{n}\right)}{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}_{n}\right)} \quad \text { and } \quad \hat{\beta}_{0}=\bar{Y}_{n}-\hat{\beta}_{1} \bar{X}_{n}
$$

When should we expect that $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$ are unbiased estimators?

- In general, $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$ are not unbiased for β_{1} and β_{0} (respectively).
- If $E\left(U_{i} \mid X_{i}\right)=0$, then we can show $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$ are unbiased estimators.
- Note: $E\left(U_{i} \mid X_{i}\right)=0$ is implied by assuming $E\left(Y_{i} \mid X_{i}\right)=\beta_{0}+\beta_{1} X_{i}$.

Theorem (Unbiasedness of the OLS Estimator)

Let $\left\{X_{i}, Y_{i}\right\}_{i=1}^{n}$ be an i.i.d. sample, and let $Y_{i}=\beta_{0}+\beta_{1} X_{i}+U_{i}$ be the model under consideration. If there is variation in X_{i} within the sample and if $E\left(U_{i} \mid X_{i}\right)=0$, then the OLS estimators $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ are unbiased.

Deriving the Bias in $\hat{\beta}_{1}$ (Part 1)

To show that $E\left(U_{i} \mid X_{i}\right)=0$ guarantees unbiasedness for $\hat{\beta}_{1}$, we write:

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(Y_{i}-\bar{Y}_{n}\right) & =\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(\left[\beta_{0}+\beta_{1} X_{i}+U_{i}\right]-\frac{1}{n} \sum_{j=1}^{n}\left[\beta_{0}+\beta_{1} X_{i}+U_{i}\right]\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(\beta_{0}+\beta_{1} X_{i}+U_{i}-\beta_{0}-\beta_{1} \bar{X}_{n}-\bar{U}_{n}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \beta_{1} X_{i}\left(X_{i}-\bar{X}_{n}\right)+\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(U_{i}-\bar{U}_{n}\right)
\end{aligned}
$$

Rewriting the numerator of $\hat{\beta}_{1}$ in this way, we have:

$$
\hat{\beta}_{1}=\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(Y_{i}-\bar{Y}_{n}\right)}{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}_{n}\right)}=\beta_{1}+\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(U_{i}-\bar{U}_{n}\right)}{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}_{n}\right)}
$$

Deriving the Bias in $\hat{\beta}_{1}$ (Part 2)

Take the conditional expectation $E\left(\hat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right)$ as:

$$
\begin{aligned}
E\left(\hat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right) & =\beta_{1}+E\left(\left.\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(U_{i}-\bar{U}_{n}\right)}{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}_{n}\right)} \right\rvert\, X_{1}, \ldots, X_{n}\right) \\
& =\beta_{1}+\frac{E\left(\left.\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(U_{i}-\bar{U}_{n}\right) \right\rvert\, X_{1}, \ldots, X_{n}\right)}{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}_{n}\right)} \\
& =\beta_{1}+\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i} E\left(\left(U_{i}-\bar{U}_{n}\right) \mid X_{1}, \ldots, X_{n}\right)}{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}_{n}\right)}=\beta_{1},
\end{aligned}
$$

where the last equality holds because our sample is i.i.d. and $E\left(U_{i} \mid X_{i}\right)=0$. Finally, by the Law of Iterated Expectations, we write:

$$
E\left(\hat{\beta}_{1}\right)=E\left(E\left(\hat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right)\right)=\beta_{1}
$$

Deriving the Bias in $\hat{\beta}_{0}$

To show that $E\left(U_{i} \mid X_{i}\right)=0$ guarantees unbiasedness for $\hat{\beta}_{0}$, we write:

$$
\begin{aligned}
E\left(\hat{\beta}_{0} \mid X_{1}, \ldots, X_{n}\right) & =E\left(\bar{Y}_{n}-\hat{\beta}_{1} \bar{X}_{n} \mid X_{1}, \ldots, X_{n}\right) \\
& =E\left(\bar{Y}_{n} \mid X_{1}, \ldots, X_{n}\right)-E\left(\hat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right) \bar{X}_{n} \\
& =E\left(\beta_{0}+\beta_{1} \bar{X}_{n}+\bar{U}_{n} \mid X_{1}, \ldots, X_{n}\right)-\beta_{1} \bar{X}_{n} \\
& =\beta_{0}+\beta_{1} \bar{X}_{n}+E\left(\bar{U}_{n} \mid X_{1}, \ldots, X_{n}\right)-\beta_{1} \bar{X}_{n} \\
& =\beta_{0}+E\left(\bar{U}_{n} \mid X_{1}, \ldots, X_{n}\right)=\beta_{0},
\end{aligned}
$$

where the last equality holds because our sample is i.i.d. and $E\left(U_{i} \mid X_{i}\right)=0$. Finally, by the Law of Iterated Expectations, we write:

$$
E\left(\hat{\beta}_{0}\right)=E\left(E\left(\hat{\beta}_{0} \mid X_{1}, \ldots, X_{n}\right)\right)=\beta_{0}
$$

(1) Interpretation of Least Squares

- Predictive Interpretation
- Causal Interpretation
(2) Least Squares Estimators
- OLS Estimation
- Goodness of Fit
(3) Properties of OLS
- Unbiasedness
- Consistency
- Gauss-Markov Theorem

4 Example: Hypothesis Testing for OLS

Consistency of $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$

Can we show that ($\hat{\beta}_{0}, \hat{\beta}_{1}$) converge (in a " \xrightarrow{p} " sense) to $\left(\beta_{0}, \beta_{1}\right)$?

- Yes. In fact, we do not even need to assume $E\left(U_{i} \mid X_{i}\right)=0$.
- Consistency arguments follow from the WLLN and the CMT.

Theorem (Consistency of the OLS Estimator)
 Let $\left\{X_{i}, Y_{i}\right\}_{i=1}^{n}$ be an i.i.d. sample, and let $Y_{i}=\beta_{0}+\beta_{1} X_{i}+U_{i}$ be the model under consideration. If there is variation in $0<\operatorname{Var}\left(X_{i}\right)<\infty$, then the OLS estimators ($\hat{\beta}_{0}, \hat{\beta}_{1}$) are consistent for $\left(\beta_{0}, \beta_{1}\right)$, respectively.

Proof. See the next slide.

Deriving Limits of Probability

How do we show that $\hat{\beta}_{1} \xrightarrow{p} \beta_{1}$ and $\hat{\beta}_{0} \xrightarrow{p} \beta_{0}$? First, write:

$$
\hat{\beta}_{1}=\frac{\widehat{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}}{\widehat{\operatorname{Var}\left(X_{i}\right)}}, \quad \text { where: } \quad \begin{aligned}
& \widehat{\operatorname{Cov}\left(X_{i}, Y_{i}\right)} \xrightarrow[\rightarrow]{p} \operatorname{Cov}\left(X_{i}, Y_{i}\right) \\
& \widehat{\operatorname{Var}\left(X_{i}\right)} \xrightarrow{p} \operatorname{Var}\left(X_{i}\right)
\end{aligned}
$$

Therefore, as long as $0<\operatorname{Var}\left(X_{i}\right)<\infty$, the CMT guarantees that:

$$
\hat{\beta}_{1}=\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\widehat{\operatorname{Var}\left(X_{i}\right)}} \xrightarrow{p} \frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}=\beta_{1}
$$

Similarly, we can show consistency of $\hat{\beta}_{0}$ for β_{0} by writing:

$$
\hat{\beta}_{0}=\bar{Y}_{n}-\hat{\beta}_{1} \bar{X}_{n}, \quad \text { where: } \begin{aligned}
& \bar{Y}_{n} \xrightarrow{p} E\left(Y_{i}\right) \\
& \bar{X}_{n} \xrightarrow{p} E\left(X_{i}\right)
\end{aligned} \text { and } \quad \hat{\beta}_{1} \xrightarrow{p} \beta_{1}
$$

So, by the CMT, we know: $\hat{\beta}_{0}=\bar{Y}_{n}-\hat{\beta}_{1} \bar{X}_{n} \xrightarrow{p} E\left(Y_{i}\right)-\beta_{1} E\left(X_{i}\right)=\beta_{0}$.
(1) Interpretation of Least Squares

- Predictive Interpretation
- Causal Interpretation
(2) Least Squares Estimators
- OLS Estimation
- Goodness of Fit
(3) Properties of OLS
- Unbiasedness
- Consistency
- Gauss-Markov Theorem
(4) Example: Hypothesis Testing for OLS

Homoskedasticity

Given data on X and Y, consider our simple linear regression model:

$$
Y=\beta_{0}+\beta_{1} X+U
$$

One convenient assumption to make about U is that $\operatorname{Var}(Y \mid X)$ is constant.

- When $\operatorname{Var}\left(Y_{i} \mid X_{i}\right)=\sigma^{2}$ for all i, we say the errors are homoskedastic.
- Intuitively, homoskedasticity implies that the variability in Y around the population regression line does not depend on the value of X.

Equivalently, the errors are homoskedastic if $\operatorname{Var}(U \mid X)=\sigma^{2}$, since:

$$
\operatorname{Var}(Y \mid X)=\operatorname{Var}\left(\beta_{0}+\beta_{1} X+U \mid X\right)=\operatorname{Var}(U \mid X)
$$

Note: if homoskedasticity fails, then we say U is heteroskedastic.

Best Linear Unbiased Estimator

Consider the model $Y=\beta_{0}+\beta_{1} X+U$ and an i.i.d. sample $\left\{Y_{i}, X_{i}\right\}_{i=1}^{n}$.

- Suppose that our least squares assumptions are satisfied.
- Assume $\mathbb{E}(U \mid X)=0$ and the error is homoskedastic: $\operatorname{Var}(U \mid X)=\sigma^{2}$.

Under these assumptions, $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ are the best linear unbiased estimators.

- Interpretation: $\hat{\beta}_{\mathrm{OLS}}=\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ have the "smallest" variance in the class of estimators that are linear in X and unbiased for $\left(\beta_{0}, \beta_{1}\right)$.

We seek to show that $\operatorname{Var}\left(\hat{\beta}_{\mathrm{OLS}} \mid X\right)$ is "smaller" than $\operatorname{Var}(\tilde{\beta} \mid X)$, where:

- $\tilde{\beta}$ is linear, i.e. it can be written as $\tilde{\beta}=A\left(\left\{X_{i}\right\}_{i=1}^{n}\right) Y$.
- $\tilde{\beta}$ is unbiased, i.e. $\mathbb{E}\left[\tilde{\beta}_{0} \mid X\right]=\beta_{0}$ and $\mathbb{E}\left[\tilde{\beta}_{1} \mid X\right]=\beta_{1}$.

Gauss-Markov Assumptions

The following are collectively known as the Gauss-Markov assumptions.
(1) The model is $Y=\beta_{0}+\beta_{1} X+U$.
(2) We observe an iid sample $\left\{X_{i}, Y_{i}\right\}_{i=1}^{n}$.
(3) There is variation in X within the sample.
(4) Suppose $E(U \mid X)=0$.
(5) The conditional variance is constant: $\operatorname{Var}(U \mid X)=\sigma^{2}$.

Quick Review

- Even if (5) fails, the OLS estimators are unbiased if (1) - (4) hold.
- Even if (4) and (5) fail, the OLS estimators are consistent if the BLP assumptions hold, i.e. if $(1)-(3)$ hold and if $E(X U)=E(U)=0$.
- We need all these conditions, $(1)-(5)$, for the next theorem to hold.

Stating the Theorem

Theorem (Gauss-Markov Theorem)

Suppose that the Gauss-Markov assumptions are satisfied. Then the OLS estimator $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ will be the best linear unbiased estimator for $\left(\beta_{0}, \beta_{1}\right)$.

The Gauss-Markov Theorem says that, under homoskedasticity, the OLS estimator is the best among those that are linear and unbiased.

- best means having the smallest conditional variance $\operatorname{Var}(\tilde{\beta} \mid X)$
- the result only compares linear and unbiased estimators
- key assumption: homoskedasticity

Nonetheless, this theorem validates the use of OLS among a large class of estimators, and it also some suggests reasons to deviate from OLS.
(1) Interpretation of Least Squares

- Predictive Interpretation
- Causal Interpretation
(2) Least Squares Estimators
- OLS Estimation
- Goodness of Fit
(3) Properties of OLS
- Unbiasedness
- Consistency
- Gauss-Markov Theorem

4 Example: Hypothesis Testing for OLS

Variances of $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$

Suppose that the five Gauss-Markov assumptions are satisfied.

- When $E(U \mid X)=0$, we have $\operatorname{Var}(U \mid X)=E\left(U^{2} \mid X\right)$.
- Under homoskedasticity, we know $\operatorname{Var}(U \mid X)=\sigma^{2}$.

As first step, recall that the OLS estimators are:

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)\left(Y_{i}-\bar{Y}_{n}\right)}{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}} \\
& \hat{\beta}_{0}=\bar{Y}_{n}-\hat{\beta}_{1} \bar{X}_{n}
\end{aligned}
$$

We derive the (conditional) variances of $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ to be:

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{\beta}_{0} \mid X_{1}, \ldots, X_{n}\right)=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{X}_{n}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}\right] \\
& \operatorname{Var}\left(\hat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right)=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}
\end{aligned}
$$

Estimating $\operatorname{Var}(U)$

Right now, we can't test hypotheses about ($\hat{\beta}_{0}, \hat{\beta}_{1}$), since σ^{2} is unknown.

- How can we estimate the error variance $\sigma^{2}=\operatorname{Var}(U)$?
- Idea: find a consistent, unbiased estimator $\hat{\sigma}^{2}$ for σ^{2}, then use $\hat{\sigma}^{2}$ to estimate the variances $\operatorname{Var}\left(\hat{\beta}_{0} \mid X_{1}, \ldots, X_{n}\right)$ and $\operatorname{Var}\left(\hat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right)$.

It turns out that the estimator $\hat{\sigma}^{2}$ is unbiased for σ^{2} when:

$$
\hat{\sigma}^{2}=\frac{1}{n-2} \sum_{i=1}^{n} \hat{U}_{i}^{2}=\frac{\mathrm{SSR}}{n-2}
$$

- We divide by $n-2$ to correct for bias.
- Intuitively, we have $n-2$ in the denominator because we have two parameters $\left(\beta_{0}\right.$ and $\left.\beta_{1}\right)$ in the regression model. More on this later!

Testing Hypotheses about β_{1}

Suppose n is "large". We can use asymptotic theory to test hypotheses about β_{1}. As a first step, recall that $\hat{\beta}_{1}$ can be expressed as:

$$
\hat{\beta}_{1}=\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(Y_{i}-\bar{Y}_{n}\right)}{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}_{n}\right)}=\beta_{1}+\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(U_{i}-\bar{U}_{n}\right)}{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}_{n}\right)}
$$

Applying the Central Limit Theorem, we find that:

$$
\sqrt{n}\left(\hat{\beta}_{1}-\beta_{1}\right) \xrightarrow{d} N\left(0, \frac{\sigma^{2}}{\operatorname{Var}(X)}\right)
$$

By Slutsky's theorem, we can divide by $\operatorname{se}\left(\hat{\beta}_{1}\right)=\sqrt{\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}}$ so that:

$$
T_{n}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \xrightarrow{d} N(0,1)
$$

One- and Two-Sided Tests

One-Sided Test

Suppose we want to test $H_{0}: \beta_{1} \leq 0$ against $H_{1}: \beta_{1}>0$.
(1) Choose a significance level $\alpha \in(0,1)$, e.g. $\alpha=0.05$.
(2) Write down the test statistic (under H_{0}): $T_{n}=\frac{\hat{\beta}_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}$
(3) Reject H_{0} whenever $T_{n}>z_{1-\alpha}$.

Two-Sided Test

Suppose we want to test $H_{0}: \beta_{1}=0$ against $H_{1}: \beta_{1} \neq 0$.
(1) Choose a significance level $\alpha \in(0,1)$, e.g. $\alpha=0.05$.
(2) Write down the test statistic (under H_{0}): $T_{n}=\frac{\hat{\beta}_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}$
(3) Reject H_{0} whenever $\left|T_{n}\right|>z_{1-\alpha / 2}$.

Note that $z_{1-\alpha / 2} \approx 1.96$ when $\alpha=0.05$. We might say that " β_{1} is statistically significant at the 5% level whenever $\left|T_{n}\right|$ lies above 1.96 .

Computing p-values

Given our sample $\left\{X_{i}, Y_{i}\right\}_{i=1}^{n}$, test statistic T_{n}, and critical value $c_{n}(\alpha)$, the p-value is the smallest value of α at which H_{0} is rejected:

$$
\hat{p}_{n}=\inf \left\{\alpha \in(0,1): T_{n}>c_{n}(\alpha)\right\}
$$

For a two-sided test, we define \hat{p}_{n} so that:

$$
\hat{p}_{n}=\inf \left\{\alpha \in(0,1):\left|\frac{\hat{\beta}_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}\right|>z_{1-\alpha / 2}\right\}
$$

Idea: "shrink" α until we reach α^{*} satisfying $\left|\frac{\hat{\beta}_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}\right|=z_{1-\alpha^{*} / 2}$.

- The p-value is below 0.05 if $\left|T_{n}\right|$ lies above 1.96 .
- Note: the p-value is specific to the hypothesis you are testing.

Confidence Intervals

Now suppose we want to construct a confidence interval for β_{1}.

$$
C_{n}=\left[\hat{\beta}_{1}-\operatorname{se}\left(\hat{\beta}_{1}\right) z_{1-\alpha / 2}, \hat{\beta}_{1}+\operatorname{se}\left(\hat{\beta}_{1}\right) z_{1-\alpha / 2}\right]
$$

To show that C_{n} is an asymptotic confidence interval for β_{1}, we need:

$$
P\left(\beta_{1} \in C_{n}\right) \rightarrow 1-\alpha
$$

To see why this holds, notice that:

$$
\begin{aligned}
P\left(\beta_{1} \in C_{n}\right) & =P\left(\left|T_{n}\right| \leq z_{1-\alpha / 2}\right) \\
& \rightarrow P\left(|Z| \leq z_{1-\alpha / 2}\right)=1-\alpha
\end{aligned}
$$

As $n \rightarrow \infty$, the coverage probability of C_{n} approaches $1-\alpha$, as desired.

