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Motivation

Suppose that we have data {Xi ,Yi}ni=1 on Y and X . We may want to:

predict Yi from Xi

understand how Xi causes Yi

In either case, we call Xi the independent variable (regressor). We call Yi

the dependent variable (regressand). A simple linear model is:

Yi = β0 + β1Xi + Ui ,

where β0 is the intercept and β1 is the slope coefficient for this model.

The error term Ui exists because (Xi ,Yi ) do not lie on a straight line.

Why not? Omitted regressors, mis-measurement, nonlinearities, etc.

How we interpret coefficients (β0, β1) and error Ui depends on how
we define the linear model, i.e. is it causal or purely predictive?
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Best Linear Predictor

Suppose we want the best linear predictor of Y given X . We minimize:

MSE(b0, b1) = E
(
[Y − (b0 + b1X )]2

)
Since this problem is convex in b0 and b1, we take first order conditions:

∂MSE(b0, b1)

∂b0
= −2E (Y − b0 − b1X ) = 0

∂MSE(b0, b1)

∂b1
= −2E (X [Y − b0 − b1X ]) = 0

The solution (β0, β1) to this problem corresponds to the intercept and
slope of the best linear predictor of Y given X . See the next slide!

Note: we do not assume that E (Y |X ) is linear. The solution does
give us the best linear approximation to the conditional expectation.
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Solving for (β0, β1)

We have two optimality conditions:

∂MSE(b0, b1)

∂b0
= −2E (Y − b0 − b1X ) = 0

∂MSE(b0, b1)

∂b1
= −2E (X [Y − b0 − b1X ]) = 0

Solving the first equation, we obtain an expression for β0:

β0 = E (Y )− β1E (X )

Plugging this into the second equation, we can solve for β1:

E (X [Y − E (Y )− β1(X − E (X ))]) = 0

⇒ β1 =
E (X [Y − E (Y )])

E (X [X − E (X )])
=

E (XY )− E (X )E (Y )

E (X 2)− E (X )E (X )
=

Cov(X ,Y )

Var(X )
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Error Restrictions

Noting that U = Y − β0 − β1X , our first order conditions imply:

E (U) = E (Y − β0 − β1X ) = 0

E (XU) = E (X [Y − β0 − β1X ]) = 0

So, if we interpret β0 + β1X as the best linear predictor (BLP) of Y , then:

E (U) = 0 and E (XU) = 0

So, X and U are uncorrelated: Cov(X ,U) = E (XU)− E (X )E (U) = 0.

Under these assumptions, we say β0 + β1X = BLP(Y |X ).

Importantly, BLP does not imply best predictor of Y given X , which
would come from minimizing the mean squared error E ([Y − g(X )]2).
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Special Case: Linear Conditional Expectation

What if E (Y |X ) is actually a linear function of X? In this case, we write:

E (Y |X ) = β0 + β1X

Note: this is a far stronger requirement than best linear predictor. The
implication of this second interpretation would be that:

E (U|X ) = E (Y − [β0 + β1X ]|X ) = E (Y |X )− E (Y |X ) = 0

Using the Law of Iterated Expectations, we can show that:

E (U) = 0 and E (XU) = 0

The conditional moment restriction E (U|X ) = 0 is stronger than both
unconditional moment restrictions for the best linear predictor case.

Note: if X is binary, then E (Y |X ) can be written as a linear function.
In general, though, E (Y |X ) is not linear, so E (Y |X ) 6= BLP(Y |X ).
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Defining Causal Relationships

Assume that Y = g(X ,U), where X is some observed determinant of Y .
If we assume the relationship is linear, i.e. g(X ,U) = β0 + β1X + U, then:

∂g(X ,U)

∂X
= β1,

in which case β1 is interpreted as the causal effect of X on Y .

Here, E (U) need not equal zero, but we can normalize it so that it is zero:

β
(new)
0 = β0 + E (U) and U(new) = U − E (U)

Do we need to assume something about E (XU), E (U), or E (U|X )? No.

Defining a causal relationship between Y and X is a mental exercise.

Writing down the causal model Y = g(X ,U) is a thought experiment.
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Three Steps of Causal Inference

Step 1: Write Down a Model

Define the causal relationship of interest. This requires you, the researcher,
to specify a counterfactual question (“What if. . . ?”). No data needed here.

Under your model, causal effects become target parameters.

Step 2: Identification

Given your model, what can you learn about the target parameters using
observed data? Identification maps the model and data to information
about target parameters. Essentially, what can you recover from data?

We say that a parameter is identified if, under the model assumptions,
alternative values of the parameter imply different distributions of the data.

Step 3: Estimation

In practice, we see finite samples drawn from the population distribution.

How can we use these samples to estimate the target parameters?

Oscar Volpe Lectures 5 & 6 10/11/2021 & 10/13/2021 11 / 40



1 Interpretation of Least Squares
Predictive Interpretation
Causal Interpretation

2 Least Squares Estimators
OLS Estimation
Goodness of Fit

3 Properties of OLS
Unbiasedness
Consistency
Gauss-Markov Theorem

4 Example: Hypothesis Testing for OLS

Oscar Volpe Lectures 5 & 6 10/11/2021 & 10/13/2021 12 / 40



Solving for the BLP

Suppose that we have an i.i.d. sample {Xi ,Yi}ni=1 of Y and X . Using this
data, we solve a sample analogue of the least-squares problem:

(β̂0, β̂1) ∈ argmin
b0,b1

1

n

n∑
i=1

(Yi − b0 − b1Xi )
2 (1)

Solving this minimization problem gives us an estimator for β1:

β̂1 =
1
n

∑n
i=1 Xi (Yi − Ȳn)

1
n

∑n
i=1 Xi (Xi − X̄n)

=
1
n

∑n
i=1(Xi − X̄n)(Yi − Ȳn)
1
n

∑n
i=1(Xi − X̄n)2

=
̂Cov(Xi ,Yi )

V̂ar(Xi )

The corresponding estimator for β0 is β̂0 = Ȳn − β̂1X̄n.

β̂0 and β̂1 are called the ordinary least squares (OLS) estimators.

These estimators satisfy the first order conditions of problem (1).

Oscar Volpe Lectures 5 & 6 10/11/2021 & 10/13/2021 13 / 40



Residuals

The optimality conditions from the ordinary least squares problem are:

1

n

n∑
i=1

(Yi − β̂0 − β̂1Xi ) = 0

1

n

n∑
i=1

Xi (Yi − β̂0 − β̂1Xi ) = 0

We define Ûi = Yi − β̂0 − β̂1Xi to be the ith residual. It follows that:

1

n

n∑
i=1

Ûi = 0 and
1

n

n∑
i=1

Xi Ûi = 0

Define the predicted value (or fitted value) of Yi to be Ŷi = β̂0 + β̂1Xi .

Note: the residuals {Ûi}ni=1 are given by Ûi = Yi − Ŷi .

We can plot the fitted regression line against the realizations of Yi .
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Interpreting OLS Coefficients

Notice that β1 is proportional to the correlation between X and Y :

β1 =
Cov(X ,Y )

Var(X )
=

√
Var(Y )

Var(X )
× ρ(X ,Y )

The more correlated X and Y are, the larger the slope β1 will be.

Example
Suppose Yi is income and Xi is years of schooling. You estimate:

Yi = β0 + β1Xi + Ui

under the BLP assumptions. You obtain the OLS estimates β̂0 and β̂1.

A one unit increase in Xi is associated with an estimated β̂1 increase
in Yi . Importantly, β̂1 does not estimate a causal effect of Xi on Yi .

If β1 > 1, then the correlation between Xi and Yi should be positive.
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Coefficient of Determination

Suppose we want to measure how well {Ŷi}ni=1 approximates {Yi}ni=1.
The coefficient of determination (or R-squared) is defined to be:

R2 = 1−
1
n

∑n
i=1(Yi − Ŷi )

2

1
n

∑n
i=1(Yi − Ȳn)2

= 1−
1
n

∑n
i=1 Û

2
i

1
n

∑n
i=1(Yi − Ȳn)2

We can also write R2 = ESS
TSS = 1− SSR

TSS, where:

TSS =
∑n

i=1(Yi − Ȳn)2

ESS =
∑n

i=1(Ŷi − Ȳn)2

SSR =
∑n

i=1(Yi − Ŷi )
2 =

∑n
i=1 Û

2
i

Intuitively, if the model fits the data well, then much of the variation in Yi

is captured by the variation in Ŷi . In this case, the R-squared is large.
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Decomposing the TSS

Note that we can decompose the total sum of squares (TSS) as:

n∑
i=1

(Yi − Ȳn)2 =
n∑

i=1

(Ŷi − Ȳn + Ûi )
2

=
n∑

i=1

(Ŷi − Ȳn)2

︸ ︷︷ ︸
ESS

+2
n∑

i=1

Ûi (Ŷi − Ȳn) +
n∑

i=1

Û2
i︸ ︷︷ ︸

SSR

Note that the middle term equals zero under the BLP assumptions, since:

n∑
i=1

Ûi (Ŷi − Ȳn) = β̂0

n∑
i=1

Ûi + β̂1

n∑
i=1

Xi Ûi − Ȳn

n∑
i=1

Ûi = 0

It follows that TSS = ESS + SSR, which implies: R2 = ESS
TSS = 1− SSR

TSS.
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Interpreting the R-Squared Term

In the simple linear regression model, 0 ≤ R2 ≤ 1.

R2 = 1 if SSR = 0, i.e. all data points lie on a line.

R2 = 0 if ESS = 0, i.e. Xi does not help us to predict Yi .
I R2 = 0 =⇒ β̂1 = 0, i.e. the sample correlation between X and Y is zero.

Importantly, R-squared does not tell us anything about the causal
relationship between X and Y . It simply measures goodness of fit.

Recall that causality is entirely based on assumptions that you make.

We should be very careful when interpreting the R-squared term.
particularly if there is concern about the BLP assumptions holding.

Oscar Volpe Lectures 5 & 6 10/11/2021 & 10/13/2021 19 / 40



Example: Regression through the Origin
Given data {Xi ,Yi}ni=1, consider the model without an intercept:

Yi = βXi + Ui

To solve for β under the least-squares interpretation, minimize:

MSE(b) = E ([Y − bX ]2)

You can show β = E(XY )
E(X 2)

. A method of moments (MoM) estimator is:

β̂n =
1
n

∑n
i=1 XiYi

1
n

∑n
i=1 X

2
i

=

∑n
i=1 XiYi∑n
i=1 X

2
i

It is possible that this model fits worse than the “constant only” model,
where Yi = β + Ui . So, we can have R2 < 0 if we measure R-squared by:

R2 = 1− SSR

TSS
= 1−

1
n

∑n
i=1(Yi − β̂nXi )

2

1
n

∑n
i=1(Yi − Ȳn)2
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Unbiasedness of (β̂0, β̂1)

Consider our ordinary least squares (OLS) estimators for β1 and β0:

β̂1 =
1
n

∑n
i=1 Xi (Yi − Ȳn)

1
n

∑n
i=1 Xi (Xi − X̄n)

and β̂0 = Ȳn − β̂1X̄n

When should we expect that β̂1 and β̂0 are unbiased estimators?

In general, β̂1 and β̂0 are not unbiased for β1 and β0 (respectively).

If E (Ui |Xi ) = 0, then we can show β̂1 and β̂0 are unbiased estimators.
I Note: E (Ui |Xi ) = 0 is implied by assuming E (Yi |Xi ) = β0 + β1Xi .

Theorem (Unbiasedness of the OLS Estimator)

Let {Xi ,Yi}ni=1 be an i.i.d. sample, and let Yi = β0 + β1Xi + Ui be the
model under consideration. If there is variation in Xi within the sample
and if E (Ui |Xi ) = 0, then the OLS estimators (β̂0, β̂1) are unbiased.
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Deriving the Bias in β̂1 (Part 1)

To show that E (Ui |Xi ) = 0 guarantees unbiasedness for β̂1, we write:

1

n

n∑
i=1

Xi (Yi − Ȳn) =
1

n

n∑
i=1

Xi

(
[β0 + β1Xi + Ui ]−

1

n

n∑
j=1

[β0 + β1Xi + Ui ]
)

=
1

n

n∑
i=1

Xi

(
β0 + β1Xi + Ui − β0 − β1X̄n − Ūn

)
=

1

n

n∑
i=1

β1Xi (Xi − X̄n) +
1

n

n∑
i=1

Xi (Ui − Ūn)

Rewriting the numerator of β̂1 in this way, we have:

β̂1 =
1
n

∑n
i=1 Xi (Yi − Ȳn)

1
n

∑n
i=1 Xi (Xi − X̄n)

= β1 +
1
n

∑n
i=1 Xi (Ui − Ūn)

1
n

∑n
i=1 Xi (Xi − X̄n)
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Deriving the Bias in β̂1 (Part 2)

Take the conditional expectation E (β̂1|X1, . . . ,Xn) as:

E (β̂1|X1, . . . ,Xn) = β1 + E

(
1
n

∑n
i=1 Xi (Ui − Ūn)

1
n

∑n
i=1 Xi (Xi − X̄n)

∣∣∣∣X1, . . . ,Xn

)

= β1 +
E
(

1
n

∑n
i=1 Xi (Ui − Ūn)

∣∣∣X1, . . . ,Xn

)
1
n

∑n
i=1 Xi (Xi − X̄n)

= β1 +

1
n

∑n
i=1 XiE

(
(Ui − Ūn)

∣∣∣X1, . . . ,Xn

)
1
n

∑n
i=1 Xi (Xi − X̄n)

= β1,

where the last equality holds because our sample is i.i.d. and E (Ui |Xi ) = 0.
Finally, by the Law of Iterated Expectations, we write:

E (β̂1) = E (E (β̂1|X1, . . . ,Xn)) = β1
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Deriving the Bias in β̂0

To show that E (Ui |Xi ) = 0 guarantees unbiasedness for β̂0, we write:

E (β̂0|X1, . . . ,Xn) = E (Ȳn − β̂1X̄n|X1, . . . ,Xn)

= E (Ȳn|X1, . . . ,Xn)− E (β̂1|X1, . . . ,Xn)X̄n

= E (β0 + β1X̄n + Ūn|X1, . . . ,Xn)− β1X̄n

= β0 + β1X̄n + E (Ūn|X1, . . . ,Xn)− β1X̄n

= β0 + E (Ūn|X1, . . . ,Xn) = β0,

where the last equality holds because our sample is i.i.d. and E (Ui |Xi ) = 0.
Finally, by the Law of Iterated Expectations, we write:

E (β̂0) = E (E (β̂0|X1, . . . ,Xn)) = β0
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Consistency of (β̂0, β̂1)

Can we show that (β̂0, β̂1) converge (in a “
p→” sense) to (β0, β1)?

Yes. In fact, we do not even need to assume E (Ui |Xi ) = 0.

Consistency arguments follow from the WLLN and the CMT.

Theorem (Consistency of the OLS Estimator)

Let {Xi ,Yi}ni=1 be an i.i.d. sample, and let Yi = β0 + β1Xi + Ui be the
model under consideration. If there is variation in 0 < Var(Xi ) <∞, then
the OLS estimators (β̂0, β̂1) are consistent for (β0, β1), respectively.

Proof. See the next slide.
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Deriving Limits of Probability

How do we show that β̂1
p→ β1 and β̂0

p→ β0? First, write:

β̂1 =
̂Cov(Xi ,Yi )

V̂ar(Xi )
, where:

̂Cov(Xi ,Yi )
p→ Cov(Xi ,Yi )

V̂ar(Xi )
p→ Var(Xi )

Therefore, as long as 0 < Var(Xi ) <∞, the CMT guarantees that:

β̂1 =
̂Cov(Xi ,Yi )

V̂ar(Xi )

p→ Cov(Xi ,Yi )

Var(Xi )
= β1

Similarly, we can show consistency of β̂0 for β0 by writing:

β̂0 = Ȳn − β̂1X̄n, where:
Ȳn

p→ E (Yi )

X̄n
p→ E (Xi )

and β̂1
p→ β1

So, by the CMT, we know: β̂0 = Ȳn − β̂1X̄n
p→ E (Yi )− β1E (Xi ) = β0.
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Homoskedasticity

Given data on X and Y , consider our simple linear regression model:

Y = β0 + β1X + U

One convenient assumption to make about U is that Var(Y |X ) is constant.

When Var(Yi |Xi ) = σ2 for all i , we say the errors are homoskedastic.

Intuitively, homoskedasticity implies that the variability in Y around
the population regression line does not depend on the value of X .

Equivalently, the errors are homoskedastic if Var(U|X ) = σ2, since:

Var(Y |X ) = Var(β0 + β1X + U|X ) = Var(U|X )

Note: if homoskedasticity fails, then we say U is heteroskedastic.
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Best Linear Unbiased Estimator

Consider the model Y = β0 + β1X + U and an i.i.d. sample {Yi ,Xi}ni=1.

Suppose that our least squares assumptions are satisfied.

Assume E(U|X ) = 0 and the error is homoskedastic: Var(U|X ) = σ2.

Under these assumptions, (β̂0, β̂1) are the best linear unbiased estimators.

Interpretation: β̂OLS = (β̂0, β̂1) have the “smallest” variance in the
class of estimators that are linear in X and unbiased for (β0, β1).

We seek to show that Var(β̂OLS|X ) is “smaller” than Var(β̃|X ), where:

β̃ is linear, i.e. it can be written as β̃ = A({Xi}ni=1)Y .

β̃ is unbiased, i.e. E[β̃0|X ] = β0 and E[β̃1|X ] = β1.
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Gauss-Markov Assumptions

The following are collectively known as the Gauss-Markov assumptions.

(1) The model is Y = β0 + β1X + U.

(2) We observe an iid sample {Xi ,Yi}ni=1.

(3) There is variation in X within the sample.

(4) Suppose E (U|X ) = 0.

(5) The conditional variance is constant: Var(U|X ) = σ2.

Quick Review

Even if (5) fails, the OLS estimators are unbiased if (1)− (4) hold.

Even if (4) and (5) fail, the OLS estimators are consistent if the BLP
assumptions hold, i.e. if (1)− (3) hold and if E (XU) = E (U) = 0.

We need all these conditions, (1)− (5), for the next theorem to hold.
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Stating the Theorem

Theorem (Gauss-Markov Theorem)

Suppose that the Gauss-Markov assumptions are satisfied. Then the OLS
estimator (β̂0, β̂1) will be the best linear unbiased estimator for (β0, β1).

The Gauss-Markov Theorem says that, under homoskedasticity, the OLS
estimator is the best among those that are linear and unbiased.

best means having the smallest conditional variance Var(β̃|X )

the result only compares linear and unbiased estimators

key assumption: homoskedasticity

Nonetheless, this theorem validates the use of OLS among a large class of
estimators, and it also some suggests reasons to deviate from OLS.
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Variances of (β̂0, β̂1)

Suppose that the five Gauss-Markov assumptions are satisfied.

When E (U|X ) = 0, we have Var(U|X ) = E (U2|X ).

Under homoskedasticity, we know Var(U|X ) = σ2.

As first step, recall that the OLS estimators are:

β̂1 =
1
n

∑n
i=1(Xi − X̄n)(Yi − Ȳn)
1
n

∑n
i=1(Xi − X̄n)2

β̂0 = Ȳn − β̂1X̄n

We derive the (conditional) variances of (β̂0, β̂1) to be:

Var(β̂0|X1, . . . ,Xn) = σ2
[1

n
+

X̄ 2
n∑n

i=1(Xi − X̄n)2

]
Var(β̂1|X1, . . . ,Xn) =

σ2∑n
i=1(Xi − X̄n)2
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Estimating Var(U)

Right now, we can’t test hypotheses about (β̂0, β̂1), since σ2 is unknown.

How can we estimate the error variance σ2 = Var(U)?

Idea: find a consistent, unbiased estimator σ̂2 for σ2, then use σ̂2 to
estimate the variances Var(β̂0|X1, . . . ,Xn) and Var(β̂1|X1, . . . ,Xn).

It turns out that the estimator σ̂2 is unbiased for σ2 when:

σ̂2 =
1

n − 2

n∑
i=1

Û2
i =

SSR

n − 2

We divide by n − 2 to correct for bias.

Intuitively, we have n − 2 in the denominator because we have two
parameters (β0 and β1) in the regression model. More on this later!
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Testing Hypotheses about β1

Suppose n is “large”. We can use asymptotic theory to test hypotheses
about β1. As a first step, recall that β̂1 can be expressed as:

β̂1 =
1
n

∑n
i=1 Xi (Yi − Ȳn)

1
n

∑n
i=1 Xi (Xi − X̄n)

= β1 +
1
n

∑n
i=1 Xi (Ui − Ūn)

1
n

∑n
i=1 Xi (Xi − X̄n)

Applying the Central Limit Theorem, we find that:

√
n(β̂1 − β1)

d→ N

(
0,

σ2

Var(X )

)
By Slutsky’s theorem, we can divide by se(β̂1) =

√
σ̂2∑n

i=1(Xi−X̄n)2 so that:

Tn =
(β̂1 − β1)

se(β̂1)

d→ N(0, 1)
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One- and Two-Sided Tests

One-Sided Test
Suppose we want to test H0 : β1 ≤ 0 against H1 : β1 > 0.

(1) Choose a significance level α ∈ (0, 1), e.g. α = 0.05.

(2) Write down the test statistic (under H0): Tn = β̂1

se(β̂1)

(3) Reject H0 whenever Tn > z1−α.

Two-Sided Test
Suppose we want to test H0 : β1 = 0 against H1 : β1 6= 0.

(1) Choose a significance level α ∈ (0, 1), e.g. α = 0.05.

(2) Write down the test statistic (under H0): Tn = β̂1

se(β̂1)

(3) Reject H0 whenever |Tn| > z1−α/2.

Note that z1−α/2 ≈ 1.96 when α = 0.05. We might say that “β1 is
statistically significant at the 5% level whenever |Tn| lies above 1.96.
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Computing p-values

Given our sample {Xi ,Yi}ni=1, test statistic Tn, and critical value cn(α),
the p-value is the smallest value of α at which H0 is rejected:

p̂n = inf{α ∈ (0, 1) : Tn > cn(α)}

For a two-sided test, we define p̂n so that:

p̂n = inf
{
α ∈ (0, 1) :

∣∣∣ β̂1

se(β̂1)

∣∣∣ > z1−α/2

}
Idea: “shrink” α until we reach α∗ satisfying

∣∣∣ β̂1

se(β̂1)

∣∣∣ = z1−α∗/2.

The p-value is below 0.05 if |Tn| lies above 1.96.

Note: the p-value is specific to the hypothesis you are testing.
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Confidence Intervals

Now suppose we want to construct a confidence interval for β1.

Cn =
[
β̂1 − se(β̂1)z1−α/2, β̂1 + se(β̂1)z1−α/2

]
To show that Cn is an asymptotic confidence interval for β1, we need:

P(β1 ∈ Cn)→ 1− α

To see why this holds, notice that:

P(β1 ∈ Cn) = P(|Tn| ≤ z1−α/2)

→ P(|Z | ≤ z1−α/2) = 1− α

As n→∞, the coverage probability of Cn approaches 1− α, as desired.
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