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Motivation

Suppose we have i.i.d. data about Y and explanatory variables X1, . . . ,Xk .
Given {Yi ,Xi ,1, . . . ,Xi ,k}ni=1, we write down a linear model:

Yi = β0 + β1Xi ,1 + · · ·+ βkXi ,k + Ui

= X ′
i β + Ui ,

where Xi = (1,Xi ,1, . . . ,Xi ,k)
′ and β = (β0, β1, . . . , βk)

′.

Using vectors allows us to write this model more compactly.

We can draw conclusions from this model under different assumptions.

We may want to predict Yi using multiple explanatory variables.

We may want to characterize differences in E (Y |X1, . . . ,Xk).

We may want to give the βj ’s a causal interpretation.
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Multicollinearity

Throughout our analysis, we assume that no Xj can be written as a linear
combination of the other explanatory variables X1, . . . ,Xj−1,Xj+1, . . . ,Xk .

Why? Write Y = β0 + β1X1 + β2X2 + U, where X1 = c + dX2. It is
impossible to make changes to X1 without making changes to X2.

More generally, this issue is known as perfect multicollinearity.

Definition (Perfect Collinearity)

A matrix X is perfectly collinear if P(c ′X = 0) = 1 for some c ̸= 0.

Theorem (Existence of E (XX′)−1)

E (XX′) is invertible if and only if there is no perfect collinearity in X.

As we will soon see, our least squares coefficients are undefined unless
E (XX′)−1 exists, i.e. unless there is no perfect multicollinearity.
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Interpretation 1: Best Linear Predictor

Write U = Y − X ′β. To find the best linear predictor, we minimize:

MSE (b) = min
b∈Rk+1

E [(Y − X ′b)2]

The solution (call it β) must satisfy the first-order condition:

FOC: − 2E [X (Y − X ′β)] = 0 =⇒ E (XU) = 0

If this condition holds, then we say X ′β is BLP(Y |X ).

Q1. Is E (U|X ) = 0?

Q2. Is Cov(X ,U) = 0?

Q3. Is E (U) = 0?
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Solving for the BLP

After minimizing MSE (b), the solution to the least squares problem is:

β = E (XX ′)−1E (XY )

What assumptions do we need for this equation to hold?

(1) E (XU) = 0 (implied by the FOC )

(2) E (XX ′) must be invertible, i.e. no perfect collinearity in X .

Note that multicollinearity was not an issue for simple linear regression.

Why? Because we only had one explanatory variable.

Multicollinearity can be a big issue when estimating linear models
with several variables (example: dealing with dummy variables).

Oscar Volpe Lectures 7 & 8 10/18/2021 & 10/20/2021 8 / 24



Interpretation 2: Linear Conditional Expectation

Assume that E (Y |X ) = X ′β. Note that U = Y − E (Y |X ), because:

Y = X ′β + U = E (Y |X ) + U

From the properties of conditional expectation, we know that:

(a) E (U|X ) = E [Y − E (Y |X )|X ] = E (Y |X )− E (Y |X ) = 0

(b) E (U) = E [E (U|X )] = E (0) = 0

(c) E (XU) = E [E (XU|X )] = E [XE (U|X )] = 0

(d) Cov(X ,U) = E (XU)− E (X )E (U) = 0

The Law of Iterated Expectations gives us infinite moment restrictions of
the form E (f (X )U) = 0, from which we can construct estimators of β.

E (f (X )[Y − X ′β]) = 0 =⇒ β = E (f (X )X ′)−1E (f (X )Y )
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Interpretation 3: Causal Model

Assume Y = g(X ,U), where X are observed (and U are unobserved)
determinants of Y . The effect of Xj on Y , holding X−j and U fixed, is
given by ∂g/∂Xj . We make the assumption that:

g(X , u) = X ′β + U, so:
∂g(X ,U)

∂Xj
= βj

Here, β = (β0, β1, . . . , βk) has a causal interpretation. As long as there is
a constant in the model, we can normalize U and β0 so that: E (U) = 0.

Q1. Is E (U|X ) = 0?

Q2. Is E (XU) = 0?
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Decomposing the Coefficient Vector

Suppose you want to solve for β1 in the multiple regression model:

Yi = β0 + β1Xi,1 + βkXi,k + Ui

Let Xi ,−1 = (1,Xi ,2,Xi ,3, . . . ,Xi ,k)
′ and β−1 = (β0, β2, β3, . . . , βk)

′. Then:

Yi = X ′
i β + Ui =

[
Xi,1 X ′

i,−1

] [ β1

β−1

]
+ Ui

Under our BLP assumptions, we know that E (XiUi ) = 0, which gives:

β = E (XiX
′
i )

−1E (XiYi ),

or, equivalently, you decompose β in the following way:[
β1

β−1

]
= E

([
X 2
i,1 Xi,1X

′
i,−1

Xi,−1Xi,1 Xi,−1X
′
i,−1

])−1

E
([

Xi,1Yi

Xi,−1Yi

])
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Another Approach

Alternatively, we can solve for β1 by taking three steps:

(1) regress Yi on Xi,−1 to get “residuals” Ỹi = Yi − BLP(Yi |Xi,−1)

(2) regress Xi,1 on Xi,−1 to get “residuals” X̃i,1 = Xi,1 − BLP(Xi,1|Xi,−1)

(3) regress Ỹ on X̃i,1, and the coefficient on X̃i,1 equals β1

Intuition: β1 characterizes the relationship between Xi ,1 and Yi after
controlling for the rest of the regressors Xi ,−1 = (1,Xi ,2,Xi ,3, . . . ,Xi ,k)

′.

Consider the linear regression model Ỹi = β̃1X̃i ,1 + Ũ, where β̃1 equals:

β̃1 = E (X̃i,1X̃
′
i,1)

−1E (X̃i,1Ỹi ),

and E (X̃i ,1Ũ) = 0. Then β̃1 will be equal to β1.
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Example: Simple Linear Regression

Consider the simple linear regression model:

Y = β0 + β1X1 + U

Define X = (1,X1)
′ and β = (β0, β1)

′. Under our BLP assumptions:

β = E (XX ′)−1E (XY )

If we want to solve for β1 alone, consider the model Ỹ = β̃1X̃1 + Ũ.

β1 = β̃1 =
E (X̃1Ỹ )

E (X̃ 2
1 )

=
E ([X1 − E (X1)][Y − E (Y )])

E ([X1 − E (X1)])
=

Cov(X1,Y )

Var(X1)

We derived this same expression for β1 before! We now have a way to
generalize this process for regression models with multiple variables.
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Omitting One Variable

Let k = 2, so that Y = β0+β1X1+β2X2+U. Suppose that you estimate:

Y = β∗
0 + β∗

1X1 + U∗,

where you maintain the BLP assumptions: E (U∗) = 0 and E (X1U
∗) = 0.

β∗
1 =

Cov(X1,Y )

Var(X1)
= β1 + β2

Cov(X1,X2)

Var(X1)

In general, it is not true that β∗
1 = β1.

If we “control” for X2 in the model, we change the coefficient on X1.
The two exceptions to this are if Cov(X1,X2) = 0 and/or β2 = 0.

Omitted variable bias can be a huge issue for causal inference.
▶ Why? Suppose Y = earnings, X1 = education level, X2 = SES. We

cannot interpret β∗
1 as the “effect” of education on earnings given SES.

▶ Alternatively, let X2 = “ability”. We may not be able to measure it!
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Measurement Error

Let Y = β0 + β1X1 +U, but we only observe X̂1 = X1 +V . For simplicity,
assume that E (V ) = E (X1V ) = E (UV ) = 0. We estimate the model:

Y = β∗
0 + β∗

1X̂1 + U∗

where you maintain the BLP assumptions: E (U∗) = 0 and E (X1U
∗) = 0.

β∗
1 =

Cov(X̂1,Y )

Var(X̂1)
=

Var(X1)

Var(X1) + Var(V )
β1

The quantity Var(X1)

Var(X1)+Var(V )
is called “attenuation bias”.

Note: the attenuation bias is bounded between 0 and 1.

Therefore, β∗
1 will be smaller in magnitude than β1.

Again, this can become a huge issue when making causal inferences.
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Powers of Regressors

Even if the relationship between Y and X is believed to be nonlinear, linear
regression can still be useful. As an example, let Y = wages and X = age.

We might think that wages rise when you are young and then fall as
you transition toward retirement (i.e. wage-age profile is concave).

Strategy: account for nonlinearities with a quadratic term X 2.

Suppose you write down the multiple regression model:

Y = β0 + β1X + β2X
2 + U

Our BLP assumptions require that E (U) = E (XU) = E (X 2U) = 0.

We could even add in cubic or quartic terms (e.g. X 3 or X 4).

Conveniently for us, perfect multicollinearity is not an issue even
though the regressors are deterministic functions of one another.
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Categorical Variables

Due to issues surrounding perfect multicollinearity, we must be careful
when dealing with categorical variables as regressors. For example, let:

X1 = I{didn’t graduate high school}
X2 = I{graduated high school, but didn’t graduate college}
X3 = I{graduated college, but no higher degrees}
X4 = I{higher degrees}

Since X4 = 1− X1 − X2 − X3, we cannot put all four regressors in the
model. Instead, we need to leave one of these variables (e.g. X4) out:

Y = β0 + β1X1 + β2X2 + β3X3 + U,

The BLP assumptions require: E (U) = E (X1U) = E (X2U) = E (X3U) = 0.

Alternatively, we could regress Y on X1, . . . ,X4 without a constant.
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Interaction Terms

Another type of nonlinear transformation of regressors is their product.

Example: suppose that X1 = I{female}, X2 = avg. daily hours
worked, and Y = amount of TV watching. You believe that the
relationship between work hours and TV watching differs by gender.

Strategy: put an interaction term X1X2 into the model.

Suppose you write down the multiple regression model:

Y = β0 + β1X1 + β2X2 + β3X1X2 + U

Our BLP assumptions require: E (U) = E (X1U) = E (X2U) = E (X1X2U) = 0.

We can also interact different categorical variables.

Just as before, perfect multicollinearity is not an issue even though
the third variable X1X2 depends deterministically on X1 and X2.
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Logarithms

It is common to take the natural log of the regressand and/or regressors.

Why take a “log-transform”? Logarithms approximate proportional changes.

Let x and x̃ be numbers with x̃ − x “small”. Then x̃−x
x ≈ log(x̃)− log(x).

Example
Let W = wages and S = years of schooling. You consider the model:

log(W ) = β0 + β1S + U

Suppose S increases by ∆S years. Then log(W ) increases by β1∆S . In
this case, the percentage change in wages is then given by:

100× W exp(β1∆S)−W

W
≈ 100× [log(W exp(β1∆S))− log(W )] ≈ 100× β1∆S

Fixing U, an additional year of schooling S changes W by 100β1%.
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Level-Log and Log-Log Models

Other possible models relating Y to X and U are:

Y = β0 + β1 log(X ) + U (1)

log(Y ) = β0 + β1 log(X ) + U (2)

The first model (1) is called a level-log model.

Holding U fixed, a 1% increase in X changes Y by β1/100.

The second model (2) is called a log-log model.

Holding U fixed, a 1% increase in X changes Y by β1%.

In practice, these log approximation interpretations are not too good.

Approximations become better when we look at small changes in X .

Used frequently economics when considering elasticities of wages.
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