Lectures 7 \& 8
 Multiple Linear Regression

Oscar Volpe

$$
10 / 18 / 2021 \& 10 / 20 / 2021
$$

(1) Introduction

- General Setup
- Interpretations of Linear Regression
(2) Sources of Bias
- Solving for Subvectors of β
- Omitted Variable Bias
- Measurement Error
(3) Specifying Linear Regressions
(1) Introduction
- General Setup
- Interpretations of Linear Regression
(2) Sources of Bias
- Solving for Subvectors of β
- Omitted Variable Bias
- Measurement Error
(3) Specifying Linear Regressions

Motivation

Suppose we have i.i.d. data about Y and explanatory variables X_{1}, \ldots, X_{k}. Given $\left\{Y_{i}, X_{i, 1}, \ldots, X_{i, k}\right\}_{i=1}^{n}$, we write down a linear model:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i, 1}+\cdots+\beta_{k} X_{i, k}+U_{i} \\
& =X_{i}^{\prime} \beta+U_{i},
\end{aligned}
$$

where $X_{i}=\left(1, X_{i, 1}, \ldots, X_{i, k}\right)^{\prime}$ and $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)^{\prime}$.

- Using vectors allows us to write this model more compactly.

We can draw conclusions from this model under different assumptions.

- We may want to predict Y_{i} using multiple explanatory variables.
- We may want to characterize differences in $E\left(Y \mid X_{1}, \ldots, X_{k}\right)$.
- We may want to give the β_{j} 's a causal interpretation.

Multicollinearity

Throughout our analysis, we assume that no X_{j} can be written as a linear combination of the other explanatory variables $X_{1}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{k}$.

- Why? Write $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+U$, where $X_{1}=c+d X_{2}$. It is impossible to make changes to X_{1} without making changes to X_{2}.
- More generally, this issue is known as perfect multicollinearity.

Definition (Perfect Collinearity)

A matrix \mathbf{X} is perfectly collinear if $P\left(c^{\prime} \mathbf{X}=0\right)=1$ for some $c \neq 0$.

Theorem (Existence of $E\left(\mathbf{X} \mathbf{X}^{\prime}\right)^{-1}$)

$E\left(\mathbf{X} \mathbf{X}^{\prime}\right)$ is invertible if and only if there is no perfect collinearity in \mathbf{X}.

- As we will soon see, our least squares coefficients are undefined unless $E\left(\mathbf{X} \mathbf{X}^{\prime}\right)^{-1}$ exists, i.e. unless there is no perfect multicollinearity.
(1) Introduction
- General Setup
- Interpretations of Linear Regression
(2) Sources of Bias
- Solving for Subvectors of β
- Omitted Variable Bias
- Measurement Error
(3) Specifying Linear Regressions

Interpretation 1: Best Linear Predictor

Write $U=Y-X^{\prime} \beta$. To find the best linear predictor, we minimize:

$$
\operatorname{MSE}(b)=\min _{b \in \mathbb{R}^{k+1}} E\left[\left(Y-X^{\prime} b\right)^{2}\right]
$$

The solution (call it β) must satisfy the first-order condition:

$$
\text { FOC: } \quad-2 E\left[X\left(Y-X^{\prime} \beta\right)\right]=0 \quad \Longrightarrow E(X U)=0
$$

If this condition holds, then we say $X^{\prime} \beta$ is $\operatorname{BLP}(Y \mid X)$.

- Q1. Is $E(U \mid X)=0$?
- Q2. Is $\operatorname{Cov}(X, U)=0$?
- Q3. Is $E(U)=0$?

Solving for the BLP

After minimizing $\operatorname{MSE}(b)$, the solution to the least squares problem is:

$$
\beta=E\left(X X^{\prime}\right)^{-1} E(X Y)
$$

What assumptions do we need for this equation to hold?
(1) $E(X U)=0$ (implied by the FOC)
(2) $E\left(X X^{\prime}\right)$ must be invertible, i.e. no perfect collinearity in X.

Note that multicollinearity was not an issue for simple linear regression.

- Why? Because we only had one explanatory variable.
- Multicollinearity can be a big issue when estimating linear models with several variables (example: dealing with dummy variables).

Interpretation 2: Linear Conditional Expectation

Assume that $E(Y \mid X)=X^{\prime} \beta$. Note that $U=Y-E(Y \mid X)$, because:

$$
Y=X^{\prime} \beta+U=E(Y \mid X)+U
$$

From the properties of conditional expectation, we know that:

$$
\begin{aligned}
& \text { (a) } E(U \mid X)=E[Y-E(Y \mid X) \mid X]=E(Y \mid X)-E(Y \mid X)=0 \\
& \text { (b) } E(U)=E[E(U \mid X)]=E(0)=0 \\
& \text { (c) } E(X U)=E[E(X U \mid X)]=E[X E(U \mid X)]=0 \\
& \text { (d) } \\
& \operatorname{Cov}(X, U)=E(X U)-E(X) E(U)=0
\end{aligned}
$$

The Law of Iterated Expectations gives us infinite moment restrictions of the form $E(f(X) U)=0$, from which we can construct estimators of β.

$$
E\left(f(X)\left[Y-X^{\prime} \beta\right]\right)=0 \quad \Longrightarrow \beta=E\left(f(X) X^{\prime}\right)^{-1} E(f(X) Y)
$$

Interpretation 3: Causal Model

Assume $Y=g(X, U)$, where X are observed (and U are unobserved) determinants of Y. The effect of X_{j} on Y, holding X_{-j} and U fixed, is given by $\partial g / \partial X_{j}$. We make the assumption that:

$$
g(X, u)=X^{\prime} \beta+U, \quad \text { so: } \frac{\partial g(X, U)}{\partial X_{j}}=\beta_{j}
$$

Here, $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)$ has a causal interpretation. As long as there is a constant in the model, we can normalize U and β_{0} so that: $E(U)=0$.

- Q1. Is $E(U \mid X)=0$?
- Q2. Is $E(X U)=0$?
(1) Introduction
- General Setup
- Interpretations of Linear Regression
(2) Sources of Bias
- Solving for Subvectors of β
- Omitted Variable Bias
- Measurement Error
(3) Specifying Linear Regressions

Decomposing the Coefficient Vector

Suppose you want to solve for β_{1} in the multiple regression model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{k} X_{i, k}+U_{i}
$$

Let $X_{i,-1}=\left(1, X_{i, 2}, X_{i, 3}, \ldots, X_{i, k}\right)^{\prime}$ and $\beta_{-1}=\left(\beta_{0}, \beta_{2}, \beta_{3}, \ldots, \beta_{k}\right)^{\prime}$. Then:

$$
Y_{i}=X_{i}^{\prime} \beta+U_{i}=\left[\begin{array}{ll}
X_{i, 1} & X_{i,-1}^{\prime}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\beta_{-1}
\end{array}\right]+U_{i}
$$

Under our BLP assumptions, we know that $E\left(X_{i} U_{i}\right)=0$, which gives:

$$
\beta=E\left(X_{i} X_{i}^{\prime}\right)^{-1} E\left(X_{i} Y_{i}\right)
$$

or, equivalently, you decompose β in the following way:

$$
\left[\begin{array}{c}
\beta_{1} \\
\beta_{-1}
\end{array}\right]=E\left(\left[\begin{array}{cc}
X_{i, 1}^{2} & X_{i, 1} X_{i,-1}^{\prime} \\
X_{i,-1} X_{i, 1} & X_{i,-1} X_{i,-1}^{\prime}
\end{array}\right]\right)^{-1} E\left(\left[\begin{array}{c}
X_{i, 1} Y_{i} \\
X_{i,-1} Y_{i}
\end{array}\right]\right)
$$

Another Approach

Alternatively, we can solve for β_{1} by taking three steps:
(1) regress Y_{i} on $X_{i,-1}$ to get "residuals" $\tilde{Y}_{i}=Y_{i}-\operatorname{BLP}\left(Y_{i} \mid X_{i,-1}\right)$
(2) regress $X_{i, 1}$ on $X_{i,-1}$ to get "residuals" $\tilde{X}_{i, 1}=X_{i, 1}-\operatorname{BLP}\left(X_{i, 1} \mid X_{i,-1}\right)$
(3) regress \tilde{Y} on $\tilde{X}_{i, 1}$, and the coefficient on $\tilde{X}_{i, 1}$ equals β_{1}

Intuition: β_{1} characterizes the relationship between $X_{i, 1}$ and Y_{i} after controlling for the rest of the regressors $X_{i,-1}=\left(1, X_{i, 2}, X_{i, 3}, \ldots, X_{i, k}\right)^{\prime}$.

Consider the linear regression model $\tilde{Y}_{i}=\tilde{\beta}_{1} \tilde{X}_{i, 1}+\tilde{U}$, where $\tilde{\beta}_{1}$ equals:

$$
\tilde{\beta}_{1}=E\left(\tilde{X}_{i, 1} \tilde{X}_{i, 1}^{\prime}\right)^{-1} E\left(\tilde{X}_{i, 1} \tilde{Y}_{i}\right),
$$

and $E\left(\tilde{X}_{i, 1} \tilde{U}\right)=0$. Then $\tilde{\beta}_{1}$ will be equal to β_{1}.

Example: Simple Linear Regression

Consider the simple linear regression model:

$$
Y=\beta_{0}+\beta_{1} X_{1}+U
$$

Define $X=\left(1, X_{1}\right)^{\prime}$ and $\beta=\left(\beta_{0}, \beta_{1}\right)^{\prime}$. Under our BLP assumptions:

$$
\beta=E\left(X X^{\prime}\right)^{-1} E(X Y)
$$

If we want to solve for β_{1} alone, consider the model $\tilde{Y}=\tilde{\beta}_{1} \tilde{X}_{1}+\tilde{U}$.

$$
\beta_{1}=\tilde{\beta}_{1}=\frac{E\left(\tilde{X}_{1} \tilde{Y}\right)}{E\left(\tilde{X}_{1}^{2}\right)}=\frac{E\left(\left[X_{1}-E\left(X_{1}\right)\right][Y-E(Y)]\right)}{E\left(\left[X_{1}-E\left(X_{1}\right)\right]\right)}=\frac{\operatorname{Cov}\left(X_{1}, Y\right)}{\operatorname{Var}\left(X_{1}\right)}
$$

We derived this same expression for β_{1} before! We now have a way to generalize this process for regression models with multiple variables.
(1) Introduction

- General Setup
- Interpretations of Linear Regression
(2) Sources of Bias
- Solving for Subvectors of β
- Omitted Variable Bias
- Measurement Error
(3) Specifying Linear Regressions

Omitting One Variable

Let $k=2$, so that $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+U$. Suppose that you estimate:

$$
Y=\beta_{0}^{*}+\beta_{1}^{*} X_{1}+U^{*},
$$

where you maintain the BLP assumptions: $E\left(U^{*}\right)=0$ and $E\left(X_{1} U^{*}\right)=0$.

$$
\beta_{1}^{*}=\frac{\operatorname{Cov}\left(X_{1}, Y\right)}{\operatorname{Var}\left(X_{1}\right)}=\beta_{1}+\beta_{2} \frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\operatorname{Var}\left(X_{1}\right)}
$$

In general, it is not true that $\beta_{1}^{*}=\beta_{1}$.

- If we "control" for X_{2} in the model, we change the coefficient on X_{1}. The two exceptions to this are if $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$ and/or $\beta_{2}=0$.
- Omitted variable bias can be a huge issue for causal inference.
- Why? Suppose $Y=$ earnings, $X_{1}=$ education level, $X_{2}=$ SES. We cannot interpret β_{1}^{*} as the "effect" of education on earnings given SES.
- Alternatively, let $X_{2}=$ "ability". We may not be able to measure it!
(1) Introduction
- General Setup
- Interpretations of Linear Regression
(2) Sources of Bias
- Solving for Subvectors of β
- Omitted Variable Bias
- Measurement Error
(3) Specifying Linear Regressions

Measurement Error

Let $Y=\beta_{0}+\beta_{1} X_{1}+U$, but we only observe $\hat{X}_{1}=X_{1}+V$. For simplicity, assume that $E(V)=E\left(X_{1} V\right)=E(U V)=0$. We estimate the model:

$$
Y=\beta_{0}^{*}+\beta_{1}^{*} \hat{X}_{1}+U^{*}
$$

where you maintain the BLP assumptions: $E\left(U^{*}\right)=0$ and $E\left(X_{1} U^{*}\right)=0$.

$$
\beta_{1}^{*}=\frac{\operatorname{Cov}\left(\hat{X}_{1}, Y\right)}{\operatorname{Var}\left(\hat{X}_{1}\right)}=\frac{\operatorname{Var}\left(X_{1}\right)}{\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}(V)} \beta_{1}
$$

The quantity $\frac{\operatorname{Var}\left(X_{1}\right)}{\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}(V)}$ is called "attenuation bias".

- Note: the attenuation bias is bounded between 0 and 1 .
- Therefore, β_{1}^{*} will be smaller in magnitude than β_{1}.
- Again, this can become a huge issue when making causal inferences.
(1) Introduction
- General Setup
- Interpretations of Linear Regression

(2) Sources of Bias

- Solving for Subvectors of β
- Omitted Variable Bias
- Measurement Error
(3) Specifying Linear Regressions

Powers of Regressors

Even if the relationship between Y and X is believed to be nonlinear, linear regression can still be useful. As an example, let $Y=$ wages and $X=$ age.

- We might think that wages rise when you are young and then fall as you transition toward retirement (i.e. wage-age profile is concave).
- Strategy: account for nonlinearities with a quadratic term X^{2}.

Suppose you write down the multiple regression model:

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+U
$$

Our BLP assumptions require that $E(U)=E(X U)=E\left(X^{2} U\right)=0$.

- We could even add in cubic or quartic terms (e.g. X^{3} or X^{4}).
- Conveniently for us, perfect multicollinearity is not an issue even though the regressors are deterministic functions of one another.

Categorical Variables

Due to issues surrounding perfect multicollinearity, we must be careful when dealing with categorical variables as regressors. For example, let:

$$
\begin{aligned}
& X_{1}=\mathbb{I}\{\text { didn't graduate high school }\} \\
& X_{2}=\mathbb{I}\{\text { graduated high school, but didn't graduate college }\} \\
& X_{3}=\mathbb{I}\{\text { graduated college, but no higher degrees }\} \\
& X_{4}=\mathbb{I}\{\text { higher degrees }\}
\end{aligned}
$$

Since $X_{4}=1-X_{1}-X_{2}-X_{3}$, we cannot put all four regressors in the model. Instead, we need to leave one of these variables (e.g. X_{4}) out:

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+U,
$$

The BLP assumptions require: $E(U)=E\left(X_{1} U\right)=E\left(X_{2} U\right)=E\left(X_{3} U\right)=0$.

- Alternatively, we could regress Y on X_{1}, \ldots, X_{4} without a constant.

Interaction Terms

Another type of nonlinear transformation of regressors is their product.

- Example: suppose that $X_{1}=\mathbb{I}\{$ female $\}, X_{2}=$ avg. daily hours worked, and $Y=$ amount of TV watching. You believe that the relationship between work hours and TV watching differs by gender.
- Strategy: put an interaction term $X_{1} X_{2}$ into the model.

Suppose you write down the multiple regression model:

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+U
$$

Our BLP assumptions require: $E(U)=E\left(X_{1} U\right)=E\left(X_{2} U\right)=E\left(X_{1} X_{2} U\right)=0$.

- We can also interact different categorical variables.
- Just as before, perfect multicollinearity is not an issue even though the third variable $X_{1} X_{2}$ depends deterministically on X_{1} and X_{2}.

Logarithms

It is common to take the natural log of the regressand and/or regressors.

- Why take a "log-transform"? Logarithms approximate proportional changes.
- Let x and \tilde{x} be numbers with $\tilde{x}-x$ "small". Then $\frac{\tilde{x}-x}{x} \approx \log (\tilde{x})-\log (x)$.

Example

Let $W=$ wages and $S=$ years of schooling. You consider the model:

$$
\log (W)=\beta_{0}+\beta_{1} S+U
$$

Suppose S increases by ΔS years. Then $\log (W)$ increases by $\beta_{1} \Delta S$. In this case, the percentage change in wages is then given by:

$$
100 \times \frac{W \exp \left(\beta_{1} \Delta S\right)-W}{W} \approx 100 \times\left[\log \left(W \exp \left(\beta_{1} \Delta S\right)\right)-\log (W)\right] \approx 100 \times \beta_{1} \Delta S
$$

Fixing U, an additional year of schooling S changes W by $100 \beta_{1} \%$.

Level-Log and Log-Log Models

Other possible models relating Y to X and U are:

$$
\begin{align*}
Y & =\beta_{0}+\beta_{1} \log (X)+U \tag{1}\\
\log (Y) & =\beta_{0}+\beta_{1} \log (X)+U \tag{2}
\end{align*}
$$

The first model (1) is called a level-log model.

- Holding U fixed, a 1% increase in X changes Y by $\beta_{1} / 100$.

The second model (2) is called a log-log model.

- Holding U fixed, a 1% increase in X changes Y by $\beta_{1} \%$.

In practice, these log approximation interpretations are not too good.

- Approximations become better when we look at small changes in X.
- Used frequently economics when considering elasticities of wages.

