Lectures 9 & 10 Ordinary Least Squares Estimation

Oscar Volpe

10/25/2021 & 10/27/2021

Oscar Volpe

Lectures 9 & 10

10/25/2021 & 10/27/2021 1/27

< □ > < □ > < □ > < □ > < □ > < □ >

э

- Derivation
- Measures of Fit

Properties of the OLS Estimator

- Gauss-Markov Theorem
- Unbiasedness
- Consistency
- Asymptotic Normality

3 Example: Control Variables & Hypothesis Testing

Constructing the OLS Estimator Derivation

Measures of Fit

2 Properties of the OLS Estimato

- Gauss-Markov Theorem
- Unbiasedness
- Consistency
- Asymptotic Normality

3 Example: Control Variables & Hypothesis Testing

・ 何 ト ・ ヨ ト ・ ヨ ト

Solving for the BLP

Consider an i.i.d. sample $\{X_i, Y_i\}_{i=1}^n$, where $Y_i \in \mathbb{R}$ and $X \in \mathbb{R}^{k+1}$. To estimate β , we solve a sample analogue of the least-squares problem:

$$\hat{\beta}_n \in \underset{b}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n (Y_i - X'_i b)^2 \tag{1}$$

Solving this minimization problem gives us an estimator for β_1 :

$$\hat{\beta}_n = \left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n X_i Y_i\right)$$

This estimator is called the ordinary least squares (OLS) estimator.

- We require that $\frac{1}{n} \sum_{i=1}^{n} X_i X'_i$ is invertible, which means there can be no perfect collinearity within the sample. This assumption can fail!
- One solution when there multicollinearity is to run *Ridge regression*.

Residuals

The optimality conditions from the ordinary least squares problem are:

$$\frac{1}{n}\sum_{i=1}^n X_i(Y_i-X_i'\hat{\beta}_n)=0$$

We define $\hat{U}_i = Y_i - X'_i \hat{\beta}_n$ to be the *i*th *residual*. It follows that:

$$\sum_{i=1}^n X_i \hat{U}_i = \mathbf{0}_{k+1}$$

Define the predicted value (or fitted value) of Y_i to be $\hat{Y}_i = X'_i \hat{\beta}_n$.

- Therefore, the residuals $\{\hat{U}_i\}_{i=1}^n$ are given by $\hat{U}_i = Y_i \hat{Y}_i$.
- Note: as long as there is a constant in the model, we have $X_{i,1} = 1$. It follows that $\sum_{i=1}^{n} \hat{U}_i = 0$, i.e. the sum of residuals equals zero.

- Derivation
- Measures of Fit

Properties of the OLS Estimator

- Gauss-Markov Theorem
- Unbiasedness
- Consistency
- Asymptotic Normality

3 Example: Control Variables & Hypothesis Testing

・ 何 ト ・ ヨ ト ・ ヨ ト

Decomposing the TSS

Suppose we want to measure how well $\{\hat{Y}_i\}_{i=1}^n$ approximates $\{Y_i\}_{i=1}^n$. Just as with simple linear regression, we define the following terms:

Note that we can decompose the total sum of squares (TSS) as:

$$\sum_{i=1}^{n} (Y_i - \bar{Y}_n)^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y}_n + \hat{U}_i)^2$$
$$= \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y}_n)^2}_{\text{ESS}} + \underbrace{2\sum_{i=1}^{n} \hat{U}_i (\hat{Y}_i - \bar{Y}_n)}_{\text{equal to } 0} + \underbrace{\sum_{i=1}^{n} \hat{U}_i^2}_{\text{SSR}}$$

Coefficient of Determination

The *coefficient of determination* (or *R*-squared) is defined to be:

$$R^2 = rac{\mathsf{ESS}}{\mathsf{TSS}} = 1 - rac{\mathsf{SSR}}{\mathsf{TSS}}$$

Intuitively, if the model fits the data well, then much of the variation in Y_i is captured by the variation in \hat{Y}_i . In this case, the *R*-squared is large.

- Since TSS = ESS + SSR, we know that $0 \le R^2 \le 1$.
- $R^2 = 1$ if SSR = 0, i.e. all data points lie on a line.
- $R^2 = 0$ if ESS = 0, i.e. X_i does not help us to predict Y_i .

Importantly, R-squared does not tell us anything about the causal relationship between X and Y. It simply measures goodness of fit.

- Derivation
- Measures of Fit

Properties of the OLS Estimator

- Gauss-Markov Theorem
- Unbiasedness
- Consistency
- Asymptotic Normality

3 Example: Control Variables & Hypothesis Testing

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Gauss-Markov Assumptions

For multiple linear regression, the Gauss-Markov assumptions are:

- (1) The model is $Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + U = X'\beta + U$.
- (2) We observe an *iid* sample $\{X_i, Y_i\}_{i=1}^n$ of X and Y.
- (3) There is no perfect collinearity in the sample (i.e. a unique $\hat{\beta}_n$ exists).
- (4) Suppose E(U|X) = 0 (i.e. conditional expectation is linear).
- (5) The conditional variance is constant: $Var(U|X) = \sigma^2$.

With these assumptions, we can prove the Gauss-Markov theorem, i.e. that the OLS estimator $\hat{\beta}_n$ is the *best linear unbiased estimator*. Also:

- Unbiasedness of $\hat{\beta}_n$ follows from assumptions (1) (4).
- Consistency of $\hat{\beta}_n$ comes directly from BLP assumptions.

Statement of the Theorem

Theorem (Gauss-Markov Theorem)

Suppose that all of the Gauss-Markov assumptions are satisfied. Then the OLS estimator $\hat{\beta}_n$ will be the best linear unbiased estimator for β .

Interpretation: $\hat{\beta}_n$ has the "smallest" variance among the class of estimators that are both linear and unbiased (conditional on $\{X_i\}_{i=1}^n$).

We must show $\operatorname{Var}(\hat{\beta}_n|\{X_i\}_{i=1}^n)$ is "smaller" than $\operatorname{Var}(\tilde{\beta}|\{X_i\}_{i=1}^n)$, where: • $\tilde{\beta}$ is linear, i.e. $\tilde{\beta}$ has the form $\mathbf{A}(\{X_i\}_{i=1}^n)Y$

• $\tilde{\beta}$ is unbiased, i.e. $\mathbb{E}[\tilde{\beta}|\{X_i\}_{i=1}^n] = \beta$

To prove this, first note that $\hat{\beta}_n$ can be written as $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$, where:

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \text{ and } \mathbf{X} = \begin{bmatrix} 1 & X_{1,1} & X_{1,2} & \cdots & X_{1,k} \\ 1 & X_{2,1} & X_{2,2} & \cdots & X_{2,k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n,1} & X_{n,2} & \cdots & X_{n,k} \end{bmatrix} \text{ and } \mathbf{U} = \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_n \end{bmatrix}$$

11 / 27

Proving the Theorem

Step 1

The goal is show that $\operatorname{Var}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}|\{X_i\}_{i=1}^n] \leq \operatorname{Var}[\mathbf{A}\mathbf{Y}|\{X_i\}_{i=1}^n]$ for any linear estimator $\tilde{\beta} = \mathbf{A}\mathbf{Y}$ that is unbiased for β . As a first step, note:

- We require that $\tilde{\beta}$ satisfies: $\beta = \mathbb{E}[\tilde{\beta}|\{X_i\}_{i=1}^n] = \mathbb{E}[\mathbf{AY}|\{X_i\}_{i=1}^n] = \mathbf{AX}\beta$.
- As this equality holds for all β , it follows that $\mathbf{AX} = I_{k+1}$.

Step 2

As a next step, note that we can write $Var(\mathbf{AY}|\{X_i\}_{i=1}^n)$ to be:

$$\mathsf{Var}(\mathsf{AY}|\{X_i\}_{i=1}^n) = \mathsf{A}\mathsf{Var}(\mathsf{Y}|\{X_i\}_{i=1}^n)\mathsf{A}' = \mathsf{A}\mathsf{Var}(U|\{X_i\}_{i=1}^n)\mathsf{A}' = \sigma^2\mathsf{A}\mathsf{A}'$$

In the case of OLS, $\mathbf{A} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$, so the variance is $\sigma^2(\mathbf{X}'\mathbf{X})^{-1}$.

Step 3

We must show $\operatorname{Var}(\hat{\beta}_n|\{X_i\}_{i=1}^n)$ is smaller than $\operatorname{Var}(\tilde{\beta}|\{X_i\}_{i=1}^n)$. To do so, we can show that $\sigma^2 \mathbf{A} \mathbf{A}' - \sigma^2 (\mathbf{X}' \mathbf{X})^{-1}$ is a positive semidefinite matrix.

Key Points of the Theorem

The Gauss-Markov Theorem says that, under homoskedasticity, the OLS estimator is the *best* among those that are *linear* and *unbiased*.

- *best* means having the smallest conditional variance $Var(AY|\{X_i\}_{i=1}^n)$
- the result only compares linear and unbiased estimators
- key assumption: *homoskedasticity*

Nonetheless, this theorem validates the use of OLS among a large class of estimators, and it also suggests instances where we may deviate from OLS.

- Derivation
- Measures of Fit

Properties of the OLS Estimator

- Gauss-Markov Theorem
- Unbiasedness
- Consistency
- Asymptotic Normality

3 Example: Control Variables & Hypothesis Testing

Bias of $\hat{\beta}_n$

Theorem (Unbiasedness of the OLS Estimator)

Let $\{X_i, Y_i\}_{i=1}^n$ be an i.i.d. sample, and let $Y_i = X'_i\beta + U_i$ be the model under consideration. If there is no collinearity in X_i within the sample and if $E(U_i|X_i) = 0$, then the OLS estimator $\hat{\beta}_n$ is unbiased for β .

Sketch of the Proof

Recall that
$$\hat{\beta}_n = \left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n X_i Y_i\right)$$
, where $Y_i = X_i' \beta + U_i$.

$$E(\hat{\beta}_n|\{X_i\}_{i=1}^n) = \beta + \left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n X_i E(U_i|\{X_i\}_{i=1}^n)\right) = \beta$$

where the last equality holds because our sample is *i.i.d.* and $E(U_i|X_i) = 0$. Finally, by the Law of Iterated Expectations, we write:

$$E(\hat{\beta}_n) = E(E(\hat{\beta}_n | \{X_i\}_{i=1}^n)) = \beta$$

15 / 27

- Derivation
- Measures of Fit

Properties of the OLS Estimator

- Gauss-Markov Theorem
- Unbiasedness
- Consistency
- Asymptotic Normality

3 Example: Control Variables & Hypothesis Testing

Consistency of $\hat{\beta}_n$

Theorem (Consistency of the OLS Estimator)

Let $\{X_i, Y_i\}_{i=1}^n$ be an i.i.d. sample, and let $Y_i = X'_i\beta + U_i$ be the model under consideration. If there is no collinearity in X_i within the sample and if $E(X_iU_i) = 0$, then the OLS estimator $\hat{\beta}_n$ is consistent for β .

Sketch of the Proof

How do we show that $\hat{\beta}_n \xrightarrow{p} \beta$?

- For simplicity, let $\hat{A} = \frac{1}{n} \sum_{i=1}^{n} X_i X'_i$ and $\hat{B} = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i$.
- By the WLLN, $\hat{A} \xrightarrow{p} E(X_i X'_i)$ and $\hat{B} \xrightarrow{p} E(X_i Y_i)$.
- By the CMT, $\hat{A}^{-1}\hat{B} \xrightarrow{p} E(X_iX_i')^{-1}E(X_iY_i)$, which equals β .

- Derivation
- Measures of Fit

Properties of the OLS Estimator

- Gauss-Markov Theorem
- Unbiasedness
- Consistency
- Asymptotic Normality

3 Example: Control Variables & Hypothesis Testing

Limiting Distribution of $\hat{\beta}_n$ (Part 1)

Theorem (Limiting Distribution of the OLS Estimator)

Let $\{X_i, Y_i\}_{i=1}^n$ be an i.i.d. sample, and let $Y_i = X'_i\beta + U_i$ be the model under consideration. If there is no collinearity in X_i within the sample and if both $E(X_iU_i) = 0$ and $Var(X_iU_i)$ exists, then:

 $\sqrt{n}(\hat{\beta}_n - \beta) \stackrel{d}{\rightarrow} N(0, \Omega), \quad \text{where: } \Omega = E(X_i X_i')^{-1} \operatorname{Var}(X_i U_i) E(X_i X_i')^{-1}$

Additionally, if $E(X_i|U_i) = 0$ and $Var(U_i|X_i) = \sigma^2$, then:

$$\sqrt{n}(\hat{\beta}_n - \beta) \stackrel{d}{\rightarrow} N(0, \sigma^2 E(X_i X_i')^{-1})$$

Sketch of the Proof

Recall that
$$\hat{\beta}_n = \left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n X_i Y_i\right)$$
, where $Y_i = X_i' \beta + U_i$.

$$\sqrt{n}(\hat{\beta}_n - \beta) = \left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1} \left(\sqrt{n} \times \frac{1}{n}\sum_{i=1}^n X_i U_i\right)$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Limiting Distribution of $\hat{\beta}_n$ (Part 2)

Sketch of the Proof (Continued)

Since $E(X_i U_i) = 0$, the Central Limit Theorem guarantees that:

$$\sqrt{n}\Big(\frac{1}{n}\sum_{i=1}^{n}X_{i}U_{i}\Big)\stackrel{d}{\rightarrow}N(0,\operatorname{Var}(X_{i}U_{i}))$$

Note that $\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}X_{i}'\right)^{-1} \xrightarrow{p} E(X_{i}X_{i}')^{-1}$. By Slutsky's theorem, write:

$$\sqrt{n}(\hat{eta}_n-eta)\stackrel{d}{
ightarrow} \mathsf{N}(0,\Omega), \quad ext{where:} \ \ \Omega=\mathsf{E}(X_iX_i')^{-1}\mathsf{Var}(X_iU_i)\mathsf{E}(X_iX_i')^{-1}$$

Notice that, if $E(X_i|U_i) = 0$ and $Var(U_i|X_i) = \sigma^2$, then:

$$\operatorname{Var}(X_i U_i) = E(U_i^2 X_i X_i') = E(E(U_i^2 | X_i) X_i X_i') = \sigma^2 E(X_i X_i')$$

In this case, we conclude that $\Omega = \sigma^2 E(X_i X_i')^{-1}$, as desired.

20 / 27

<ロト < 四ト < 三ト < 三ト = 三

Estimating $\boldsymbol{\Omega}$ under Homoskedasticity

Under the Gauss-Markov assumptions, we know that $\Omega = \sigma^2 E(X_i X'_i)^{-1}$.

- A natural estimator for $E(X_i X_i')^{-1}$ is $\left(\frac{1}{n} \sum_{i=1}^n X_i X_i'\right)^{-1}$.
 - Is it consistent? Yes! (Apply WLLN and CMT)
 - Is it unbiased? No! (Upward bias by Jensen's inequality)
- We select $\hat{\sigma}^2 = \frac{\text{SSR}}{n-k-1}$ as an estimator for σ^2 .
 - It turns out that $\hat{\sigma}^2$ is both *consistent* and *unbiased* for σ^2 .
 - ► Dividing by n k 1 rather than n is called a *degrees of freedom* correction. Subtracting k + 1 from n guarantees unbiasedness.

Given these observations, we can estimate Ω with $\hat{\Omega}$, where:

$$\hat{\Omega}_n = \hat{\sigma}^2 \left(\frac{1}{n} \sum_{i=1}^n X_i X_i'\right)^{-1}$$

Note that $\hat{\Omega}_n$ is a consistent estimator for Ω , i.e. $\hat{\Omega}_n \xrightarrow{p} \Omega$, by the CMT.

- Derivation
- Measures of Fit

Properties of the OLS Estimator

- Gauss-Markov Theorem
- Unbiasedness
- Consistency
- Asymptotic Normality

Example: Control Variables & Hypothesis Testing

Context: Free Preschool

Suppose that an organization implements a high-quality preschool program for children in under-resourced households. You collect data about:

- X₁: a dummy variable for participation in the program
- X₂: parental income
- X₃: parents' years of educational attainment
- W: weekly earnings of children in adulthood
- H: hours/week worked by children in adulthood

You want to understand the long-term impact of access to free preschool. Choosing log hourly wages as your outcome, you write down the model:

$$\log(W/H) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + U$$

Can we (and *should we*) give a causal interpretation to β_1 ? How might our interpretation of β_1 change if we don't control for X_2 and/or X_3 ?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Testing Linear Restrictions (Overview)

Given our data $\{W_i, H_i, X_{i,1}, X_{i,2}, X_{i,3}\}_{i=1}^n$, we run the regression:

$$log(W_i/H_i) = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,3} + U_i = X'_i \beta + U_i$$

where $X_i = (1, X_{i,1}, X_{i,2}, X_{i,3})'$ and $\beta = (\beta_0, \beta_1, \beta_2, \beta_3)'$. From running OLS, we obtain an estimate $\hat{\beta}_n$ for β , which we know must satisfy:

$$\sqrt{n}(\hat{eta}_n-eta)\stackrel{d}{
ightarrow} N(0,\Omega)$$

Suppose we want to test whether β satisfies some linear restriction:

$$H_0: r'\beta = c$$
 versus $H_1: r'\beta \neq c$

Under H_0 , $T_n = \frac{n(r'\hat{\beta}_n - c)}{\sqrt{r'\hat{\Omega}_n r}} \xrightarrow{d} N(0, 1)$. So, our test is: $\mathbb{I}\{|T_n| > z_{1-\alpha/2}\}$.

Testing Linear Restrictions (*Examples*)

Suppose we run OLS to estimate the estimate our full linear model:

$$\log(W_i/H_i) = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,3} + U_i$$

Suppose that n is "large" so that asymptotic approximations are good.

Question 1: How do we test whether β_1 is significantly different from 0?

Question 2: How do we test whether $\beta_2 = \beta_3$?

Question 3: Can we write a 95% confidence interval for $\theta = \beta_2 - \beta_3$?

Question 4: Can we write one for $E[\log(\frac{W}{H})|(X_1, X_2, X_3) = (1, 20k, 12)]?$

25 / 27

Testing Exclusion Restrictions

Suppose we want to know whether controlling for parental income and education really matters? In other words, is it likely that $\beta_2 = \beta_3 = 0$?

 $H_0: \beta_2 = 0$ and $\beta_3 = 0$ versus $H_1:$ either $\beta_2 \neq 0$ or $\beta_3 \neq 0$

Idea: check whether these exclusion restrictions hold by seeing if the restricted model fits the data almost as well as the unrestricted model.

$$\begin{array}{ll} \textit{Unrestricted:} & \log(W/H) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + U \\ \textit{Restricted:} & \log(W/H) = \tilde{\beta}_0 + \tilde{\beta}_1 X_1 + V \end{array}$$

Take SSR_U for the unrestricted model and SSR_R for the restricted model.

- If SSR_U is "close" to SSR_R, then we don't get much more information about Y when we control for X₂ and X₃.
- In this case, it is more likely that $\beta_2 = 0$ and $\beta_3 = 0$.

26 / 27

F-Tests

We measure the decrease in fit by constructing an *F*-statistic:

$$F_n = \frac{(\text{SSR}_R - \text{SSR}_U)/q}{\text{SSR}_U/(n-k-1)} \stackrel{d}{\to} F_{q,n-k-1},$$

Here, q = 2 (number of restrictions) and k = 3 (number of variables).

We reject H_0 in favor of H_1 when F_n is "large": $F_n > F_{2,n-4,1-\alpha}$.

- If F_n > F_{2,n-4,0.95}, then controlling for parental income and education significantly changes the model (at a 5% significance level).
- If $F_n \leq F_{2,n-4,0.95}$, one may infer that the controls are likely irrelevant.

Note: we can test a variety of linear restrictions using an *F*-test.

• *Example:* to test whether $\beta_3/\beta_2 = 1$ and $\beta_1 = 0$, you could compare the restricted and unrestricted models, then compute an *F*-statistic.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ