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Solving for the BLP

Consider an i.i.d. sample {Xi ,Yi}ni=1, where Yi ∈ R and X ∈ Rk+1. To
estimate β, we solve a sample analogue of the least-squares problem:

β̂n ∈ argmin
b

1

n

n∑
i=1

(Yi − X ′i b)2 (1)

Solving this minimization problem gives us an estimator for β1:

β̂n =
(1

n

n∑
i=1

XiX
′
i

)−1(1

n

n∑
i=1

XiYi

)
This estimator is called the ordinary least squares (OLS) estimator.

We require that 1
n

∑n
i=1 XiX

′
i is invertible, which means there can be

no perfect collinearity within the sample. This assumption can fail!

One solution when there multicollinearity is to run Ridge regression.

Oscar Volpe Lectures 9 & 10 10/25/2021 & 10/27/2021 4 / 27



Residuals

The optimality conditions from the ordinary least squares problem are:

1

n

n∑
i=1

Xi (Yi − X ′i β̂n) = 0

We define Ûi = Yi − X ′i β̂n to be the ith residual. It follows that:

n∑
i=1

Xi Ûi = 0k+1

Define the predicted value (or fitted value) of Yi to be Ŷi = X ′i β̂n.

Therefore, the residuals {Ûi}ni=1 are given by Ûi = Yi − Ŷi .

Note: as long as there is a constant in the model, we have Xi ,1 = 1.

It follows that
∑n

i=1 Ûi = 0, i.e. the sum of residuals equals zero.
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Decomposing the TSS

Suppose we want to measure how well {Ŷi}ni=1 approximates {Yi}ni=1.
Just as with simple linear regression, we define the following terms:

TSS =
∑n

i=1(Yi − Ȳn)2 is the total sum of squares

ESS =
∑n

i=1(Ŷi − Ȳn)2 is the explained sum of squares

SSR =
∑n

i=1(Yi − Ŷi )
2 =

∑n
i=1 Û

2
i is the sum of squared residuals

Note that we can decompose the total sum of squares (TSS) as:

n∑
i=1

(Yi − Ȳn)2 =
n∑

i=1

(Ŷi − Ȳn + Ûi )
2

=
n∑

i=1

(Ŷi − Ȳn)2

︸ ︷︷ ︸
ESS

+ 2
n∑

i=1

Ûi (Ŷi − Ȳn)︸ ︷︷ ︸
equal to 0

+
n∑

i=1

Û2
i︸ ︷︷ ︸

SSR
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Coefficient of Determination

The coefficient of determination (or R-squared) is defined to be:

R2 =
ESS

TSS
= 1− SSR

TSS

Intuitively, if the model fits the data well, then much of the variation in Yi

is captured by the variation in Ŷi . In this case, the R-squared is large.

Since TSS = ESS + SSR, we know that 0 ≤ R2 ≤ 1.

R2 = 1 if SSR = 0, i.e. all data points lie on a line.

R2 = 0 if ESS = 0, i.e. Xi does not help us to predict Yi .

Importantly, R-squared does not tell us anything about the causal
relationship between X and Y . It simply measures goodness of fit.
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Gauss-Markov Assumptions

For multiple linear regression, the Gauss-Markov assumptions are:

(1) The model is Y = β0 + β1X1 + · · ·+ βkXk + U = X ′β + U.

(2) We observe an iid sample {Xi ,Yi}ni=1 of X and Y .

(3) There is no perfect collinearity in the sample (i.e. a unique β̂n exists).

(4) Suppose E (U|X ) = 0 (i.e. conditional expectation is linear).

(5) The conditional variance is constant: Var(U|X ) = σ2.

With these assumptions, we can prove the Gauss-Markov theorem, i.e.
that the OLS estimator β̂n is the best linear unbiased estimator. Also:

Unbiasedness of β̂n follows from assumptions (1)− (4).

Consistency of β̂n comes directly from BLP assumptions.
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Statement of the Theorem

Theorem (Gauss-Markov Theorem)

Suppose that all of the Gauss-Markov assumptions are satisfied. Then the
OLS estimator β̂n will be the best linear unbiased estimator for β.

Interpretation: β̂n has the “smallest” variance among the class of
estimators that are both linear and unbiased (conditional on {Xi}ni=1).

We must show Var(β̂n|{Xi}ni=1) is “smaller” than Var(β̃|{Xi}ni=1), where:

β̃ is linear, i.e. β̃ has the form A({Xi}ni=1)Y

β̃ is unbiased, i.e. E[β̃|{Xi}ni=1] = β

To prove this, first note that β̂n can be written as (X′X)−1X′Y, where:

Y =


Y1

Y2

...
Yn

 and X =


1 X1,1 X1,2 · · · X1,k

1 X2,1 X2,2 · · · X2,k

...
...

...
. . .

...
1 Xn,1 Xn,2 · · · Xn,k

 and U =


U1

U2

...
Un
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Proving the Theorem

Step 1

The goal is show that Var[(X′X)−1X′Y|{Xi}ni=1] ≤ Var[AY|{Xi}ni=1] for
any linear estimator β̃ = AY that is unbiased for β. As a first step, note:

We require that β̃ satisfies: β = E[β̃|{Xi}ni=1] = E[AY|{Xi}ni=1] = AXβ.

As this equality holds for all β, it follows that AX = Ik+1.

Step 2

As a next step, note that we can write Var(AY|{Xi}ni=1) to be:

Var(AY|{Xi}ni=1) = AVar(Y|{Xi}ni=1)A′ = AVar(U|{Xi}ni=1)A′ = σ2AA′

In the case of OLS, A = (X′X)−1X′, so the variance is σ2(X′X)−1.

Step 3

We must show Var(β̂n|{Xi}ni=1) is smaller than Var(β̃|{Xi}ni=1). To do so,
we can show that σ2AA′ − σ2(X′X)−1 is a positive semidefinite matrix.

Oscar Volpe Lectures 9 & 10 10/25/2021 & 10/27/2021 12 / 27



Key Points of the Theorem

The Gauss-Markov Theorem says that, under homoskedasticity, the OLS
estimator is the best among those that are linear and unbiased.

best means having the smallest conditional variance Var(AY|{Xi}ni=1)

the result only compares linear and unbiased estimators

key assumption: homoskedasticity

Nonetheless, this theorem validates the use of OLS among a large class of
estimators, and it also suggests instances where we may deviate from OLS.
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Bias of β̂n

Theorem (Unbiasedness of the OLS Estimator)

Let {Xi ,Yi}ni=1 be an i.i.d. sample, and let Yi = X ′i β + Ui be the model
under consideration. If there is no collinearity in Xi within the sample and
if E (Ui |Xi ) = 0, then the OLS estimator β̂n is unbiased for β.

Sketch of the Proof

Recall that β̂n =
(

1
n

∑n
i=1 XiX

′
i

)−1(
1
n

∑n
i=1 XiYi

)
, where Yi = X ′i β + Ui .

E (β̂n|{Xi}ni=1) = β +
(1

n

n∑
i=1

XiX
′
i

)−1(1

n

n∑
i=1

XiE (Ui |{Xi}ni=1)
)

= β

where the last equality holds because our sample is i.i.d. and E (Ui |Xi ) = 0.
Finally, by the Law of Iterated Expectations, we write:

E (β̂n) = E (E (β̂n|{Xi}ni=1)) = β
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Consistency of β̂n

Theorem (Consistency of the OLS Estimator)

Let {Xi ,Yi}ni=1 be an i.i.d. sample, and let Yi = X ′i β + Ui be the model
under consideration. If there is no collinearity in Xi within the sample and
if E (XiUi ) = 0, then the OLS estimator β̂n is consistent for β.

Sketch of the Proof

How do we show that β̂n
p→ β?

For simplicity, let Â = 1
n

∑n
i=1 XiX

′
i and B̂ = 1

n

∑n
i=1 XiYi .

By the WLLN, Â
p→ E (XiX

′
i ) and B̂

p→ E (XiYi ).

By the CMT, Â−1B̂
p→ E (XiX

′
i )−1E (XiYi ), which equals β.
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Limiting Distribution of β̂n (Part 1)

Theorem (Limiting Distribution of the OLS Estimator)

Let {Xi ,Yi}ni=1 be an i.i.d. sample, and let Yi = X ′i β + Ui be the model
under consideration. If there is no collinearity in Xi within the sample and
if both E (XiUi ) = 0 and Var(XiUi ) exists, then:

√
n(β̂n − β)

d→ N(0,Ω), where: Ω = E (XiX
′
i )−1Var(XiUi )E (XiX

′
i )−1

Additionally, if E (Xi |Ui ) = 0 and Var(Ui |Xi ) = σ2, then:

√
n(β̂n − β)

d→ N(0, σ2E (XiX
′
i )−1)

Sketch of the Proof

Recall that β̂n =
(

1
n

∑n
i=1 XiX

′
i

)−1(
1
n

∑n
i=1 XiYi

)
, where Yi = X ′i β + Ui .

√
n(β̂n − β) =

(1

n

n∑
i=1

XiX
′
i

)−1(√
n × 1

n

n∑
i=1

XiUi

)
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Limiting Distribution of β̂n (Part 2)

Sketch of the Proof (Continued)
Since E (XiUi ) = 0, the Central Limit Theorem guarantees that:

√
n
(1

n

n∑
i=1

XiUi

)
d→ N

(
0,Var(XiUi )

)

Note that
(

1
n

∑n
i=1 XiX

′
i

)−1 p→ E (XiX
′
i )−1. By Slutsky’s theorem, write:

√
n(β̂n − β)

d→ N(0,Ω), where: Ω = E (XiX
′
i )−1Var(XiUi )E (XiX

′
i )−1

Notice that, if E (Xi |Ui ) = 0 and Var(Ui |Xi ) = σ2, then:

Var(XiUi ) = E (U2
i XiX

′
i ) = E (E (U2

i |Xi )XiX
′
i ) = σ2E (XiX

′
i )

In this case, we conclude that Ω = σ2E (XiX
′
i )−1, as desired.
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Estimating Ω under Homoskedasticity

Under the Gauss-Markov assumptions, we know that Ω = σ2E (XiX
′
i )−1.

A natural estimator for E (XiX
′
i )−1 is

(
1
n

∑n
i=1 XiX

′
i

)−1
.

I Is it consistent? Yes! (Apply WLLN and CMT)
I Is it unbiased? No! (Upward bias by Jensen’s inequality)

We select σ̂2 = SSR
n−k−1 as an estimator for σ2.

I It turns out that σ̂2 is both consistent and unbiased for σ2.
I Dividing by n − k − 1 rather than n is called a degrees of freedom

correction. Subtracting k + 1 from n guarantees unbiasedness.

Given these observations, we can estimate Ω with Ω̂, where:

Ω̂n = σ̂2
(1

n

n∑
i=1

XiX
′
i

)−1

Note that Ω̂n is a consistent estimator for Ω, i.e. Ω̂n
p→ Ω, by the CMT.
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Context: Free Preschool

Suppose that an organization implements a high-quality preschool program
for children in under-resourced households. You collect data about:

X1: a dummy variable for participation in the program

X2: parental income

X3: parents’ years of educational attainment

W : weekly earnings of children in adulthood

H: hours/week worked by children in adulthood

You want to understand the long-term impact of access to free preschool.
Choosing log hourly wages as your outcome, you write down the model:

log(W /H) = β0 + β1X1 + β2X2 + β3X3 + U

Can we (and should we) give a causal interpretation to β1? How might
our interpretation of β1 change if we don’t control for X2 and/or X3?
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Testing Linear Restrictions (Overview)

Given our data {Wi ,Hi ,Xi ,1,Xi ,2,Xi ,3}ni=1, we run the regression:

log(Wi/Hi ) = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + Ui

= X ′i β + Ui

where Xi = (1,Xi ,1,Xi ,2,Xi ,3)′ and β = (β0, β1, β2, β3)′. From running

OLS, we obtain an estimate β̂n for β, which we know must satisfy:

√
n(β̂n − β)

d→ N(0,Ω)

Suppose we want to test whether β satisfies some linear restriction:

H0 : r ′β = c versus H1 : r ′β 6= c

Under H0, Tn = n(r ′β̂n−c)√
r ′Ω̂nr

d→ N(0, 1). So, our test is: I{|Tn| > z1−α/2}.
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Testing Linear Restrictions (Examples)

Suppose we run OLS to estimate the estimate our full linear model:

log(Wi/Hi ) = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + Ui

Suppose that n is “large” so that asymptotic approximations are good.

Question 1: How do we test whether β1 is significantly different from 0?

Question 2: How do we test whether β2 = β3?

Question 3: Can we write a 95% confidence interval for θ = β2 − β3?

Question 4: Can we write one for E [log(WH )|(X1,X2,X3) = (1, 20k , 12)]?
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Testing Exclusion Restrictions

Suppose we want to know whether controlling for parental income and
education really matters? In other words, is it likely that β2 = β3 = 0?

H0 : β2 = 0 and β3 = 0 versus H1 : either β2 6= 0 or β3 6= 0

Idea: check whether these exclusion restrictions hold by seeing if the
restricted model fits the data almost as well as the unrestricted model.

Unrestricted: log(W /H) = β0 + β1X1 + β2X2 + β3X3 + U

Restricted: log(W /H) = β̃0 + β̃1X1 + V

Take SSRU for the unrestricted model and SSRR for the restricted model.

If SSRU is “close” to SSRR , then we don’t get much more
information about Y when we control for X2 and X3.

In this case, it is more likely that β2 = 0 and β3 = 0.
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F -Tests

We measure the decrease in fit by constructing an F -statistic:

Fn =
(SSRR − SSRU)/q

SSRU/(n − k − 1)
d→ Fq,n−k−1,

Here, q = 2 (number of restrictions) and k = 3 (number of variables).

We reject H0 in favor of H1 when Fn is “large”: Fn > F2,n−4,1−α.

If Fn > F2,n−4,0.95, then controlling for parental income and education
significantly changes the model (at a 5% significance level).

If Fn ≤ F2,n−4,0.95, one may infer that the controls are likely irrelevant.

Note: we can test a variety of linear restrictions using an F -test.

Example: to test whether β3/β2 = 1 and β1 = 0, you could compare
the restricted and unrestricted models, then compute an F -statistic.
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