ECON 21020: Midterm Examination

Allotted Time: 1 Hour and 20 Minutes

Problem 1

(20 Points.) A climate-distressed farmer wants to learn about the methane gas emissions from her cows. She collects an *i.i.d.* sample $\{X_i\}_{i=1}^n$, where X_i is the amount of methane (in pounds) emitted from a cow in a single day. She assumes $X_i \sim \text{Uniform}[0, \kappa]$, i.e. X_i has the pdf:

$$f_{X_i}(x) = \begin{cases} 1/\kappa, & \text{if } 0 \le x \le \kappa \\ 0, & \text{otherwise} \end{cases}$$

- (a) Show that $E(X_i) = \kappa/2$ and $Var(X_i) = \kappa^2/12$.
- (b) Given the sample $\{X_i\}_{i=1}^n$, write down a method of moments estimator for $\theta = 1/\kappa$.
- (c) Is your estimator from (b) unbiased? If so, prove it. If not, specify the direction of the bias.

Problem 2

- (30 Points.) Consider the model $Y = \beta X^2 + U$. You make the assumption that $E(Y|X) = \beta X^2$.
- (a) Show that E(U|X) = 0.

(b) Are X² and U correlated? Hint: the correlation coefficient is $\rho_{X^2,U} = \frac{\operatorname{Cov}(X^2,U)}{\sqrt{\operatorname{Var}(X^2)\operatorname{Var}(U)}}$

- (c) Show that $\beta^* = E(X^2Y)/E(X^4)$ is the *b* that minimizes $MSE(b) = E[(Y bX^2)^2]$.
- (d) Given an *i.i.d.* sample $\{Y_i, X_i\}_{i=1}^n$, write down the method of moments estimator $\hat{\beta}_n$ for β^* .
- (e) Argue that $\hat{\beta}_n$ is both consistent and unbiased for β^* . Hint: $E(\hat{\beta}_n) = E(E(\hat{\beta}_n | \{X_i\}_{i=1}^n))$.

Problem 3

(30 points.) Suppose you are interested in predicting students' future incomes based on whether or not they go to private high schools. You write down the model $Y = \beta_0 + \beta_1 X + U$, where:

- Y is someone's annual income in adulthood (in dollars)
- X is an indicator for attending a private high school (1 = private, 0 = public)

<u>Part I</u>

Assume $\beta_0 + \beta_1 X$ is the best linear predictor of Y given X, so that E(U) = E(UX) = 0. Given an *i.i.d.* sample $\{Y_i, X_i\}_{i=1}^n$, with variation in X_i , you compute the OLS estimates $\hat{\beta}_0$ and $\hat{\beta}_1$.

- (a) State whether or not $\hat{\beta}_0$ and $\hat{\beta}_1$ satisfy each of the following properties. If the property is not satisfied, list what additional assumption(s) you would need for the property to hold.
 - (i) $\hat{\beta}_0$ and $\hat{\beta}_1$ are consistent.
 - (*ii*) $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased.
 - (*iii*) $\hat{\beta}_0$ and $\hat{\beta}_1$ are the best linear unbiased estimators (*BLUE*).
- (b) Suppose that you compute $\hat{\beta}_1$ and se($\hat{\beta}_1$). Explain how you would test whether β_1 is significantly different from zero at the 5% level (i.e. $\alpha = 0.05$). That is, state the appropriate test statistic T_n and critical value c_n . Then, write down a 95% confidence interval for β_1 . *Hint: you may assume that n is large, and you do NOT need to derive the test statistic.*

<u>Part II</u>

Now you want to give β_1 a causal interpretation. Therefore, you interpret β_1 as the *effect* of attending a private high school on someone's future income. Your goal is to estimate β_1 .

- (c) Suppose $E(U) \neq 0$. Show that the model can always be re-written with the same slope, but a new intercept and error term, so that the new error has an expected value of zero.
- (d) Is U likely to be correlated with X? Briefly explain your reasoning.
- (e) Will running OLS uncover the causal effect of X on Y? Briefly explain.

Problem 4

(20 points.) Consider the linear model $wage = \beta_0 + \beta_1 age + \beta_2 educ + \beta_3 child + U$, where wage denotes earnings, age is how old someone is, educ represents years of education, and child denotes number of children. Assume that your best linear predictor (BLP) assumptions hold.

- (a) Give a causal interpretation to β_1 .
- (b) Suppose you do not observe *educ* and *child*, so you consider the linear model with just *age*:

$$wage = \gamma_0 + \gamma_1 age + \varepsilon$$

Assume that the BLP assumptions hold for this simple linear model: $E(\varepsilon) = E([age]\varepsilon) = 0$. What assumptions would you need to make in order to guarantee that γ_1 equals β_1 ?

(c) Suppose you wish to test whether age^2 and age^3 are jointly relevant in the original model. In other words, you want to test whether the coefficients on age^2 and age^3 would both equal zero if they were included in the original regression. Describe which linear regressions to run and how to construct the test given an *i.i.d.* sample $\{wage_i, age_i, educ_i, child_i\}_{i=1}^n$.